1 /******************************************************************************
2  * @file     svm_functions.h
3  * @brief    Public header file for CMSIS DSP Library
4  * @version  V1.9.0
5  * @date     23 April 2021
6  * Target Processor: Cortex-M and Cortex-A cores
7  ******************************************************************************/
8 /*
9  * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
10  *
11  * SPDX-License-Identifier: Apache-2.0
12  *
13  * Licensed under the Apache License, Version 2.0 (the License); you may
14  * not use this file except in compliance with the License.
15  * You may obtain a copy of the License at
16  *
17  * www.apache.org/licenses/LICENSE-2.0
18  *
19  * Unless required by applicable law or agreed to in writing, software
20  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
21  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  * See the License for the specific language governing permissions and
23  * limitations under the License.
24  */
25 
26 
27 #ifndef _SVM_FUNCTIONS_H_
28 #define _SVM_FUNCTIONS_H_
29 
30 #include "arm_math_types.h"
31 #include "arm_math_memory.h"
32 
33 #include "dsp/none.h"
34 #include "dsp/utils.h"
35 #include "dsp/svm_defines.h"
36 
37 #ifdef   __cplusplus
38 extern "C"
39 {
40 #endif
41 
42 #define STEP(x) (x) <= 0 ? 0 : 1
43 
44 /**
45  * @defgroup groupSVM SVM Functions
46  * This set of functions is implementing SVM classification on 2 classes.
47  * The training must be done from scikit-learn. The parameters can be easily
48  * generated from the scikit-learn object. Some examples are given in
49  * DSP/Testing/PatternGeneration/SVM.py
50  *
51  * If more than 2 classes are needed, the functions in this folder
52  * will have to be used, as building blocks, to do multi-class classification.
53  *
54  * No multi-class classification is provided in this SVM folder.
55  *
56  */
57 
58 /**
59  * @brief Integer exponentiation
60  * @param[in]    x           value
61  * @param[in]    nb          integer exponent >= 1
62  * @return x^nb
63  *
64  */
arm_exponent_f32(float32_t x,int32_t nb)65 __STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb)
66 {
67     float32_t r = x;
68     nb --;
69     while(nb > 0)
70     {
71         r = r * x;
72         nb--;
73     }
74     return(r);
75 }
76 
77 
78 
79 
80 
81 /**
82  * @brief Instance structure for linear SVM prediction function.
83  */
84 typedef struct
85 {
86   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
87   uint32_t        vectorDimension;        /**< Dimension of vector space */
88   float32_t       intercept;              /**< Intercept */
89   const float32_t *dualCoefficients;      /**< Dual coefficients */
90   const float32_t *supportVectors;        /**< Support vectors */
91   const int32_t   *classes;               /**< The two SVM classes */
92 } arm_svm_linear_instance_f32;
93 
94 
95 /**
96  * @brief Instance structure for polynomial SVM prediction function.
97  */
98 typedef struct
99 {
100   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
101   uint32_t        vectorDimension;        /**< Dimension of vector space */
102   float32_t       intercept;              /**< Intercept */
103   const float32_t *dualCoefficients;      /**< Dual coefficients */
104   const float32_t *supportVectors;        /**< Support vectors */
105   const int32_t   *classes;               /**< The two SVM classes */
106   int32_t         degree;                 /**< Polynomial degree */
107   float32_t       coef0;                  /**< Polynomial constant */
108   float32_t       gamma;                  /**< Gamma factor */
109 } arm_svm_polynomial_instance_f32;
110 
111 /**
112  * @brief Instance structure for rbf SVM prediction function.
113  */
114 typedef struct
115 {
116   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
117   uint32_t        vectorDimension;        /**< Dimension of vector space */
118   float32_t       intercept;              /**< Intercept */
119   const float32_t *dualCoefficients;      /**< Dual coefficients */
120   const float32_t *supportVectors;        /**< Support vectors */
121   const int32_t   *classes;               /**< The two SVM classes */
122   float32_t       gamma;                  /**< Gamma factor */
123 } arm_svm_rbf_instance_f32;
124 
125 /**
126  * @brief Instance structure for sigmoid SVM prediction function.
127  */
128 typedef struct
129 {
130   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
131   uint32_t        vectorDimension;        /**< Dimension of vector space */
132   float32_t       intercept;              /**< Intercept */
133   const float32_t *dualCoefficients;      /**< Dual coefficients */
134   const float32_t *supportVectors;        /**< Support vectors */
135   const int32_t   *classes;               /**< The two SVM classes */
136   float32_t       coef0;                  /**< Independent constant */
137   float32_t       gamma;                  /**< Gamma factor */
138 } arm_svm_sigmoid_instance_f32;
139 
140 /**
141  * @brief        SVM linear instance init function
142  * @param[in]    S                      Parameters for SVM functions
143  * @param[in]    nbOfSupportVectors     Number of support vectors
144  * @param[in]    vectorDimension        Dimension of vector space
145  * @param[in]    intercept              Intercept
146  * @param[in]    dualCoefficients       Array of dual coefficients
147  * @param[in]    supportVectors         Array of support vectors
148  * @param[in]    classes                Array of 2 classes ID
149  * @return none.
