1 /**************************************************************************//**
2 * @file cmsis_armclang.h
3 * @brief CMSIS compiler armclang (Arm Compiler 6) header file
4 * @version V5.4.3
5 * @date 27. May 2021
6 ******************************************************************************/
7 /*
8 * Copyright (c) 2009-2021 Arm Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25 /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26
27 #ifndef __CMSIS_ARMCLANG_H
28 #define __CMSIS_ARMCLANG_H
29
30 #pragma clang system_header /* treat file as system include file */
31
32 /* CMSIS compiler specific defines */
33 #ifndef __ASM
34 #define __ASM __asm
35 #endif
36 #ifndef __INLINE
37 #define __INLINE __inline
38 #endif
39 #ifndef __STATIC_INLINE
40 #define __STATIC_INLINE static __inline
41 #endif
42 #ifndef __STATIC_FORCEINLINE
43 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
44 #endif
45 #ifndef __NO_RETURN
46 #define __NO_RETURN __attribute__((__noreturn__))
47 #endif
48 #ifndef __USED
49 #define __USED __attribute__((used))
50 #endif
51 #ifndef __WEAK
52 #define __WEAK __attribute__((weak))
53 #endif
54 #ifndef __PACKED
55 #define __PACKED __attribute__((packed, aligned(1)))
56 #endif
57 #ifndef __PACKED_STRUCT
58 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
59 #endif
60 #ifndef __PACKED_UNION
61 #define __PACKED_UNION union __attribute__((packed, aligned(1)))
62 #endif
63 #ifndef __UNALIGNED_UINT32 /* deprecated */
64 #pragma clang diagnostic push
65 #pragma clang diagnostic ignored "-Wpacked"
66 /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
67 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
68 #pragma clang diagnostic pop
69 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
70 #endif
71 #ifndef __UNALIGNED_UINT16_WRITE
72 #pragma clang diagnostic push
73 #pragma clang diagnostic ignored "-Wpacked"
74 /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
75 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
76 #pragma clang diagnostic pop
77 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
78 #endif
79 #ifndef __UNALIGNED_UINT16_READ
80 #pragma clang diagnostic push
81 #pragma clang diagnostic ignored "-Wpacked"
82 /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
83 __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
84 #pragma clang diagnostic pop
85 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
86 #endif
87 #ifndef __UNALIGNED_UINT32_WRITE
88 #pragma clang diagnostic push
89 #pragma clang diagnostic ignored "-Wpacked"
90 /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
91 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
92 #pragma clang diagnostic pop
93 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
94 #endif
95 #ifndef __UNALIGNED_UINT32_READ
96 #pragma clang diagnostic push
97 #pragma clang diagnostic ignored "-Wpacked"
98 /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
99 __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
100 #pragma clang diagnostic pop
101 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
102 #endif
103 #ifndef __ALIGNED
104 #define __ALIGNED(x) __attribute__((aligned(x)))
105 #endif
106 #ifndef __RESTRICT
107 #define __RESTRICT __restrict
108 #endif
109 #ifndef __COMPILER_BARRIER
110 #define __COMPILER_BARRIER() __ASM volatile("":::"memory")
111 #endif
112
113 /* ######################### Startup and Lowlevel Init ######################## */
114
115 #ifndef __PROGRAM_START
116 #define __PROGRAM_START __main
117 #endif
118
119 #ifndef __INITIAL_SP
120 #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
121 #endif
122
123 #ifndef __STACK_LIMIT
124 #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
125 #endif
126
127 #ifndef __VECTOR_TABLE
128 #define __VECTOR_TABLE __Vectors
129 #endif
130
131 #ifndef __VECTOR_TABLE_ATTRIBUTE
132 #define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section("RESET")))
133 #endif
134
135 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
136 #ifndef __STACK_SEAL
137 #define __STACK_SEAL Image$$STACKSEAL$$ZI$$Base
138 #endif
139
140 #ifndef __TZ_STACK_SEAL_SIZE
141 #define __TZ_STACK_SEAL_SIZE 8U
142 #endif
143
144 #ifndef __TZ_STACK_SEAL_VALUE
145 #define __TZ_STACK_SEAL_VALUE 0xFEF5EDA5FEF5EDA5ULL
146 #endif
147
148
__TZ_set_STACKSEAL_S(uint32_t * stackTop)149 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
150 *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
151 }
152 #endif
153
154
155 /* ########################## Core Instruction Access ######################### */
156 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
157 Access to dedicated instructions
158 @{
159 */
160
161 /* Define macros for porting to both thumb1 and thumb2.
162 * For thumb1, use low register (r0-r7), specified by constraint "l"
163 * Otherwise, use general registers, specified by constraint "r" */
164 #if defined (__thumb__) && !defined (__thumb2__)
165 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
166 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
167 #define __CMSIS_GCC_USE_REG(r) "l" (r)
168 #else
169 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
170 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
171 #define __CMSIS_GCC_USE_REG(r) "r" (r)
172 #endif
173
174 /**
175 \brief No Operation
176 \details No Operation does nothing. This instruction can be used for code alignment purposes.
