1 /*
2 * Date built-ins
3 *
4 * Unlike most built-ins, Date has some platform dependencies for getting
5 * UTC time, converting between UTC and local time, and parsing and
6 * formatting time values. These are all abstracted behind DUK_USE_xxx
7 * config options. There are built-in platform specific providers for
8 * POSIX and Windows, but external providers can also be used.
9 *
10 * See doc/datetime.rst.
11 *
12 */
13
14 #include "duk_internal.h"
15
16 /*
17 * Forward declarations
18 */
19
20 DUK_LOCAL_DECL duk_double_t duk__push_this_get_timeval_tzoffset(duk_context *ctx, duk_small_uint_t flags, duk_int_t *out_tzoffset);
21 DUK_LOCAL_DECL duk_double_t duk__push_this_get_timeval(duk_context *ctx, duk_small_uint_t flags);
22 DUK_LOCAL_DECL void duk__twodigit_year_fixup(duk_context *ctx, duk_idx_t idx_val);
23 DUK_LOCAL_DECL duk_ret_t duk__set_this_timeval_from_dparts(duk_context *ctx, duk_double_t *dparts, duk_small_uint_t flags);
24
25 /*
26 * Other file level defines
27 */
28
29 /* Debug macro to print all parts and dparts (used manually because of debug level). */
30 #define DUK__DPRINT_PARTS_AND_DPARTS(parts,dparts) do { \
31 DUK_D(DUK_DPRINT("parts: %ld %ld %ld %ld %ld %ld %ld %ld, dparts: %lf %lf %lf %lf %lf %lf %lf %lf", \
32 (long) (parts)[0], (long) (parts)[1], \
33 (long) (parts)[2], (long) (parts)[3], \
34 (long) (parts)[4], (long) (parts)[5], \
35 (long) (parts)[6], (long) (parts)[7], \
36 (double) (dparts)[0], (double) (dparts)[1], \
37 (double) (dparts)[2], (double) (dparts)[3], \
38 (double) (dparts)[4], (double) (dparts)[5], \
39 (double) (dparts)[6], (double) (dparts)[7])); \
40 } while (0)
41 #define DUK__DPRINT_PARTS(parts) do { \
42 DUK_D(DUK_DPRINT("parts: %ld %ld %ld %ld %ld %ld %ld %ld", \
43 (long) (parts)[0], (long) (parts)[1], \
44 (long) (parts)[2], (long) (parts)[3], \
45 (long) (parts)[4], (long) (parts)[5], \
46 (long) (parts)[6], (long) (parts)[7])); \
47 } while (0)
48 #define DUK__DPRINT_DPARTS(dparts) do { \
49 DUK_D(DUK_DPRINT("dparts: %lf %lf %lf %lf %lf %lf %lf %lf", \
50 (double) (dparts)[0], (double) (dparts)[1], \
51 (double) (dparts)[2], (double) (dparts)[3], \
52 (double) (dparts)[4], (double) (dparts)[5], \
53 (double) (dparts)[6], (double) (dparts)[7])); \
54 } while (0)
55
56 /* Equivalent year for DST calculations outside [1970,2038[ range, see
57 * E5 Section 15.9.1.8. Equivalent year has the same leap-year-ness and
58 * starts with the same weekday on Jan 1.
59 * https://bugzilla.mozilla.org/show_bug.cgi?id=351066
60 */
61 #define DUK__YEAR(x) ((duk_uint8_t) ((x) - 1970))
62 DUK_LOCAL duk_uint8_t duk__date_equivyear[14] = {
63 #if 1
64 /* This is based on V8 EquivalentYear() algorithm (see src/genequivyear.py):
65 * http://code.google.com/p/v8/source/browse/trunk/src/date.h#146
66 */
67
68 /* non-leap year: sunday, monday, ... */
69 DUK__YEAR(2023), DUK__YEAR(2035), DUK__YEAR(2019), DUK__YEAR(2031),
70 DUK__YEAR(2015), DUK__YEAR(2027), DUK__YEAR(2011),
71
72 /* leap year: sunday, monday, ... */
73 DUK__YEAR(2012), DUK__YEAR(2024), DUK__YEAR(2008), DUK__YEAR(2020),
74 DUK__YEAR(2032), DUK__YEAR(2016), DUK__YEAR(2028)
75 #endif
76
77 #if 0
78 /* This is based on Rhino EquivalentYear() algorithm:
79 * https://github.com/mozilla/rhino/blob/f99cc11d616f0cdda2c42bde72b3484df6182947/src/org/mozilla/javascript/NativeDate.java
80 */
81
82 /* non-leap year: sunday, monday, ... */
83 DUK__YEAR(1978), DUK__YEAR(1973), DUK__YEAR(1985), DUK__YEAR(1986),
84 DUK__YEAR(1981), DUK__YEAR(1971), DUK__YEAR(1977),
85
86 /* leap year: sunday, monday, ... */
87 DUK__YEAR(1984), DUK__YEAR(1996), DUK__YEAR(1980), DUK__YEAR(1992),
88 DUK__YEAR(1976), DUK__YEAR(1988), DUK__YEAR(1972)
89 #endif
90 };
91 #undef DUK__YEAR
92
93 /*
94 * ISO 8601 subset parser.
