1 /**************************************************************************//**
2 * @file cmsis_gcc.h
3 * @brief CMSIS compiler GCC header file
4 * @version V5.4.1
5 * @date 27. May 2021
6 ******************************************************************************/
7 /*
8 * Copyright (c) 2009-2021 Arm Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36 #define __has_builtin(x) (0)
37 #endif
38
39 /* CMSIS compiler specific defines */
40 #ifndef __ASM
41 #define __ASM __asm
42 #endif
43 #ifndef __INLINE
44 #define __INLINE inline
45 #endif
46 #ifndef __STATIC_INLINE
47 #define __STATIC_INLINE static inline
48 #endif
49 #ifndef __STATIC_FORCEINLINE
50 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
51 #endif
52 #ifndef __NO_RETURN
53 #define __NO_RETURN __attribute__((__noreturn__))
54 #endif
55 #ifndef __USED
56 #define __USED __attribute__((used))
57 #endif
58 #ifndef __WEAK
59 #define __WEAK __attribute__((weak))
60 #endif
61 #ifndef __PACKED
62 #define __PACKED __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef __PACKED_STRUCT
65 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef __PACKED_UNION
68 #define __PACKED_UNION union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef __UNALIGNED_UINT32 /* deprecated */
71 #pragma GCC diagnostic push
72 #pragma GCC diagnostic ignored "-Wpacked"
73 #pragma GCC diagnostic ignored "-Wattributes"
74 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75 #pragma GCC diagnostic pop
76 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef __UNALIGNED_UINT16_WRITE
79 #pragma GCC diagnostic push
80 #pragma GCC diagnostic ignored "-Wpacked"
81 #pragma GCC diagnostic ignored "-Wattributes"
82 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83 #pragma GCC diagnostic pop
84 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef __UNALIGNED_UINT16_READ
87 #pragma GCC diagnostic push
88 #pragma GCC diagnostic ignored "-Wpacked"
89 #pragma GCC diagnostic ignored "-Wattributes"
90 __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91 #pragma GCC diagnostic pop
92 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef __UNALIGNED_UINT32_WRITE
95 #pragma GCC diagnostic push
96 #pragma GCC diagnostic ignored "-Wpacked"
97 #pragma GCC diagnostic ignored "-Wattributes"
98 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99 #pragma GCC diagnostic pop
100 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef __UNALIGNED_UINT32_READ
103 #pragma GCC diagnostic push
104 #pragma GCC diagnostic ignored "-Wpacked"
105 #pragma GCC diagnostic ignored "-Wattributes"
106 __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107 #pragma GCC diagnostic pop
108 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef __ALIGNED
111 #define __ALIGNED(x) __attribute__((aligned(x)))
112 #endif
113 #ifndef __RESTRICT
114 #define __RESTRICT __restrict
115 #endif
116 #ifndef __COMPILER_BARRIER
117 #define __COMPILER_BARRIER() __ASM volatile("":::"memory")
118 #endif
119
120 /* ######################### Startup and Lowlevel Init ######################## */
121
122 #ifndef __PROGRAM_START
123
124 /**
125 \brief Initializes data and bss sections
126 \details This default implementations initialized all data and additional bss
127 sections relying on .copy.table and .zero.table specified properly
128 in the used linker script.
129
130 */
__cmsis_start(void)131 __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
132 {
133 extern void _start(void) __NO_RETURN;
134
135 typedef struct {
136 uint32_t const* src;
137 uint32_t* dest;
138 uint32_t wlen;
139 } __copy_table_t;
140
141 typedef struct {
142 uint32_t* dest;
143 uint32_t wlen;
144 } __zero_table_t;
145
146 extern const __copy_table_t __copy_table_start__;
147 extern const __copy_table_t __copy_table_end__;
148 extern const __zero_table_t __zero_table_start__;
149 extern const __zero_table_t __zero_table_end__;
150
151 for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
152 for(uint32_t i=0u; i<pTable->wlen; ++i) {
153 pTable->dest[i] = pTable->src[i];
154 }
155 }
156
157 for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
158 for(uint32_t i=0u; i<pTable->wlen; ++i) {
159 pTable->dest[i] = 0u;
160 }
161 }
162
163 _start();
164 }
165
166 #define __PROGRAM_START __cmsis_start
167 #endif
168
169 #ifndef __INITIAL_SP
170 #define __INITIAL_SP __StackTop
171 #endif
172
173 #ifndef __STACK_LIMIT
174 #define __STACK_LIMIT __StackLimit
175 #endif
176
177 #ifndef __VECTOR_TABLE
178 #define __VECTOR_TABLE __Vectors
179 #endif
180
181 #ifndef __VECTOR_TABLE_ATTRIBUTE
182 #define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section(".vectors")))
183 #endif
184
185 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
186 #ifndef __STACK_SEAL
187 #define __STACK_SEAL __StackSeal
188 #endif
189
190 #ifndef __TZ_STACK_SEAL_SIZE
191 #define __TZ_STACK_SEAL_SIZE 8U
192 #endif
193
194 #ifndef __TZ_STACK_SEAL_VALUE
195 #define __TZ_STACK_SEAL_VALUE 0xFEF5EDA5FEF5EDA5ULL
196 #endif
197
198
__TZ_set_STACKSEAL_S(uint32_t * stackTop)199 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
200 *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
201 }
202 #endif
203
204
205 /* ########################## Core Instruction Access ######################### */
206 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
207 Access to dedicated instructions
208 @{
209 */
210
211 /* Define macros for porting to both thumb1 and thumb2.
212 * For thumb1, use low register (r0-r7), specified by constraint "l"
213 * Otherwise, use general registers, specified by constraint "r" */
214 #if defined (__thumb__) && !defined (__thumb2__)
215 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
216 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
217 #define __CMSIS_GCC_USE_REG(r) "l" (r)
218 #else
219 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
220 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
221 #define __CMSIS_GCC_USE_REG(r) "r" (r)
222 #endif
223
224 /**
225 \brief No Operation
226 \details No Operation does nothing. This instruction can be used for code alignment purposes.
227 */
228 #define __NOP() __ASM volatile ("nop")
229
230 /**
231 \brief Wait For Interrupt
232 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
233 */
234 #define __WFI() __ASM volatile ("wfi":::"memory")
235
236
237 /**
238 \brief Wait For Event
239 \details Wait For Event is a hint instruction that permits the processor to enter
240 a low-power state until one of a number of events occurs.