177 */
178 #define __NOP __builtin_arm_nop
179
180 /**
181 \brief Wait For Interrupt
182 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
183 */
184 #define __WFI __builtin_arm_wfi
185
186
187 /**
188 \brief Wait For Event
189 \details Wait For Event is a hint instruction that permits the processor to enter
190 a low-power state until one of a number of events occurs.
191 */
192 #define __WFE __builtin_arm_wfe
193
194
195 /**
196 \brief Send Event
197 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
198 */
199 #define __SEV __builtin_arm_sev
200
201
202 /**
203 \brief Instruction Synchronization Barrier
204 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
205 so that all instructions following the ISB are fetched from cache or memory,
206 after the instruction has been completed.
207 */
208 #define __ISB() __builtin_arm_isb(0xF)
209
210 /**
211 \brief Data Synchronization Barrier
212 \details Acts as a special kind of Data Memory Barrier.
213 It completes when all explicit memory accesses before this instruction complete.
214 */
215 #define __DSB() __builtin_arm_dsb(0xF)
216
217
218 /**
219 \brief Data Memory Barrier
220 \details Ensures the apparent order of the explicit memory operations before
221 and after the instruction, without ensuring their completion.
222 */
223 #define __DMB() __builtin_arm_dmb(0xF)
224
225
226 /**
227 \brief Reverse byte order (32 bit)
228 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
229 \param [in] value Value to reverse
230 \return Reversed value
231 */
232 #define __REV(value) __builtin_bswap32(value)
233
234
235 /**
236 \brief Reverse byte order (16 bit)
237 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
238 \param [in] value Value to reverse
239 \return Reversed value
240 */
241 #define __REV16(value) __ROR(__REV(value), 16)
242
243
244 /**
245 \brief Reverse byte order (16 bit)
246 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
247 \param [in] value Value to reverse
248 \return Reversed value
249 */
250 #define __REVSH(value) (int16_t)__builtin_bswap16(value)
251
252
253 /**
254 \brief Rotate Right in unsigned value (32 bit)
255 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
256 \param [in] op1 Value to rotate
257 \param [in] op2 Number of Bits to rotate
258 \return Rotated value
259 */
__ROR(uint32_t op1,uint32_t op2)260 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
261 {
262 op2 %= 32U;
263 if (op2 == 0U)
264 {
265 return op1;
266 }
267 return (op1 >> op2) | (op1 << (32U - op2));
268 }
269
270
271 /**
272 \brief Breakpoint
273 \details Causes the processor to enter Debug state.
274 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
275 \param [in] value is ignored by the processor.
276 If required, a debugger can use it to store additional information about the breakpoint.
277 */
278 #define __BKPT(value) __ASM volatile ("bkpt "#value)
279
280
281 /**
282 \brief Reverse bit order of value
283 \details Reverses the bit order of the given value.
284 \param [in] value Value to reverse
285 \return Reversed value
286 */
287 #define __RBIT __builtin_arm_rbit
288
289 /**
290 \brief Count leading zeros
291 \details Counts the number of leading zeros of a data value.
292 \param [in] value Value to count the leading zeros
293 \return number of leading zeros in value
294 */
__CLZ(uint32_t value)295 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
296 {
297 /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
298 __builtin_clz(0) is undefined behaviour, so handle this case specially.
299 This guarantees ARM-compatible results if happening to compile on a non-ARM
300 target, and ensures the compiler doesn't decide to activate any
301 optimisations using the logic "value was passed to __builtin_clz, so it
302 is non-zero".
303 ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
304 single CLZ instruction.
305 */
306 if (value == 0U)
307 {
308 return 32U;
309 }
310 return __builtin_clz(value);
311 }
312
313
314 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
315 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
316 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
317 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \
318 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) )
319
320 /**
321 \brief LDR Exclusive (8 bit)
322 \details Executes a exclusive LDR instruction for 8 bit value.
323 \param [in] ptr Pointer to data
324 \return value of type uint8_t at (*ptr)
325 */
326 #define __LDREXB (uint8_t)__builtin_arm_ldrex
327
328
329 /**
330 \brief LDR Exclusive (16 bit)
331 \details Executes a exclusive LDR instruction for 16 bit values.
332 \param [in] ptr Pointer to data
333 \return value of type uint16_t at (*ptr)
334 */
335 #define __LDREXH (uint16_t)__builtin_arm_ldrex
336
337
338 /**
339 \brief LDR Exclusive (32 bit)
340 \details Executes a exclusive LDR instruction for 32 bit values.
341 \param [in] ptr Pointer to data
342 \return value of type uint32_t at (*ptr)
343 */
344 #define __LDREXW (uint32_t)__builtin_arm_ldrex
345
346
347 /**
348 \brief STR Exclusive (8 bit)
349 \details Executes a exclusive STR instruction for 8 bit values.