150  *
151  */
152 
153 
154 void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
155   uint32_t nbOfSupportVectors,
156   uint32_t vectorDimension,
157   float32_t intercept,
158   const float32_t *dualCoefficients,
159   const float32_t *supportVectors,
160   const int32_t  *classes);
161 
162 /**
163  * @brief SVM linear prediction
164  * @param[in]    S          Pointer to an instance of the linear SVM structure.
165  * @param[in]    in         Pointer to input vector
166  * @param[out]   pResult    Decision value
167  * @return none.
168  *
169  */
170 
171 void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S,
172    const float32_t * in,
173    int32_t * pResult);
174 
175 
176 /**
177  * @brief        SVM polynomial instance init function
178  * @param[in]    S                      points to an instance of the polynomial SVM structure.
179  * @param[in]    nbOfSupportVectors     Number of support vectors
180  * @param[in]    vectorDimension        Dimension of vector space
181  * @param[in]    intercept              Intercept
182  * @param[in]    dualCoefficients       Array of dual coefficients
183  * @param[in]    supportVectors         Array of support vectors
184  * @param[in]    classes                Array of 2 classes ID
185  * @param[in]    degree                 Polynomial degree
186  * @param[in]    coef0                  coeff0 (scikit-learn terminology)
187  * @param[in]    gamma                  gamma (scikit-learn terminology)
188  * @return none.
189  *
190  */
191 
192 
193 void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
194   uint32_t nbOfSupportVectors,
195   uint32_t vectorDimension,
196   float32_t intercept,
197   const float32_t *dualCoefficients,
198   const float32_t *supportVectors,
199   const int32_t   *classes,
200   int32_t      degree,
201   float32_t coef0,
202   float32_t gamma
203   );
204 
205 /**
206  * @brief SVM polynomial prediction
207  * @param[in]    S          Pointer to an instance of the polynomial SVM structure.
208  * @param[in]    in         Pointer to input vector
209  * @param[out]   pResult    Decision value
210  * @return none.
211  *
212  */
213 void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S,
214    const float32_t * in,
215    int32_t * pResult);
216 
217 
218 /**
219  * @brief        SVM radial basis function instance init function
220  * @param[in]    S                      points to an instance of the polynomial SVM structure.
221  * @param[in]    nbOfSupportVectors     Number of support vectors
222  * @param[in]    vectorDimension        Dimension of vector space
223  * @param[in]    intercept              Intercept
224  * @param[in]    dualCoefficients       Array of dual coefficients
225  * @param[in]    supportVectors         Array of support vectors
226  * @param[in]    classes                Array of 2 classes ID
227  * @param[in]    gamma                  gamma (scikit-learn terminology)
228  * @return none.
229  *
230  */
231 
232 void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
233   uint32_t nbOfSupportVectors,
234   uint32_t vectorDimension,
235   float32_t intercept,
236   const float32_t *dualCoefficients,
237   const float32_t *supportVectors,
238   const int32_t   *classes,
239   float32_t gamma
240   );
241 
242 /**
243  * @brief SVM rbf prediction
244  * @param[in]    S         Pointer to an instance of the rbf SVM structure.
245  * @param[in]    in        Pointer to input vector
246  * @param[out]   pResult   decision value
247  * @return none.
248  *
249  */
250 void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S,
251    const float32_t * in,
252    int32_t * pResult);
253 
254 /**
255  * @brief        SVM sigmoid instance init function
256  * @param[in]    S                      points to an instance of the rbf SVM structure.
257  * @param[in]    nbOfSupportVectors     Number of support vectors
258  * @param[in]    vectorDimension        Dimension of vector space
259  * @param[in]    intercept              Intercept
260  * @param[in]    dualCoefficients       Array of dual coefficients
261  * @param[in]    supportVectors         Array of support vectors
262  * @param[in]    classes                Array of 2 classes ID
263  * @param[in]    coef0                  coeff0 (scikit-learn terminology)
264  * @param[in]    gamma                  gamma (scikit-learn terminology)
265  * @return none.
266  *
267  */
268 
269 void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
270   uint32_t nbOfSupportVectors,
271   uint32_t vectorDimension,
272   float32_t intercept,
273   const float32_t *dualCoefficients,
274   const float32_t *supportVectors,
275   const int32_t   *classes,
276   float32_t coef0,
277   float32_t gamma
278   );
279 
280 /**
281  * @brief SVM sigmoid prediction
282  * @param[in]    S        Pointer to an instance of the rbf SVM structure.
283  * @param[in]    in       Pointer to input vector
284  * @param[out]   pResult  Decision value
285  * @return none.
286  *
287  */
288 void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S,
289    const float32_t * in,
290    int32_t * pResult);
291 
292 
293 
294 
295 #ifdef   __cplusplus
296 }
297 #endif
298 
299 #endif /* ifndef _SVM_FUNCTIONS_H_ */
300