241 */
242 #define __WFE() __ASM volatile ("wfe":::"memory")
243
244
245 /**
246 \brief Send Event
247 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
248 */
249 #define __SEV() __ASM volatile ("sev")
250
251
252 /**
253 \brief Instruction Synchronization Barrier
254 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
255 so that all instructions following the ISB are fetched from cache or memory,
256 after the instruction has been completed.
257 */
__ISB(void)258 __STATIC_FORCEINLINE void __ISB(void)
259 {
260 __ASM volatile ("isb 0xF":::"memory");
261 }
262
263
264 /**
265 \brief Data Synchronization Barrier
266 \details Acts as a special kind of Data Memory Barrier.
267 It completes when all explicit memory accesses before this instruction complete.
268 */
__DSB(void)269 __STATIC_FORCEINLINE void __DSB(void)
270 {
271 __ASM volatile ("dsb 0xF":::"memory");
272 }
273
274
275 /**
276 \brief Data Memory Barrier
277 \details Ensures the apparent order of the explicit memory operations before
278 and after the instruction, without ensuring their completion.
279 */
__DMB(void)280 __STATIC_FORCEINLINE void __DMB(void)
281 {
282 __ASM volatile ("dmb 0xF":::"memory");
283 }
284
285
286 /**
287 \brief Reverse byte order (32 bit)
288 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
289 \param [in] value Value to reverse
290 \return Reversed value
291 */
__REV(uint32_t value)292 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
293 {
294 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
295 return __builtin_bswap32(value);
296 #else
297 uint32_t result;
298
299 __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
300 return result;
301 #endif
302 }
303
304
305 /**
306 \brief Reverse byte order (16 bit)
307 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
308 \param [in] value Value to reverse
309 \return Reversed value
310 */
__REV16(uint32_t value)311 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
312 {
313 uint32_t result;
314
315 __ASM ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
316 return result;
317 }
318
319
320 /**
321 \brief Reverse byte order (16 bit)
322 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
323 \param [in] value Value to reverse
324 \return Reversed value
325 */
__REVSH(int16_t value)326 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
327 {
328 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
329 return (int16_t)__builtin_bswap16(value);
330 #else
331 int16_t result;
332
333 __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
334 return result;
335 #endif
336 }
337
338
339 /**
340 \brief Rotate Right in unsigned value (32 bit)
341 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
342 \param [in] op1 Value to rotate
343 \param [in] op2 Number of Bits to rotate
344 \return Rotated value
345 */
__ROR(uint32_t op1,uint32_t op2)346 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
347 {
348 op2 %= 32U;
349 if (op2 == 0U)
350 {
351 return op1;
352 }
353 return (op1 >> op2) | (op1 << (32U - op2));
354 }
355
356
357 /**
358 \brief Breakpoint
359 \details Causes the processor to enter Debug state.
360 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
361 \param [in] value is ignored by the processor.
362 If required, a debugger can use it to store additional information about the breakpoint.
363 */
364 #define __BKPT(value) __ASM volatile ("bkpt "#value)
365
366
367 /**
368 \brief Reverse bit order of value
369 \details Reverses the bit order of the given value.
370 \param [in] value Value to reverse
371 \return Reversed value
372 */
__RBIT(uint32_t value)373 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
374 {
375 uint32_t result;
376
377 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
378 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
379 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
380 __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) );
381 #else
382 uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
383
384 result = value; /* r will be reversed bits of v; first get LSB of v */
385 for (value >>= 1U; value != 0U; value >>= 1U)
386 {
387 result <<= 1U;
388 result |= value & 1U;
389 s--;
390 }
391 result <<= s; /* shift when v's highest bits are zero */
392 #endif
393 return result;
394 }
395
396
397 /**
398 \brief Count leading zeros
399 \details Counts the number of leading zeros of a data value.
400 \param [in] value Value to count the leading zeros
401 \return number of leading zeros in value
402 */
__CLZ(uint32_t value)403 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
404 {
405 /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
406 __builtin_clz(0) is undefined behaviour, so handle this case specially.
407 This guarantees ARM-compatible results if happening to compile on a non-ARM
408 target, and ensures the compiler doesn't decide to activate any
409 optimisations using the logic "value was passed to __builtin_clz, so it
410 is non-zero".
411 ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
412 single CLZ instruction.
413 */
414 if (value == 0U)
415 {
416 return 32U;
417 }
418 return __builtin_clz(value);
419 }
420
421
422 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
423 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
424 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
425 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
426 /**
427 \brief LDR Exclusive (8 bit)
428 \details Executes a exclusive LDR instruction for 8 bit value.
429 \param [in] ptr Pointer to data
430 \return value of type uint8_t at (*ptr)
431 */
__LDREXB(volatile uint8_t * addr)432 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
433 {
434 uint32_t result;
435
436 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
437 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
438 #else
439 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
440 accepted by assembler. So has to use following less efficient pattern.
441 */
442 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
443 #endif
444 return ((uint8_t) result); /* Add explicit type cast here */
445 }
446
447
448 /**
449 \brief LDR Exclusive (16 bit)
450 \details Executes a exclusive LDR instruction for 16 bit values.
451 \param [in] ptr Pointer to data
452 \return value of type uint16_t at (*ptr)
453 */
__LDREXH(volatile uint16_t * addr)454 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
455 {
456 uint32_t result;
457
458 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
459 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
460 #else
461 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
462 accepted by assembler. So has to use following less efficient pattern.
463 */
464 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
465 #endif
466 return ((uint16_t) result); /* Add explicit type cast here */
467 }
468
469
470 /**
471 \brief LDR Exclusive (32 bit)
472 \details Executes a exclusive LDR instruction for 32 bit values.
473 \param [in] ptr Pointer to data
474 \return value of type uint32_t at (*ptr)
475 */
__LDREXW(volatile uint32_t * addr)476 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
477 {
478 uint32_t result;
479
480 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
481 return(result);
482 }
483
484
485 /**
486 \brief STR Exclusive (8 bit)
487 \details Executes a exclusive STR instruction for 8 bit values.
488 \param [in] value Value to store
489 \param [in] ptr Pointer to location
490 \return 0 Function succeeded
491 \return 1 Function failed
492 */
__STREXB(uint8_t value,volatile uint8_t * addr)493 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
494 {
495 uint32_t result;
496
497 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
498 return(result);
499 }
500
501
502 /**
503 \brief STR Exclusive (16 bit)
504 \details Executes a exclusive STR instruction for 16 bit values.
505 \param [in] value Value to store
506 \param [in] ptr Pointer to location
507 \return 0 Function succeeded
508 \return 1 Function failed
509 */
__STREXH(uint16_t value,volatile uint16_t * addr)510 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
511 {
512 uint32_t result;
513
514 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
515 return(result);
516 }
517
518
519 /**
520 \brief STR Exclusive (32 bit)
521 \details Executes a exclusive STR instruction for 32 bit values.