350 \param [in] value Value to store
351 \param [in] ptr Pointer to location
352 \return 0 Function succeeded
353 \return 1 Function failed
354 */
355 #define __STREXB (uint32_t)__builtin_arm_strex
356
357
358 /**
359 \brief STR Exclusive (16 bit)
360 \details Executes a exclusive STR instruction for 16 bit values.
361 \param [in] value Value to store
362 \param [in] ptr Pointer to location
363 \return 0 Function succeeded
364 \return 1 Function failed
365 */
366 #define __STREXH (uint32_t)__builtin_arm_strex
367
368
369 /**
370 \brief STR Exclusive (32 bit)
371 \details Executes a exclusive STR instruction for 32 bit values.
372 \param [in] value Value to store
373 \param [in] ptr Pointer to location
374 \return 0 Function succeeded
375 \return 1 Function failed
376 */
377 #define __STREXW (uint32_t)__builtin_arm_strex
378
379
380 /**
381 \brief Remove the exclusive lock
382 \details Removes the exclusive lock which is created by LDREX.
383 */
384 #define __CLREX __builtin_arm_clrex
385
386 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
387 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
388 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
389 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \
390 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */
391
392
393 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
394 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
395 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
396 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) )
397
398 /**
399 \brief Signed Saturate
400 \details Saturates a signed value.
401 \param [in] value Value to be saturated
402 \param [in] sat Bit position to saturate to (1..32)
403 \return Saturated value
404 */
405 #define __SSAT __builtin_arm_ssat
406
407
408 /**
409 \brief Unsigned Saturate
410 \details Saturates an unsigned value.
411 \param [in] value Value to be saturated
412 \param [in] sat Bit position to saturate to (0..31)
413 \return Saturated value
414 */
415 #define __USAT __builtin_arm_usat
416
417
418 /**
419 \brief Rotate Right with Extend (32 bit)
420 \details Moves each bit of a bitstring right by one bit.
421 The carry input is shifted in at the left end of the bitstring.
422 \param [in] value Value to rotate
423 \return Rotated value
424 */
__RRX(uint32_t value)425 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
426 {
427 uint32_t result;
428
429 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
430 return(result);
431 }
432
433
434 /**
435 \brief LDRT Unprivileged (8 bit)
436 \details Executes a Unprivileged LDRT instruction for 8 bit value.
437 \param [in] ptr Pointer to data
438 \return value of type uint8_t at (*ptr)
439 */
__LDRBT(volatile uint8_t * ptr)440 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
441 {
442 uint32_t result;
443
444 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
445 return ((uint8_t) result); /* Add explicit type cast here */
446 }
447
448
449 /**
450 \brief LDRT Unprivileged (16 bit)
451 \details Executes a Unprivileged LDRT instruction for 16 bit values.
452 \param [in] ptr Pointer to data
453 \return value of type uint16_t at (*ptr)
454 */
__LDRHT(volatile uint16_t * ptr)455 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
456 {
457 uint32_t result;
458
459 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
460 return ((uint16_t) result); /* Add explicit type cast here */
461 }
462
463
464 /**
465 \brief LDRT Unprivileged (32 bit)
466 \details Executes a Unprivileged LDRT instruction for 32 bit values.
467 \param [in] ptr Pointer to data
468 \return value of type uint32_t at (*ptr)
469 */
__LDRT(volatile uint32_t * ptr)470 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
471 {
472 uint32_t result;
473
474 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
475 return(result);
476 }
477
478
479 /**
480 \brief STRT Unprivileged (8 bit)
481 \details Executes a Unprivileged STRT instruction for 8 bit values.
482 \param [in] value Value to store
483 \param [in] ptr Pointer to location
484 */
__STRBT(uint8_t value,volatile uint8_t * ptr)485 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
486 {
487 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
488 }
489
490
491 /**
492 \brief STRT Unprivileged (16 bit)
493 \details Executes a Unprivileged STRT instruction for 16 bit values.
494 \param [in] value Value to store
495 \param [in] ptr Pointer to location
496 */
__STRHT(uint16_t value,volatile uint16_t * ptr)497 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
498 {
499 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
500 }
501
502
503 /**
504 \brief STRT Unprivileged (32 bit)
505 \details Executes a Unprivileged STRT instruction for 32 bit values.
506 \param [in] value Value to store
507 \param [in] ptr Pointer to location
508 */
__STRT(uint32_t value,volatile uint32_t * ptr)509 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
510 {
511 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
512 }
513
514 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
515 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
516 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
517 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */
518
519 /**
520 \brief Signed Saturate
521 \details Saturates a signed value.
522 \param [in] value Value to be saturated
523 \param [in] sat Bit position to saturate to (1..32)
524 \return Saturated value
525 */
__SSAT(int32_t val,uint32_t sat)526 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
527 {
528 if ((sat >= 1U) && (sat <= 32U))
529 {
530 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
531 const int32_t min = -1 - max ;
532 if (val > max)
533 {
534 return max;
535 }
536 else if (val < min)
537 {
538 return min;
539 }
540 }
541 return val;
542 }
543
544 /**
545 \brief Unsigned Saturate
546 \details Saturates an unsigned value.