95 */
96
97 /* Parser part count. */
98 #define DUK__NUM_ISO8601_PARSER_PARTS 9
99
100 /* Parser part indices. */
101 #define DUK__PI_YEAR 0
102 #define DUK__PI_MONTH 1
103 #define DUK__PI_DAY 2
104 #define DUK__PI_HOUR 3
105 #define DUK__PI_MINUTE 4
106 #define DUK__PI_SECOND 5
107 #define DUK__PI_MILLISECOND 6
108 #define DUK__PI_TZHOUR 7
109 #define DUK__PI_TZMINUTE 8
110
111 /* Parser part masks. */
112 #define DUK__PM_YEAR (1 << DUK__PI_YEAR)
113 #define DUK__PM_MONTH (1 << DUK__PI_MONTH)
114 #define DUK__PM_DAY (1 << DUK__PI_DAY)
115 #define DUK__PM_HOUR (1 << DUK__PI_HOUR)
116 #define DUK__PM_MINUTE (1 << DUK__PI_MINUTE)
117 #define DUK__PM_SECOND (1 << DUK__PI_SECOND)
118 #define DUK__PM_MILLISECOND (1 << DUK__PI_MILLISECOND)
119 #define DUK__PM_TZHOUR (1 << DUK__PI_TZHOUR)
120 #define DUK__PM_TZMINUTE (1 << DUK__PI_TZMINUTE)
121
122 /* Parser separator indices. */
123 #define DUK__SI_PLUS 0
124 #define DUK__SI_MINUS 1
125 #define DUK__SI_T 2
126 #define DUK__SI_SPACE 3
127 #define DUK__SI_COLON 4
128 #define DUK__SI_PERIOD 5
129 #define DUK__SI_Z 6
130 #define DUK__SI_NUL 7
131
132 /* Parser separator masks. */
133 #define DUK__SM_PLUS (1 << DUK__SI_PLUS)
134 #define DUK__SM_MINUS (1 << DUK__SI_MINUS)
135 #define DUK__SM_T (1 << DUK__SI_T)
136 #define DUK__SM_SPACE (1 << DUK__SI_SPACE)
137 #define DUK__SM_COLON (1 << DUK__SI_COLON)
138 #define DUK__SM_PERIOD (1 << DUK__SI_PERIOD)
139 #define DUK__SM_Z (1 << DUK__SI_Z)
140 #define DUK__SM_NUL (1 << DUK__SI_NUL)
141
142 /* Rule control flags. */
143 #define DUK__CF_NEG (1 << 0) /* continue matching, set neg_tzoffset flag */
144 #define DUK__CF_ACCEPT (1 << 1) /* accept string */
145 #define DUK__CF_ACCEPT_NUL (1 << 2) /* accept string if next char is NUL (otherwise reject) */
146
147 #define DUK__PACK_RULE(partmask,sepmask,nextpart,flags) \
148 ((duk_uint32_t) (partmask) + \
149 (((duk_uint32_t) (sepmask)) << 9) + \
150 (((duk_uint32_t) (nextpart)) << 17) + \
151 (((duk_uint32_t) (flags)) << 21))
152
153 #define DUK__UNPACK_RULE(rule,var_nextidx,var_flags) do { \
154 (var_nextidx) = (duk_small_uint_t) (((rule) >> 17) & 0x0f); \
155 (var_flags) = (duk_small_uint_t) ((rule) >> 21); \
156 } while (0)
157
158 #define DUK__RULE_MASK_PART_SEP 0x1ffffUL
159
160 /* Matching separator index is used in the control table */
161 DUK_LOCAL const duk_uint8_t duk__parse_iso8601_seps[] = {
162 DUK_ASC_PLUS /*0*/, DUK_ASC_MINUS /*1*/, DUK_ASC_UC_T /*2*/, DUK_ASC_SPACE /*3*/,
163 DUK_ASC_COLON /*4*/, DUK_ASC_PERIOD /*5*/, DUK_ASC_UC_Z /*6*/, DUK_ASC_NUL /*7*/
164 };
165
166 /* Rule table: first matching rule is used to determine what to do next. */
167 DUK_LOCAL const duk_uint32_t duk__parse_iso8601_control[] = {
168 DUK__PACK_RULE(DUK__PM_YEAR, DUK__SM_MINUS, DUK__PI_MONTH, 0),
169 DUK__PACK_RULE(DUK__PM_MONTH, DUK__SM_MINUS, DUK__PI_DAY, 0),