522 \param [in] value Value to store
523 \param [in] ptr Pointer to location
524 \return 0 Function succeeded
525 \return 1 Function failed
526 */
__STREXW(uint32_t value,volatile uint32_t * addr)527 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
528 {
529 uint32_t result;
530
531 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
532 return(result);
533 }
534
535
536 /**
537 \brief Remove the exclusive lock
538 \details Removes the exclusive lock which is created by LDREX.
539 */
__CLREX(void)540 __STATIC_FORCEINLINE void __CLREX(void)
541 {
542 __ASM volatile ("clrex" ::: "memory");
543 }
544
545 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
546 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
547 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
548 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
549
550
551 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
552 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
553 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
554 /**
555 \brief Signed Saturate
556 \details Saturates a signed value.
557 \param [in] ARG1 Value to be saturated
558 \param [in] ARG2 Bit position to saturate to (1..32)
559 \return Saturated value
560 */
561 #define __SSAT(ARG1, ARG2) \
562 __extension__ \
563 ({ \
564 int32_t __RES, __ARG1 = (ARG1); \
565 __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
566 __RES; \
567 })
568
569
570 /**
571 \brief Unsigned Saturate
572 \details Saturates an unsigned value.
573 \param [in] ARG1 Value to be saturated
574 \param [in] ARG2 Bit position to saturate to (0..31)
575 \return Saturated value
576 */
577 #define __USAT(ARG1, ARG2) \
578 __extension__ \
579 ({ \
580 uint32_t __RES, __ARG1 = (ARG1); \
581 __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
582 __RES; \
583 })
584
585
586 /**
587 \brief Rotate Right with Extend (32 bit)
588 \details Moves each bit of a bitstring right by one bit.
589 The carry input is shifted in at the left end of the bitstring.
590 \param [in] value Value to rotate
591 \return Rotated value
592 */
__RRX(uint32_t value)593 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
594 {
595 uint32_t result;
596
597 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
598 return(result);
599 }
600
601
602 /**
603 \brief LDRT Unprivileged (8 bit)
604 \details Executes a Unprivileged LDRT instruction for 8 bit value.
605 \param [in] ptr Pointer to data
606 \return value of type uint8_t at (*ptr)
607 */
__LDRBT(volatile uint8_t * ptr)608 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
609 {
610 uint32_t result;
611
612 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
613 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
614 #else
615 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
616 accepted by assembler. So has to use following less efficient pattern.
617 */
618 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
619 #endif
620 return ((uint8_t) result); /* Add explicit type cast here */
621 }
622
623
624 /**
625 \brief LDRT Unprivileged (16 bit)
626 \details Executes a Unprivileged LDRT instruction for 16 bit values.
627 \param [in] ptr Pointer to data
628 \return value of type uint16_t at (*ptr)
629 */
__LDRHT(volatile uint16_t * ptr)630 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
631 {
632 uint32_t result;
633
634 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
635 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
636 #else
637 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
638 accepted by assembler. So has to use following less efficient pattern.
639 */
640 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
641 #endif
642 return ((uint16_t) result); /* Add explicit type cast here */
643 }
644
645
646 /**
647 \brief LDRT Unprivileged (32 bit)
648 \details Executes a Unprivileged LDRT instruction for 32 bit values.
649 \param [in] ptr Pointer to data
650 \return value of type uint32_t at (*ptr)
651 */
__LDRT(volatile uint32_t * ptr)652 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
653 {
654 uint32_t result;
655
656 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
657 return(result);
658 }
659
660
661 /**
662 \brief STRT Unprivileged (8 bit)
663 \details Executes a Unprivileged STRT instruction for 8 bit values.
664 \param [in] value Value to store
665 \param [in] ptr Pointer to location
666 */
__STRBT(uint8_t value,volatile uint8_t * ptr)667 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
668 {
669 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
670 }
671
672
673 /**
674 \brief STRT Unprivileged (16 bit)
675 \details Executes a Unprivileged STRT instruction for 16 bit values.
676 \param [in] value Value to store
677 \param [in] ptr Pointer to location
678 */
__STRHT(uint16_t value,volatile uint16_t * ptr)679 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
680 {
681 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
682 }
683
684
685 /**
686 \brief STRT Unprivileged (32 bit)
687 \details Executes a Unprivileged STRT instruction for 32 bit values.
688 \param [in] value Value to store
689 \param [in] ptr Pointer to location
690 */
__STRT(uint32_t value,volatile uint32_t * ptr)691 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
692 {
693 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
694 }
695
696 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
697 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
698 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
699
700 /**
701 \brief Signed Saturate
702 \details Saturates a signed value.
703 \param [in] value Value to be saturated
704 \param [in] sat Bit position to saturate to (1..32)
705 \return Saturated value
706 */
__SSAT(int32_t val,uint32_t sat)707 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
708 {
709 if ((sat >= 1U) && (sat <= 32U))
710 {
711 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
712 const int32_t min = -1 - max ;
713 if (val > max)
714 {
715 return max;
716 }
717 else if (val < min)
718 {
719 return min;
720 }
721 }
722 return val;
723 }
724
725 /**
726 \brief Unsigned Saturate
727 \details Saturates an unsigned value.
728 \param [in] value Value to be saturated
729 \param [in] sat Bit position to saturate to (0..31)
730 \return Saturated value
731 */
__USAT(int32_t val,uint32_t sat)732 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
733 {
734 if (sat <= 31U)
735 {
736 const uint32_t max = ((1U << sat) - 1U);
737 if (val > (int32_t)max)
738 {
739 return max;
740 }
741 else if (val < 0)
742 {
743 return 0U;
744 }
745 }
746 return (uint32_t)val;
747 }
748
749 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
750 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
751 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
752
753
754 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
755 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
756 /**
757 \brief Load-Acquire (8 bit)
758 \details Executes a LDAB instruction for 8 bit value.
759 \param [in] ptr Pointer to data
760 \return value of type uint8_t at (*ptr)
761 */
__LDAB(volatile uint8_t * ptr)762 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
763 {
764 uint32_t result;
765
766 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
767 return ((uint8_t) result);
768 }
769
770
771 /**
772 \brief Load-Acquire (16 bit)
773 \details Executes a LDAH instruction for 16 bit values.
774 \param [in] ptr Pointer to data
775 \return value of type uint16_t at (*ptr)
776 */
__LDAH(volatile uint16_t * ptr)777 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
778 {
779 uint32_t result;
780
781 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
782 return ((uint16_t) result);
783 }
784
785
786 /**
787 \brief Load-Acquire (32 bit)
788 \details Executes a LDA instruction for 32 bit values.