547 \param [in] value Value to be saturated
548 \param [in] sat Bit position to saturate to (0..31)
549 \return Saturated value
550 */
__USAT(int32_t val,uint32_t sat)551 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
552 {
553 if (sat <= 31U)
554 {
555 const uint32_t max = ((1U << sat) - 1U);
556 if (val > (int32_t)max)
557 {
558 return max;
559 }
560 else if (val < 0)
561 {
562 return 0U;
563 }
564 }
565 return (uint32_t)val;
566 }
567
568 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
569 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
570 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
571 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */
572
573
574 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
575 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \
576 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) )
577
578 /**
579 \brief Load-Acquire (8 bit)
580 \details Executes a LDAB instruction for 8 bit value.
581 \param [in] ptr Pointer to data
582 \return value of type uint8_t at (*ptr)
583 */
__LDAB(volatile uint8_t * ptr)584 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
585 {
586 uint32_t result;
587
588 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
589 return ((uint8_t) result);
590 }
591
592
593 /**
594 \brief Load-Acquire (16 bit)
595 \details Executes a LDAH instruction for 16 bit values.
596 \param [in] ptr Pointer to data
597 \return value of type uint16_t at (*ptr)
598 */
__LDAH(volatile uint16_t * ptr)599 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
600 {
601 uint32_t result;
602
603 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
604 return ((uint16_t) result);
605 }
606
607
608 /**
609 \brief Load-Acquire (32 bit)
610 \details Executes a LDA instruction for 32 bit values.
611 \param [in] ptr Pointer to data
612 \return value of type uint32_t at (*ptr)
613 */
__LDA(volatile uint32_t * ptr)614 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
615 {
616 uint32_t result;
617
618 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
619 return(result);
620 }
621
622
623 /**
624 \brief Store-Release (8 bit)
625 \details Executes a STLB instruction for 8 bit values.
626 \param [in] value Value to store
627 \param [in] ptr Pointer to location
628 */
__STLB(uint8_t value,volatile uint8_t * ptr)629 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
630 {
631 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
632 }
633
634
635 /**
636 \brief Store-Release (16 bit)
637 \details Executes a STLH instruction for 16 bit values.
638 \param [in] value Value to store
639 \param [in] ptr Pointer to location
640 */
__STLH(uint16_t value,volatile uint16_t * ptr)641 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
642 {
643 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
644 }
645
646
647 /**
648 \brief Store-Release (32 bit)
649 \details Executes a STL instruction for 32 bit values.
650 \param [in] value Value to store
651 \param [in] ptr Pointer to location
652 */
__STL(uint32_t value,volatile uint32_t * ptr)653 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
654 {
655 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
656 }
657
658
659 /**
660 \brief Load-Acquire Exclusive (8 bit)
661 \details Executes a LDAB exclusive instruction for 8 bit value.
662 \param [in] ptr Pointer to data
663 \return value of type uint8_t at (*ptr)
664 */
665 #define __LDAEXB (uint8_t)__builtin_arm_ldaex
666
667
668 /**
669 \brief Load-Acquire Exclusive (16 bit)
670 \details Executes a LDAH exclusive instruction for 16 bit values.
671 \param [in] ptr Pointer to data
672 \return value of type uint16_t at (*ptr)
673 */
674 #define __LDAEXH (uint16_t)__builtin_arm_ldaex
675
676
677 /**
678 \brief Load-Acquire Exclusive (32 bit)
679 \details Executes a LDA exclusive instruction for 32 bit values.
680 \param [in] ptr Pointer to data
681 \return value of type uint32_t at (*ptr)
682 */
683 #define __LDAEX (uint32_t)__builtin_arm_ldaex
684
685
686 /**
687 \brief Store-Release Exclusive (8 bit)
688 \details Executes a STLB exclusive instruction for 8 bit values.
689 \param [in] value Value to store
690 \param [in] ptr Pointer to location
691 \return 0 Function succeeded
692 \return 1 Function failed
693 */
694 #define __STLEXB (uint32_t)__builtin_arm_stlex
695
696
697 /**
698 \brief Store-Release Exclusive (16 bit)
699 \details Executes a STLH exclusive instruction for 16 bit values.
700 \param [in] value Value to store
701 \param [in] ptr Pointer to location
702 \return 0 Function succeeded
703 \return 1 Function failed
704 */
705 #define __STLEXH (uint32_t)__builtin_arm_stlex
706
707
708 /**
709 \brief Store-Release Exclusive (32 bit)
710 \details Executes a STL exclusive instruction for 32 bit values.
711 \param [in] value Value to store
712 \param [in] ptr Pointer to location
713 \return 0 Function succeeded
714 \return 1 Function failed
715 */
716 #define __STLEX (uint32_t)__builtin_arm_stlex
717
718 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
719 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \
720 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */
721
722 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
723
724
725 /* ########################### Core Function Access ########################### */
726 /** \ingroup CMSIS_Core_FunctionInterface
727 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
728 @{
729 */
730
731 /**
732 \brief Enable IRQ Interrupts
733 \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
734 Can only be executed in Privileged modes.
735 */
736 #ifndef __ARM_COMPAT_H
__enable_irq(void)737 __STATIC_FORCEINLINE void __enable_irq(void)
738 {
739 __ASM volatile ("cpsie i" : : : "memory");
740 }
741 #endif
742
743
744 /**
745 \brief Disable IRQ Interrupts
746 \details Disables IRQ interrupts by setting special-purpose register PRIMASK.
747 Can only be executed in Privileged modes.
748 */
749 #ifndef __ARM_COMPAT_H
__disable_irq(void)750 __STATIC_FORCEINLINE void __disable_irq(void)
751 {
752 __ASM volatile ("cpsid i" : : : "memory");
753 }
754 #endif
755
756
757 /**
758 \brief Get Control Register
759 \details Returns the content of the Control Register.
760 \return Control Register value
761 */
__get_CONTROL(void)762 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
763 {
764 uint32_t result;
765
766 __ASM volatile ("MRS %0, control" : "=r" (result) );
767 return(result);
768 }
769
770
771 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
772 /**
773 \brief Get Control Register (non-secure)
774 \details Returns the content of the non-secure Control Register when in secure mode.
775 \return non-secure Control Register value
776 */
__TZ_get_CONTROL_NS(void)777 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
778 {
779 uint32_t result;
780
781 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
782 return(result);
783 }
784 #endif
785
786
787 /**
788 \brief Set Control Register
789 \details Writes the given value to the Control Register.
790 \param [in] control Control Register value to set
791 */
__set_CONTROL(uint32_t control)792 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
793 {
794 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
795 __ISB();
796 }
797
798
799 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
800 /**
801 \brief Set Control Register (non-secure)
802 \details Writes the given value to the non-secure Control Register when in secure state.
803 \param [in] control Control Register value to set
804 */
__TZ_set_CONTROL_NS(uint32_t control)805 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
806 {
807 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
808 __ISB();
809 }
810 #endif
811
812
813 /**
814 \brief Get IPSR Register
815 \details Returns the content of the IPSR Register.
816 \return IPSR Register value
817 */
__get_IPSR(void)818 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
819 {
820 uint32_t result;
821
822 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
823 return(result);
824 }
825
826
827 /**
828 \brief Get APSR Register
829 \details Returns the content of the APSR Register.
830 \return APSR Register value
831 */
__get_APSR(void)832 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
833 {
834 uint32_t result;
835
836 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
837 return(result);
838 }
839
840
841 /**
842 \brief Get xPSR Register
843 \details Returns the content of the xPSR Register.
844 \return xPSR Register value
845 */
__get_xPSR(void)846 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
847 {
848 uint32_t result;
849
850 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
851 return(result);
852 }
853
854
855 /**
856 \brief Get Process Stack Pointer
857 \details Returns the current value of the Process Stack Pointer (PSP).
858 \return PSP Register value
859 */
__get_PSP(void)860 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
861 {
862 uint32_t result;
863
864 __ASM volatile ("MRS %0, psp" : "=r" (result) );
865 return(result);
866 }
867
868
869 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
870 /**
871 \brief Get Process Stack Pointer (non-secure)
872 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
873 \return PSP Register value
874 */
__TZ_get_PSP_NS(void)875 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
876 {
877 uint32_t result;
878
879 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
880 return(result);
881 }
882 #endif
883
884
885 /**
886 \brief Set Process Stack Pointer
887 \details Assigns the given value to the Process Stack Pointer (PSP).
888 \param [in] topOfProcStack Process Stack Pointer value to set
889 */
__set_PSP(uint32_t topOfProcStack)890 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
891 {
892 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
893 }
894
895
896 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
897 /**
898 \brief Set Process Stack Pointer (non-secure)
899 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
900 \param [in] topOfProcStack Process Stack Pointer value to set
901 */
__TZ_set_PSP_NS(uint32_t topOfProcStack)902 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
903 {
904 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
905 }
906 #endif
907
908
909 /**
910 \brief Get Main Stack Pointer
911 \details Returns the current value of the Main Stack Pointer (MSP).
912 \return MSP Register value
913 */
__get_MSP(void)914 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
915 {
916 uint32_t result;
917
918 __ASM volatile ("MRS %0, msp" : "=r" (result) );
919 return(result);
920 }
921
922
923 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
924 /**
925 \brief Get Main Stack Pointer (non-secure)
926 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
927 \return MSP Register value
928 */
__TZ_get_MSP_NS(void)929 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
930 {
931 uint32_t result;
932
933 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
934 return(result);
935 }
936 #endif
937
938
939 /**
940 \brief Set Main Stack Pointer
941 \details Assigns the given value to the Main Stack Pointer (MSP).