789 \param [in] ptr Pointer to data
790 \return value of type uint32_t at (*ptr)
791 */
__LDA(volatile uint32_t * ptr)792 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
793 {
794 uint32_t result;
795
796 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
797 return(result);
798 }
799
800
801 /**
802 \brief Store-Release (8 bit)
803 \details Executes a STLB instruction for 8 bit values.
804 \param [in] value Value to store
805 \param [in] ptr Pointer to location
806 */
__STLB(uint8_t value,volatile uint8_t * ptr)807 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
808 {
809 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
810 }
811
812
813 /**
814 \brief Store-Release (16 bit)
815 \details Executes a STLH instruction for 16 bit values.
816 \param [in] value Value to store
817 \param [in] ptr Pointer to location
818 */
__STLH(uint16_t value,volatile uint16_t * ptr)819 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
820 {
821 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
822 }
823
824
825 /**
826 \brief Store-Release (32 bit)
827 \details Executes a STL instruction for 32 bit values.
828 \param [in] value Value to store
829 \param [in] ptr Pointer to location
830 */
__STL(uint32_t value,volatile uint32_t * ptr)831 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
832 {
833 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
834 }
835
836
837 /**
838 \brief Load-Acquire Exclusive (8 bit)
839 \details Executes a LDAB exclusive instruction for 8 bit value.
840 \param [in] ptr Pointer to data
841 \return value of type uint8_t at (*ptr)
842 */
__LDAEXB(volatile uint8_t * ptr)843 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
844 {
845 uint32_t result;
846
847 __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
848 return ((uint8_t) result);
849 }
850
851
852 /**
853 \brief Load-Acquire Exclusive (16 bit)
854 \details Executes a LDAH exclusive instruction for 16 bit values.
855 \param [in] ptr Pointer to data
856 \return value of type uint16_t at (*ptr)
857 */
__LDAEXH(volatile uint16_t * ptr)858 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
859 {
860 uint32_t result;
861
862 __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
863 return ((uint16_t) result);
864 }
865
866
867 /**
868 \brief Load-Acquire Exclusive (32 bit)
869 \details Executes a LDA exclusive instruction for 32 bit values.
870 \param [in] ptr Pointer to data
871 \return value of type uint32_t at (*ptr)
872 */
__LDAEX(volatile uint32_t * ptr)873 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
874 {
875 uint32_t result;
876
877 __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
878 return(result);
879 }
880
881
882 /**
883 \brief Store-Release Exclusive (8 bit)
884 \details Executes a STLB exclusive instruction for 8 bit values.
885 \param [in] value Value to store
886 \param [in] ptr Pointer to location
887 \return 0 Function succeeded
888 \return 1 Function failed
889 */
__STLEXB(uint8_t value,volatile uint8_t * ptr)890 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
891 {
892 uint32_t result;
893
894 __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
895 return(result);
896 }
897
898
899 /**
900 \brief Store-Release Exclusive (16 bit)
901 \details Executes a STLH exclusive instruction for 16 bit values.
902 \param [in] value Value to store
903 \param [in] ptr Pointer to location
904 \return 0 Function succeeded
905 \return 1 Function failed
906 */
__STLEXH(uint16_t value,volatile uint16_t * ptr)907 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
908 {
909 uint32_t result;
910
911 __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
912 return(result);
913 }
914
915
916 /**
917 \brief Store-Release Exclusive (32 bit)
918 \details Executes a STL exclusive instruction for 32 bit values.
919 \param [in] value Value to store
920 \param [in] ptr Pointer to location
921 \return 0 Function succeeded
922 \return 1 Function failed
923 */
__STLEX(uint32_t value,volatile uint32_t * ptr)924 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
925 {
926 uint32_t result;
927
928 __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
929 return(result);
930 }
931
932 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
933 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
934
935 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
936
937
938 /* ########################### Core Function Access ########################### */
939 /** \ingroup CMSIS_Core_FunctionInterface
940 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
941 @{
942 */
943
944 /**
945 \brief Enable IRQ Interrupts
946 \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
947 Can only be executed in Privileged modes.
948 */
__enable_irq(void)949 __STATIC_FORCEINLINE void __enable_irq(void)
950 {
951 __ASM volatile ("cpsie i" : : : "memory");
952 }
953
954
955 /**
956 \brief Disable IRQ Interrupts
957 \details Disables IRQ interrupts by setting special-purpose register PRIMASK.
958 Can only be executed in Privileged modes.
959 */
__disable_irq(void)960 __STATIC_FORCEINLINE void __disable_irq(void)
961 {
962 __ASM volatile ("cpsid i" : : : "memory");
963 }
964
965
966 /**
967 \brief Get Control Register
968 \details Returns the content of the Control Register.
969 \return Control Register value
970 */
__get_CONTROL(void)971 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
972 {
973 uint32_t result;
974
975 __ASM volatile ("MRS %0, control" : "=r" (result) );
976 return(result);
977 }
978
979
980 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
981 /**
982 \brief Get Control Register (non-secure)
983 \details Returns the content of the non-secure Control Register when in secure mode.
984 \return non-secure Control Register value
985 */
__TZ_get_CONTROL_NS(void)986 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
987 {
988 uint32_t result;
989
990 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
991 return(result);
992 }
993 #endif
994
995
996 /**
997 \brief Set Control Register
998 \details Writes the given value to the Control Register.
999 \param [in] control Control Register value to set
1000 */
__set_CONTROL(uint32_t control)1001 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
1002 {
1003 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
1004 __ISB();
1005 }
1006
1007
1008 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1009 /**
1010 \brief Set Control Register (non-secure)
1011 \details Writes the given value to the non-secure Control Register when in secure state.
1012 \param [in] control Control Register value to set
1013 */
__TZ_set_CONTROL_NS(uint32_t control)1014 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
1015 {
1016 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
1017 __ISB();
1018 }
1019 #endif
1020
1021
1022 /**
1023 \brief Get IPSR Register
1024 \details Returns the content of the IPSR Register.
1025 \return IPSR Register value
1026 */
__get_IPSR(void)1027 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
1028 {
1029 uint32_t result;
1030
1031 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
1032 return(result);
1033 }
1034
1035
1036 /**
1037 \brief Get APSR Register
1038 \details Returns the content of the APSR Register.
1039 \return APSR Register value
1040 */
__get_APSR(void)1041 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
1042 {
1043 uint32_t result;
1044
1045 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
1046 return(result);
1047 }
1048
1049
1050 /**
1051 \brief Get xPSR Register
1052 \details Returns the content of the xPSR Register.