942 \param [in] topOfMainStack Main Stack Pointer value to set
943 */
__set_MSP(uint32_t topOfMainStack)944 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
945 {
946 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
947 }
948
949
950 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
951 /**
952 \brief Set Main Stack Pointer (non-secure)
953 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
954 \param [in] topOfMainStack Main Stack Pointer value to set
955 */
__TZ_set_MSP_NS(uint32_t topOfMainStack)956 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
957 {
958 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
959 }
960 #endif
961
962
963 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
964 /**
965 \brief Get Stack Pointer (non-secure)
966 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
967 \return SP Register value
968 */
__TZ_get_SP_NS(void)969 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
970 {
971 uint32_t result;
972
973 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
974 return(result);
975 }
976
977
978 /**
979 \brief Set Stack Pointer (non-secure)
980 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
981 \param [in] topOfStack Stack Pointer value to set
982 */
__TZ_set_SP_NS(uint32_t topOfStack)983 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
984 {
985 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
986 }
987 #endif
988
989
990 /**
991 \brief Get Priority Mask
992 \details Returns the current state of the priority mask bit from the Priority Mask Register.
993 \return Priority Mask value
994 */
__get_PRIMASK(void)995 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
996 {
997 uint32_t result;
998
999 __ASM volatile ("MRS %0, primask" : "=r" (result) );
1000 return(result);
1001 }
1002
1003
1004 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1005 /**
1006 \brief Get Priority Mask (non-secure)
1007 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
1008 \return Priority Mask value
1009 */
__TZ_get_PRIMASK_NS(void)1010 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
1011 {
1012 uint32_t result;
1013
1014 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
1015 return(result);
1016 }
1017 #endif
1018
1019
1020 /**
1021 \brief Set Priority Mask
1022 \details Assigns the given value to the Priority Mask Register.
1023 \param [in] priMask Priority Mask
1024 */
__set_PRIMASK(uint32_t priMask)1025 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
1026 {
1027 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
1028 }
1029
1030
1031 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1032 /**
1033 \brief Set Priority Mask (non-secure)
1034 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
1035 \param [in] priMask Priority Mask
1036 */
__TZ_set_PRIMASK_NS(uint32_t priMask)1037 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
1038 {
1039 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
1040 }
1041 #endif
1042
1043
1044 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1045 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1046 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1047 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) )
1048 /**
1049 \brief Enable FIQ
1050 \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
1051 Can only be executed in Privileged modes.
1052 */
__enable_fault_irq(void)1053 __STATIC_FORCEINLINE void __enable_fault_irq(void)
1054 {
1055 __ASM volatile ("cpsie f" : : : "memory");
1056 }
1057
1058
1059 /**
1060 \brief Disable FIQ
1061 \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
1062 Can only be executed in Privileged modes.
1063 */
__disable_fault_irq(void)1064 __STATIC_FORCEINLINE void __disable_fault_irq(void)
1065 {
1066 __ASM volatile ("cpsid f" : : : "memory");
1067 }
1068
1069
1070 /**
1071 \brief Get Base Priority
1072 \details Returns the current value of the Base Priority register.
1073 \return Base Priority register value
1074 */
__get_BASEPRI(void)1075 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
1076 {
1077 uint32_t result;
1078
1079 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
1080 return(result);
1081 }
1082
1083
1084 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1085 /**
1086 \brief Get Base Priority (non-secure)
1087 \details Returns the current value of the non-secure Base Priority register when in secure state.
1088 \return Base Priority register value
1089 */
__TZ_get_BASEPRI_NS(void)1090 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
1091 {
1092 uint32_t result;
1093
1094 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
1095 return(result);
1096 }
1097 #endif
1098
1099
1100 /**
1101 \brief Set Base Priority
1102 \details Assigns the given value to the Base Priority register.
1103 \param [in] basePri Base Priority value to set
1104 */
__set_BASEPRI(uint32_t basePri)1105 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
1106 {
1107 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
1108 }
1109
1110
1111 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1112 /**
1113 \brief Set Base Priority (non-secure)
1114 \details Assigns the given value to the non-secure Base Priority register when in secure state.
1115 \param [in] basePri Base Priority value to set
1116 */
__TZ_set_BASEPRI_NS(uint32_t basePri)1117 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
1118 {
1119 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
1120 }
1121 #endif
1122
1123
1124 /**
1125 \brief Set Base Priority with condition
1126 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
1127 or the new value increases the BASEPRI priority level.
1128 \param [in] basePri Base Priority value to set
1129 */
__set_BASEPRI_MAX(uint32_t basePri)1130 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
1131 {
1132 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
1133 }
1134
1135
1136 /**
1137 \brief Get Fault Mask
1138 \details Returns the current value of the Fault Mask register.
1139 \return Fault Mask register value
1140 */
__get_FAULTMASK(void)1141 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
1142 {
1143 uint32_t result;
1144
1145 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
1146 return(result);
1147 }
1148
1149
1150 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1151 /**
1152 \brief Get Fault Mask (non-secure)
1153 \details Returns the current value of the non-secure Fault Mask register when in secure state.
1154 \return Fault Mask register value
1155 */
__TZ_get_FAULTMASK_NS(void)1156 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
1157 {
1158 uint32_t result;
1159
1160 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
1161 return(result);
1162 }
1163 #endif
1164
1165
1166 /**
1167 \brief Set Fault Mask
1168 \details Assigns the given value to the Fault Mask register.
1169 \param [in] faultMask Fault Mask value to set
1170 */
__set_FAULTMASK(uint32_t faultMask)1171 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
1172 {
1173 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
1174 }
1175
1176
1177 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1178 /**
1179 \brief Set Fault Mask (non-secure)
1180 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
1181 \param [in] faultMask Fault Mask value to set
1182 */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)1183 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
1184 {
1185 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
1186 }
1187 #endif
1188
1189 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1190 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1191 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1192 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */
1193
1194
1195 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1196 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \
1197 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) )
1198
1199 /**
1200 \brief Get Process Stack Pointer Limit
1201 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1202 Stack Pointer Limit register hence zero is returned always in non-secure
1203 mode.
1204
1205 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
1206 \return PSPLIM Register value
1207 */
__get_PSPLIM(void)1208 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
1209 {
1210 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1211 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \
1212 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1213 // without main extensions, the non-secure PSPLIM is RAZ/WI
1214 return 0U;
1215 #else
1216 uint32_t result;
1217 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
1218 return result;
1219 #endif
1220 }
1221
1222 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
1223 /**
1224 \brief Get Process Stack Pointer Limit (non-secure)
1225 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1226 Stack Pointer Limit register hence zero is returned always in non-secure
1227 mode.
1228
1229 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1230 \return PSPLIM Register value
1231 */
__TZ_get_PSPLIM_NS(void)1232 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
1233 {
1234 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1235 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) )
1236 // without main extensions, the non-secure PSPLIM is RAZ/WI
1237 return 0U;
1238 #else
1239 uint32_t result;
1240 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
1241 return result;
1242 #endif
1243 }
1244 #endif
1245
1246
1247 /**
1248 \brief Set Process Stack Pointer Limit
1249 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1250 Stack Pointer Limit register hence the write is silently ignored in non-secure
1251 mode.
1252
1253 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
1254 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
1255 */
__set_PSPLIM(uint32_t ProcStackPtrLimit)1256 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
1257 {
1258 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1259 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \
1260 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1261 // without main extensions, the non-secure PSPLIM is RAZ/WI
1262 (void)ProcStackPtrLimit;
1263 #else
1264 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
1265 #endif
1266 }
1267
1268
1269 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1270 /**
1271 \brief Set Process Stack Pointer (non-secure)
1272 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1273 Stack Pointer Limit register hence the write is silently ignored in non-secure
1274 mode.
1275
1276 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1277 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
1278 */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)1279 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
1280 {
1281 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1282 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) )
1283 // without main extensions, the non-secure PSPLIM is RAZ/WI
1284 (void)ProcStackPtrLimit;
1285 #else
1286 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
1287 #endif
1288 }
1289 #endif
1290
1291
1292 /**
1293 \brief Get Main Stack Pointer Limit
1294 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1295 Stack Pointer Limit register hence zero is returned always.
1296
1297 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
1298 \return MSPLIM Register value
1299 */
__get_MSPLIM(void)1300 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
1301 {
1302 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1303 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \
1304 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1305 // without main extensions, the non-secure MSPLIM is RAZ/WI
1306 return 0U;
1307 #else
1308 uint32_t result;
1309 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
1310 return result;
1311 #endif
1312 }
1313
1314
1315 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1316 /**
1317 \brief Get Main Stack Pointer Limit (non-secure)
1318 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1319 Stack Pointer Limit register hence zero is returned always.
1320
1321 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
1322 \return MSPLIM Register value
1323 */
__TZ_get_MSPLIM_NS(void)1324 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
1325 {
1326 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1327 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) )
1328 // without main extensions, the non-secure MSPLIM is RAZ/WI
1329 return 0U;
1330 #else
1331 uint32_t result;
1332 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
1333 return result;
1334 #endif
1335 }
1336 #endif
1337
1338
1339 /**
1340 \brief Set Main Stack Pointer Limit
1341 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1342 Stack Pointer Limit register hence the write is silently ignored.
1343
1344 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
1345 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
1346 */
__set_MSPLIM(uint32_t MainStackPtrLimit)1347 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
1348 {
1349 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1350 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \
1351 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1352 // without main extensions, the non-secure MSPLIM is RAZ/WI
1353 (void)MainStackPtrLimit;
1354 #else
1355 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
1356 #endif
1357 }
1358
1359
1360 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1361 /**
1362 \brief Set Main Stack Pointer Limit (non-secure)
1363 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1364 Stack Pointer Limit register hence the write is silently ignored.
1365
1366 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
1367 \param [in] MainStackPtrLimit Main Stack Pointer value to set
1368 */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)1369 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
1370 {
1371 #if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1372 (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) )
1373 // without main extensions, the non-secure MSPLIM is RAZ/WI
1374 (void)MainStackPtrLimit;
1375 #else
1376 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
1377 #endif
1378 }
1379 #endif
1380
1381 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1382 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \
1383 (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */
1384
1385 /**
1386 \brief Get FPSCR
1387 \details Returns the current value of the Floating Point Status/Control register.