1053 \return xPSR Register value
1054 */
__get_xPSR(void)1055 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
1056 {
1057 uint32_t result;
1058
1059 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
1060 return(result);
1061 }
1062
1063
1064 /**
1065 \brief Get Process Stack Pointer
1066 \details Returns the current value of the Process Stack Pointer (PSP).
1067 \return PSP Register value
1068 */
__get_PSP(void)1069 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
1070 {
1071 uint32_t result;
1072
1073 __ASM volatile ("MRS %0, psp" : "=r" (result) );
1074 return(result);
1075 }
1076
1077
1078 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1079 /**
1080 \brief Get Process Stack Pointer (non-secure)
1081 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
1082 \return PSP Register value
1083 */
__TZ_get_PSP_NS(void)1084 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
1085 {
1086 uint32_t result;
1087
1088 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
1089 return(result);
1090 }
1091 #endif
1092
1093
1094 /**
1095 \brief Set Process Stack Pointer
1096 \details Assigns the given value to the Process Stack Pointer (PSP).
1097 \param [in] topOfProcStack Process Stack Pointer value to set
1098 */
__set_PSP(uint32_t topOfProcStack)1099 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
1100 {
1101 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
1102 }
1103
1104
1105 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1106 /**
1107 \brief Set Process Stack Pointer (non-secure)
1108 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
1109 \param [in] topOfProcStack Process Stack Pointer value to set
1110 */
__TZ_set_PSP_NS(uint32_t topOfProcStack)1111 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
1112 {
1113 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
1114 }
1115 #endif
1116
1117
1118 /**
1119 \brief Get Main Stack Pointer
1120 \details Returns the current value of the Main Stack Pointer (MSP).
1121 \return MSP Register value
1122 */
__get_MSP(void)1123 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
1124 {
1125 uint32_t result;
1126
1127 __ASM volatile ("MRS %0, msp" : "=r" (result) );
1128 return(result);
1129 }
1130
1131
1132 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1133 /**
1134 \brief Get Main Stack Pointer (non-secure)
1135 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
1136 \return MSP Register value
1137 */
__TZ_get_MSP_NS(void)1138 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
1139 {
1140 uint32_t result;
1141
1142 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
1143 return(result);
1144 }
1145 #endif
1146
1147
1148 /**
1149 \brief Set Main Stack Pointer
1150 \details Assigns the given value to the Main Stack Pointer (MSP).
1151 \param [in] topOfMainStack Main Stack Pointer value to set
1152 */
__set_MSP(uint32_t topOfMainStack)1153 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
1154 {
1155 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
1156 }
1157
1158
1159 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1160 /**
1161 \brief Set Main Stack Pointer (non-secure)
1162 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
1163 \param [in] topOfMainStack Main Stack Pointer value to set
1164 */
__TZ_set_MSP_NS(uint32_t topOfMainStack)1165 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
1166 {
1167 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
1168 }
1169 #endif
1170
1171
1172 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1173 /**
1174 \brief Get Stack Pointer (non-secure)
1175 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
1176 \return SP Register value
1177 */
__TZ_get_SP_NS(void)1178 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
1179 {
1180 uint32_t result;
1181
1182 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
1183 return(result);
1184 }
1185
1186
1187 /**
1188 \brief Set Stack Pointer (non-secure)
1189 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
1190 \param [in] topOfStack Stack Pointer value to set
1191 */
__TZ_set_SP_NS(uint32_t topOfStack)1192 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
1193 {
1194 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
1195 }
1196 #endif
1197
1198
1199 /**
1200 \brief Get Priority Mask
1201 \details Returns the current state of the priority mask bit from the Priority Mask Register.
1202 \return Priority Mask value
1203 */
__get_PRIMASK(void)1204 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
1205 {
1206 uint32_t result;
1207
1208 __ASM volatile ("MRS %0, primask" : "=r" (result) );
1209 return(result);
1210 }
1211
1212
1213 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1214 /**
1215 \brief Get Priority Mask (non-secure)
1216 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
1217 \return Priority Mask value
1218 */
__TZ_get_PRIMASK_NS(void)1219 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
1220 {
1221 uint32_t result;
1222
1223 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
1224 return(result);
1225 }
1226 #endif
1227
1228
1229 /**
1230 \brief Set Priority Mask
1231 \details Assigns the given value to the Priority Mask Register.
1232 \param [in] priMask Priority Mask
1233 */
__set_PRIMASK(uint32_t priMask)1234 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
1235 {
1236 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
1237 }
1238
1239
1240 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1241 /**
1242 \brief Set Priority Mask (non-secure)
1243 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
1244 \param [in] priMask Priority Mask
1245 */
__TZ_set_PRIMASK_NS(uint32_t priMask)1246 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
1247 {
1248 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
1249 }
1250 #endif
1251
1252
1253 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1254 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1255 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
1256 /**
1257 \brief Enable FIQ
1258 \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
1259 Can only be executed in Privileged modes.
1260 */
__enable_fault_irq(void)1261 __STATIC_FORCEINLINE void __enable_fault_irq(void)
1262 {
1263 __ASM volatile ("cpsie f" : : : "memory");
1264 }
1265
1266
1267 /**
1268 \brief Disable FIQ
1269 \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
1270 Can only be executed in Privileged modes.
1271 */
__disable_fault_irq(void)1272 __STATIC_FORCEINLINE void __disable_fault_irq(void)
1273 {
1274 __ASM volatile ("cpsid f" : : : "memory");
1275 }
1276
1277
1278 /**
1279 \brief Get Base Priority
1280 \details Returns the current value of the Base Priority register.
1281 \return Base Priority register value
1282 */
__get_BASEPRI(void)1283 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
1284 {
1285 uint32_t result;
1286
1287 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
1288 return(result);
1289 }
1290
1291
1292 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1293 /**
1294 \brief Get Base Priority (non-secure)
1295 \details Returns the current value of the non-secure Base Priority register when in secure state.
1296 \return Base Priority register value
1297 */
__TZ_get_BASEPRI_NS(void)1298 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
1299 {
1300 uint32_t result;
1301
1302 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
1303 return(result);
1304 }
1305 #endif
1306
1307
1308 /**
1309 \brief Set Base Priority
1310 \details Assigns the given value to the Base Priority register.
1311 \param [in] basePri Base Priority value to set
1312 */
__set_BASEPRI(uint32_t basePri)1313 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
1314 {
1315 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
1316 }
1317
1318
1319 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1320 /**
1321 \brief Set Base Priority (non-secure)
1322 \details Assigns the given value to the non-secure Base Priority register when in secure state.
1323 \param [in] basePri Base Priority value to set
1324 */
__TZ_set_BASEPRI_NS(uint32_t basePri)1325 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
1326 {
1327 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
1328 }
1329 #endif
1330
1331
1332 /**
1333 \brief Set Base Priority with condition
1334 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
1335 or the new value increases the BASEPRI priority level.
1336 \param [in] basePri Base Priority value to set
1337 */
__set_BASEPRI_MAX(uint32_t basePri)1338 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
1339 {
1340 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
1341 }
1342
1343
1344 /**
1345 \brief Get Fault Mask
1346 \details Returns the current value of the Fault Mask register.
1347 \return Fault Mask register value
1348 */
__get_FAULTMASK(void)1349 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
1350 {
1351 uint32_t result;
1352
1353 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
1354 return(result);
1355 }
1356
1357
1358 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1359 /**
1360 \brief Get Fault Mask (non-secure)
1361 \details Returns the current value of the non-secure Fault Mask register when in secure state.
1362 \return Fault Mask register value
1363 */
__TZ_get_FAULTMASK_NS(void)1364 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
1365 {
1366 uint32_t result;
1367
1368 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
1369 return(result);
1370 }
1371 #endif
1372
1373
1374 /**
1375 \brief Set Fault Mask
1376 \details Assigns the given value to the Fault Mask register.
1377 \param [in] faultMask Fault Mask value to set
1378 */
__set_FAULTMASK(uint32_t faultMask)1379 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
1380 {
1381 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
1382 }
1383
1384
1385 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1386 /**
1387 \brief Set Fault Mask (non-secure)
1388 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
1389 \param [in] faultMask Fault Mask value to set
1390 */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)1391 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
1392 {
1393 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
1394 }
1395 #endif
1396
1397 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1398 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1399 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1400
1401
1402 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1403 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1404
1405 /**
1406 \brief Get Process Stack Pointer Limit
1407 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1408 Stack Pointer Limit register hence zero is returned always in non-secure
1409 mode.
1410
1411 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
1412 \return PSPLIM Register value
1413 */
__get_PSPLIM(void)1414 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
1415 {
1416 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1417 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1418 // without main extensions, the non-secure PSPLIM is RAZ/WI
1419 return 0U;
1420 #else
1421 uint32_t result;
1422 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
1423 return result;
1424 #endif
1425 }
1426
1427 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
1428 /**
1429 \brief Get Process Stack Pointer Limit (non-secure)
1430 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1431 Stack Pointer Limit register hence zero is returned always.
1432
1433 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1434 \return PSPLIM Register value
1435 */
__TZ_get_PSPLIM_NS(void)1436 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
1437 {
1438 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1439 // without main extensions, the non-secure PSPLIM is RAZ/WI
1440 return 0U;
1441 #else
1442 uint32_t result;
1443 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
1444 return result;
1445 #endif
1446 }
1447 #endif
1448
1449
1450 /**
1451 \brief Set Process Stack Pointer Limit
1452 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1453 Stack Pointer Limit register hence the write is silently ignored in non-secure
1454 mode.
1455
1456 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
1457 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
1458 */
__set_PSPLIM(uint32_t ProcStackPtrLimit)1459 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
1460 {
1461 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1462 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1463 // without main extensions, the non-secure PSPLIM is RAZ/WI
1464 (void)ProcStackPtrLimit;
1465 #else
1466 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
1467 #endif
1468 }
1469
1470
1471 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1472 /**
1473 \brief Set Process Stack Pointer (non-secure)
1474 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1475 Stack Pointer Limit register hence the write is silently ignored.
1476
1477 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1478 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
1479 */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)1480 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
1481 {
1482 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1483 // without main extensions, the non-secure PSPLIM is RAZ/WI
1484 (void)ProcStackPtrLimit;
1485 #else
1486 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
1487 #endif
1488 }
1489 #endif
1490
1491
1492 /**
1493 \brief Get Main Stack Pointer Limit
1494 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1495 Stack Pointer Limit register hence zero is returned always in non-secure
1496 mode.
1497
1498 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
1499 \return MSPLIM Register value
1500 */
__get_MSPLIM(void)1501 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
1502 {
1503 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1504 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1505 // without main extensions, the non-secure MSPLIM is RAZ/WI
1506 return 0U;
1507 #else
1508 uint32_t result;
1509 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
1510 return result;
1511 #endif
1512 }
1513
1514
1515 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1516 /**
1517 \brief Get Main Stack Pointer Limit (non-secure)
1518 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1519 Stack Pointer Limit register hence zero is returned always.
1520
1521 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
1522 \return MSPLIM Register value
1523 */
__TZ_get_MSPLIM_NS(void)1524 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
1525 {
1526 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1527 // without main extensions, the non-secure MSPLIM is RAZ/WI
1528 return 0U;
1529 #else
1530 uint32_t result;
1531 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
1532 return result;
1533 #endif
1534 }
1535 #endif
1536
1537
1538 /**
1539 \brief Set Main Stack Pointer Limit
1540 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1541 Stack Pointer Limit register hence the write is silently ignored in non-secure
1542 mode.
1543
1544 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
1545 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
1546 */
__set_MSPLIM(uint32_t MainStackPtrLimit)1547 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
1548 {
1549 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1550 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1551 // without main extensions, the non-secure MSPLIM is RAZ/WI
1552 (void)MainStackPtrLimit;
1553 #else
1554 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
1555 #endif
1556 }
1557
1558
1559 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1560 /**
1561 \brief Set Main Stack Pointer Limit (non-secure)
1562 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1563 Stack Pointer Limit register hence the write is silently ignored.
1564
1565 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
1566 \param [in] MainStackPtrLimit Main Stack Pointer value to set
1567 */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)1568 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
1569 {
1570 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1571 // without main extensions, the non-secure MSPLIM is RAZ/WI
1572 (void)MainStackPtrLimit;
1573 #else
1574 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
1575 #endif
1576 }
1577 #endif
1578
1579 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1580 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1581
1582
1583 /**
1584 \brief Get FPSCR
1585 \details Returns the current value of the Floating Point Status/Control register.
1586 \return Floating Point Status/Control register value
1587 */
__get_FPSCR(void)1588 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
1589 {
1590 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1591 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
1592 #if __has_builtin(__builtin_arm_get_fpscr)
1593 // Re-enable using built-in when GCC has been fixed
1594 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
1595 /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
1596 return __builtin_arm_get_fpscr();
1597 #else
1598 uint32_t result;
1599
1600 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
1601 return(result);
1602 #endif
1603 #else
1604 return(0U);
1605 #endif
1606 }
1607
1608
1609 /**
1610 \brief Set FPSCR
1611 \details Assigns the given value to the Floating Point Status/Control register.