1388 \return Floating Point Status/Control register value
1389 */
1390 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1391 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
1392 #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr
1393 #else
1394 #define __get_FPSCR() ((uint32_t)0U)
1395 #endif
1396
1397 /**
1398 \brief Set FPSCR
1399 \details Assigns the given value to the Floating Point Status/Control register.
1400 \param [in] fpscr Floating Point Status/Control value to set
1401 */
1402 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1403 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
1404 #define __set_FPSCR __builtin_arm_set_fpscr
1405 #else
1406 #define __set_FPSCR(x) ((void)(x))
1407 #endif
1408
1409
1410 /*@} end of CMSIS_Core_RegAccFunctions */
1411
1412
1413 /* ################### Compiler specific Intrinsics ########################### */
1414 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1415 Access to dedicated SIMD instructions
1416 @{
1417 */
1418
1419 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1420
1421 #define __SADD8 __builtin_arm_sadd8
1422 #define __QADD8 __builtin_arm_qadd8
1423 #define __SHADD8 __builtin_arm_shadd8
1424 #define __UADD8 __builtin_arm_uadd8
1425 #define __UQADD8 __builtin_arm_uqadd8
1426 #define __UHADD8 __builtin_arm_uhadd8
1427 #define __SSUB8 __builtin_arm_ssub8
1428 #define __QSUB8 __builtin_arm_qsub8
1429 #define __SHSUB8 __builtin_arm_shsub8
1430 #define __USUB8 __builtin_arm_usub8
1431 #define __UQSUB8 __builtin_arm_uqsub8
1432 #define __UHSUB8 __builtin_arm_uhsub8
1433 #define __SADD16 __builtin_arm_sadd16
1434 #define __QADD16 __builtin_arm_qadd16
1435 #define __SHADD16 __builtin_arm_shadd16
1436 #define __UADD16 __builtin_arm_uadd16
1437 #define __UQADD16 __builtin_arm_uqadd16
1438 #define __UHADD16 __builtin_arm_uhadd16
1439 #define __SSUB16 __builtin_arm_ssub16
1440 #define __QSUB16 __builtin_arm_qsub16
1441 #define __SHSUB16 __builtin_arm_shsub16
1442 #define __USUB16 __builtin_arm_usub16
1443 #define __UQSUB16 __builtin_arm_uqsub16
1444 #define __UHSUB16 __builtin_arm_uhsub16
1445 #define __SASX __builtin_arm_sasx
1446 #define __QASX __builtin_arm_qasx
1447 #define __SHASX __builtin_arm_shasx
1448 #define __UASX __builtin_arm_uasx
1449 #define __UQASX __builtin_arm_uqasx
1450 #define __UHASX __builtin_arm_uhasx
1451 #define __SSAX __builtin_arm_ssax
1452 #define __QSAX __builtin_arm_qsax
1453 #define __SHSAX __builtin_arm_shsax
1454 #define __USAX __builtin_arm_usax
1455 #define __UQSAX __builtin_arm_uqsax
1456 #define __UHSAX __builtin_arm_uhsax
1457 #define __USAD8 __builtin_arm_usad8
1458 #define __USADA8 __builtin_arm_usada8
1459 #define __SSAT16 __builtin_arm_ssat16
1460 #define __USAT16 __builtin_arm_usat16
1461 #define __UXTB16 __builtin_arm_uxtb16
1462 #define __UXTAB16 __builtin_arm_uxtab16
1463 #define __SXTB16 __builtin_arm_sxtb16
1464 #define __SXTAB16 __builtin_arm_sxtab16
1465 #define __SMUAD __builtin_arm_smuad
1466 #define __SMUADX __builtin_arm_smuadx
1467 #define __SMLAD __builtin_arm_smlad
1468 #define __SMLADX __builtin_arm_smladx
1469 #define __SMLALD __builtin_arm_smlald
1470 #define __SMLALDX __builtin_arm_smlaldx
1471 #define __SMUSD __builtin_arm_smusd
1472 #define __SMUSDX __builtin_arm_smusdx
1473 #define __SMLSD __builtin_arm_smlsd
1474 #define __SMLSDX __builtin_arm_smlsdx
1475 #define __SMLSLD __builtin_arm_smlsld
1476 #define __SMLSLDX __builtin_arm_smlsldx
1477 #define __SEL __builtin_arm_sel
1478 #define __QADD __builtin_arm_qadd
1479 #define __QSUB __builtin_arm_qsub
1480
1481 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
1482 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
1483
1484 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
1485 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
1486
1487 #define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2))
1488
1489 #define __SXTAB16_RORn(ARG1, ARG2, ARG3) __SXTAB16(ARG1, __ROR(ARG2, ARG3))
1490
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1491 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1492 {
1493 int32_t result;
1494
1495 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1496 return(result);
1497 }
1498
1499 #endif /* (__ARM_FEATURE_DSP == 1) */
1500 /*@} end of group CMSIS_SIMD_intrinsics */
1501
1502
1503 #endif /* __CMSIS_ARMCLANG_H */
1504