1612 \param [in] fpscr Floating Point Status/Control value to set
1613 */
__set_FPSCR(uint32_t fpscr)1614 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
1615 {
1616 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1617 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
1618 #if __has_builtin(__builtin_arm_set_fpscr)
1619 // Re-enable using built-in when GCC has been fixed
1620 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
1621 /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
1622 __builtin_arm_set_fpscr(fpscr);
1623 #else
1624 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
1625 #endif
1626 #else
1627 (void)fpscr;
1628 #endif
1629 }
1630
1631
1632 /*@} end of CMSIS_Core_RegAccFunctions */
1633
1634
1635 /* ################### Compiler specific Intrinsics ########################### */
1636 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1637 Access to dedicated SIMD instructions
1638 @{
1639 */
1640
1641 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1642
__SADD8(uint32_t op1,uint32_t op2)1643 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1644 {
1645 uint32_t result;
1646
1647 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1648 return(result);
1649 }
1650
__QADD8(uint32_t op1,uint32_t op2)1651 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1652 {
1653 uint32_t result;
1654
1655 __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1656 return(result);
1657 }
1658
__SHADD8(uint32_t op1,uint32_t op2)1659 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1660 {
1661 uint32_t result;
1662
1663 __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1664 return(result);
1665 }
1666
__UADD8(uint32_t op1,uint32_t op2)1667 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1668 {
1669 uint32_t result;
1670
1671 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1672 return(result);
1673 }
1674
__UQADD8(uint32_t op1,uint32_t op2)1675 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1676 {
1677 uint32_t result;
1678
1679 __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1680 return(result);
1681 }
1682
__UHADD8(uint32_t op1,uint32_t op2)1683 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1684 {
1685 uint32_t result;
1686
1687 __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1688 return(result);
1689 }
1690
1691
__SSUB8(uint32_t op1,uint32_t op2)1692 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1693 {
1694 uint32_t result;
1695
1696 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1697 return(result);
1698 }
1699
__QSUB8(uint32_t op1,uint32_t op2)1700 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1701 {
1702 uint32_t result;
1703
1704 __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1705 return(result);
1706 }
1707
__SHSUB8(uint32_t op1,uint32_t op2)1708 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1709 {
1710 uint32_t result;
1711
1712 __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1713 return(result);
1714 }
1715
__USUB8(uint32_t op1,uint32_t op2)1716 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1717 {
1718 uint32_t result;
1719
1720 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1721 return(result);
1722 }
1723
__UQSUB8(uint32_t op1,uint32_t op2)1724 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1725 {
1726 uint32_t result;
1727
1728 __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1729 return(result);
1730 }
1731
__UHSUB8(uint32_t op1,uint32_t op2)1732 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1733 {
1734 uint32_t result;
1735
1736 __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1737 return(result);
1738 }
1739
1740
__SADD16(uint32_t op1,uint32_t op2)1741 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1742 {
1743 uint32_t result;
1744
1745 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1746 return(result);
1747 }
1748
__QADD16(uint32_t op1,uint32_t op2)1749 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1750 {
1751 uint32_t result;
1752
1753 __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1754 return(result);
1755 }
1756
__SHADD16(uint32_t op1,uint32_t op2)1757 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1758 {
1759 uint32_t result;
1760
1761 __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1762 return(result);
1763 }
1764
__UADD16(uint32_t op1,uint32_t op2)1765 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1766 {
1767 uint32_t result;
1768
1769 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1770 return(result);
1771 }
1772
__UQADD16(uint32_t op1,uint32_t op2)1773 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1774 {
1775 uint32_t result;
1776
1777 __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1778 return(result);
1779 }
1780
__UHADD16(uint32_t op1,uint32_t op2)1781 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1782 {
1783 uint32_t result;
1784
1785 __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1786 return(result);
1787 }
1788
__SSUB16(uint32_t op1,uint32_t op2)1789 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1790 {
1791 uint32_t result;
1792
1793 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1794 return(result);
1795 }
1796
__QSUB16(uint32_t op1,uint32_t op2)1797 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1798 {
1799 uint32_t result;
1800
1801 __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1802 return(result);
1803 }
1804
__SHSUB16(uint32_t op1,uint32_t op2)1805 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1806 {
1807 uint32_t result;
1808
1809 __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1810 return(result);
1811 }
1812
__USUB16(uint32_t op1,uint32_t op2)1813 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1814 {
1815 uint32_t result;
1816
1817 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1818 return(result);
1819 }
1820
__UQSUB16(uint32_t op1,uint32_t op2)1821 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1822 {
1823 uint32_t result;
1824
1825 __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1826 return(result);
1827 }
1828
__UHSUB16(uint32_t op1,uint32_t op2)1829 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1830 {
1831 uint32_t result;
1832
1833 __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1834 return(result);
1835 }
1836
__SASX(uint32_t op1,uint32_t op2)1837 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1838 {
1839 uint32_t result;
1840
1841 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1842 return(result);
1843 }
1844
__QASX(uint32_t op1,uint32_t op2)1845 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1846 {
1847 uint32_t result;
1848
1849 __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1850 return(result);
1851 }
1852
__SHASX(uint32_t op1,uint32_t op2)1853 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1854 {
1855 uint32_t result;
1856
1857 __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1858 return(result);
1859 }
1860
__UASX(uint32_t op1,uint32_t op2)1861 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1862 {
1863 uint32_t result;
1864
1865 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1866 return(result);
1867 }
1868
__UQASX(uint32_t op1,uint32_t op2)1869 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1870 {
1871 uint32_t result;
1872
1873 __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1874 return(result);
1875 }
1876
__UHASX(uint32_t op1,uint32_t op2)1877 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1878 {
1879 uint32_t result;
1880
1881 __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1882 return(result);
1883 }
1884
__SSAX(uint32_t op1,uint32_t op2)1885 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1886 {
1887 uint32_t result;
1888
1889 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1890 return(result);
1891 }
1892
__QSAX(uint32_t op1,uint32_t op2)1893 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1894 {
1895 uint32_t result;
1896
1897 __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1898 return(result);
1899 }
1900
__SHSAX(uint32_t op1,uint32_t op2)1901 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1902 {
1903 uint32_t result;
1904
1905 __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1906 return(result);
1907 }
1908
__USAX(uint32_t op1,uint32_t op2)1909 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1910 {
1911 uint32_t result;
1912
1913 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1914 return(result);
1915 }
1916
__UQSAX(uint32_t op1,uint32_t op2)1917 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1918 {
1919 uint32_t result;
1920
1921 __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1922 return(result);
1923 }
1924
__UHSAX(uint32_t op1,uint32_t op2)1925 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1926 {
1927 uint32_t result;
1928
1929 __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1930 return(result);
1931 }
1932
__USAD8(uint32_t op1,uint32_t op2)1933 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1934 {
1935 uint32_t result;
1936
1937 __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1938 return(result);
1939 }
1940
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1941 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1942 {
1943 uint32_t result;
1944
1945 __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1946 return(result);
1947 }
1948
1949 #define __SSAT16(ARG1, ARG2) \
1950 __extension__ \
1951 ({ \
1952 int32_t __RES, __ARG1 = (ARG1); \
1953 __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
1954 __RES; \
1955 })
1956
1957 #define __USAT16(ARG1, ARG2) \
1958 __extension__ \
1959 ({ \
1960 uint32_t __RES, __ARG1 = (ARG1); \
1961 __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
1962 __RES; \
1963 })
1964
__UXTB16(uint32_t op1)1965 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1966 {
1967 uint32_t result;
1968
1969 __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1970 return(result);
1971 }
1972
__UXTAB16(uint32_t op1,uint32_t op2)1973 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1974 {
1975 uint32_t result;
1976
1977 __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1978 return(result);
1979 }
1980
__SXTB16(uint32_t op1)1981 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1982 {
1983 uint32_t result;
1984
1985 __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1986 return(result);
1987 }
1988
__SXTB16_RORn(uint32_t op1,uint32_t rotate)1989 __STATIC_FORCEINLINE uint32_t __SXTB16_RORn(uint32_t op1, uint32_t rotate)
1990 {
1991 uint32_t result;
1992 if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
1993 __ASM volatile ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) );
1994 } else {
1995 result = __SXTB16(__ROR(op1, rotate)) ;
1996 }
1997 return result;
1998 }
1999
__SXTAB16(uint32_t op1,uint32_t op2)2000 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
2001 {
2002 uint32_t result;
2003
2004 __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2005 return(result);
2006 }
2007
__SXTAB16_RORn(uint32_t op1,uint32_t op2,uint32_t rotate)2008 __STATIC_FORCEINLINE uint32_t __SXTAB16_RORn(uint32_t op1, uint32_t op2, uint32_t rotate)
2009 {
2010 uint32_t result;
2011 if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
2012 __ASM volatile ("sxtab16 %0, %1, %2, ROR %3" : "=r" (result) : "r" (op1) , "r" (op2) , "i" (rotate));
2013 } else {
2014 result = __SXTAB16(op1, __ROR(op2, rotate));
2015 }
2016 return result;
2017 }
2018
2019
__SMUAD(uint32_t op1,uint32_t op2)2020 __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
2021 {
2022 uint32_t result;
2023
2024 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2025 return(result);
2026 }
2027
__SMUADX(uint32_t op1,uint32_t op2)2028 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
2029 {
2030 uint32_t result;
2031
2032 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2033 return(result);
2034 }
2035
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)2036 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
2037 {
2038 uint32_t result;
2039
2040 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2041 return(result);
2042 }
2043
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)2044 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
2045 {
2046 uint32_t result;
2047
2048 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2049 return(result);
2050 }
2051
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)2052 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
2053 {
2054 union llreg_u{
2055 uint32_t w32[2];
2056 uint64_t w64;
2057 } llr;
2058 llr.w64 = acc;
2059
2060 #ifndef __ARMEB__ /* Little endian */
2061 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2062 #else /* Big endian */
2063 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2064 #endif
2065
2066 return(llr.w64);
2067 }
2068
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)2069 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
2070 {
2071 union llreg_u{
2072 uint32_t w32[2];
2073 uint64_t w64;
2074 } llr;
2075 llr.w64 = acc;
2076
2077 #ifndef __ARMEB__ /* Little endian */
2078 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2079 #else /* Big endian */
2080 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2081 #endif
2082
2083 return(llr.w64);
2084 }
2085
__SMUSD(uint32_t op1,uint32_t op2)2086 __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
2087 {
2088 uint32_t result;
2089
2090 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2091 return(result);
2092 }
2093
__SMUSDX(uint32_t op1,uint32_t op2)2094 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
2095 {
2096 uint32_t result;
2097
2098 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2099 return(result);
2100 }
2101
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)2102 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
2103 {
2104 uint32_t result;
2105
2106 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2107 return(result);
2108 }
2109
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)2110 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
2111 {
2112 uint32_t result;
2113
2114 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2115 return(result);
2116 }
2117
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)2118 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
2119 {
2120 union llreg_u{
2121 uint32_t w32[2];
2122 uint64_t w64;
2123 } llr;
2124 llr.w64 = acc;
2125
2126 #ifndef __ARMEB__ /* Little endian */
2127 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2128 #else /* Big endian */
2129 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2130 #endif
2131
2132 return(llr.w64);
2133 }
2134
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)2135 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2136 {
2137 union llreg_u{
2138 uint32_t w32[2];
2139 uint64_t w64;
2140 } llr;
2141 llr.w64 = acc;
2142
2143 #ifndef __ARMEB__ /* Little endian */
2144 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2145 #else /* Big endian */
2146 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2147 #endif
2148
2149 return(llr.w64);
2150 }
2151
__SEL(uint32_t op1,uint32_t op2)2152 __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
2153 {
2154 uint32_t result;
2155
2156 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2157 return(result);
2158 }
2159
__QADD(int32_t op1,int32_t op2)2160 __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
2161 {
2162 int32_t result;
2163
2164 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2165 return(result);
2166 }
2167
__QSUB(int32_t op1,int32_t op2)2168 __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
2169 {
2170 int32_t result;
2171
2172 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2173 return(result);
2174 }
2175
2176
2177 #define __PKHBT(ARG1,ARG2,ARG3) \
2178 __extension__ \
2179 ({ \
2180 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2181 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
2182 __RES; \
2183 })
2184
2185 #define __PKHTB(ARG1,ARG2,ARG3) \
2186 __extension__ \
2187 ({ \
2188 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2189 if (ARG3 == 0) \
2190 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
2191 else \
2192 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
2193 __RES; \
2194 })
2195
2196
__SMMLA(int32_t op1,int32_t op2,int32_t op3)2197 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2198 {
2199 int32_t result;
2200
2201 __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
2202 return(result);
2203 }
2204
2205 #endif /* (__ARM_FEATURE_DSP == 1) */
2206 /*@} end of group CMSIS_SIMD_intrinsics */
2207
2208
2209 #pragma GCC diagnostic pop
2210
2211 #endif /* __CMSIS_GCC_H */
2212