170 DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY, DUK__SM_T | DUK__SM_SPACE, DUK__PI_HOUR, 0),
171 DUK__PACK_RULE(DUK__PM_HOUR, DUK__SM_COLON, DUK__PI_MINUTE, 0),
172 DUK__PACK_RULE(DUK__PM_MINUTE, DUK__SM_COLON, DUK__PI_SECOND, 0),
173 DUK__PACK_RULE(DUK__PM_SECOND, DUK__SM_PERIOD, DUK__PI_MILLISECOND, 0),
174 DUK__PACK_RULE(DUK__PM_TZHOUR, DUK__SM_COLON, DUK__PI_TZMINUTE, 0),
175 DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND, DUK__SM_PLUS, DUK__PI_TZHOUR, 0),
176 DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND, DUK__SM_MINUS, DUK__PI_TZHOUR, DUK__CF_NEG),
177 DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND, DUK__SM_Z, 0, DUK__CF_ACCEPT_NUL),
178 DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND | DUK__PM_TZHOUR /*Note2*/ | DUK__PM_TZMINUTE, DUK__SM_NUL, 0, DUK__CF_ACCEPT)
179
180 /* Note1: the specification doesn't require matching a time form with
181 * just hours ("HH"), but we accept it here, e.g. "2012-01-02T12Z".
182 *
183 * Note2: the specification doesn't require matching a timezone offset
184 * with just hours ("HH"), but accept it here, e.g. "2012-01-02T03:04:05+02"
185 */
186 };
187
duk__parse_string_iso8601_subset(duk_context * ctx,const char * str)188 DUK_LOCAL duk_bool_t duk__parse_string_iso8601_subset(duk_context *ctx, const char *str) {
189 duk_int_t parts[DUK__NUM_ISO8601_PARSER_PARTS];
190 duk_double_t dparts[DUK_DATE_IDX_NUM_PARTS];
191 duk_double_t d;
192 const duk_uint8_t *p;
193 duk_small_uint_t part_idx = 0;
194 duk_int_t accum = 0;
195 duk_small_uint_t ndigits = 0;
196 duk_bool_t neg_year = 0;
197 duk_bool_t neg_tzoffset = 0;
198 duk_uint_fast8_t ch;
199 duk_small_uint_t i;
200
201 /* During parsing, month and day are one-based; set defaults here. */
202 DUK_MEMZERO(parts, sizeof(parts));
203 DUK_ASSERT(parts[DUK_DATE_IDX_YEAR] == 0); /* don't care value, year is mandatory */
204 parts[DUK_DATE_IDX_MONTH] = 1;
205 parts[DUK_DATE_IDX_DAY] = 1;
206
207 /* Special handling for year sign. */
208 p = (const duk_uint8_t *) str;
209 ch = p[0];
210 if (ch == DUK_ASC_PLUS) {
211 p++;
212 } else if (ch == DUK_ASC_MINUS) {
213 neg_year = 1;
214 p++;
215 }
216
217 for (;;) {
218 ch = *p++;
219 DUK_DDD(DUK_DDDPRINT("parsing, part_idx=%ld, char=%ld ('%c')",
220 (long) part_idx, (long) ch,
221 (int) ((ch >= 0x20 && ch <= 0x7e) ? ch : DUK_ASC_QUESTION)));
222
223 if (ch >= DUK_ASC_0 && ch <= DUK_ASC_9) {
224 if (ndigits >= 9) {
225 DUK_DDD(DUK_DDDPRINT("too many digits -> reject"));
226 goto reject;
227 }
228 if (part_idx == DUK__PI_MILLISECOND /*msec*/ && ndigits >= 3) {
229 /* ignore millisecond fractions after 3 */
230 } else {
231 accum = accum * 10 + ((duk_int_t) ch) - ((duk_int_t) DUK_ASC_0) + 0x00;
232 ndigits++;
233 }
234 } else {
235 duk_uint_fast32_t match_val;
236 duk_small_int_t sep_idx;
237
238 if (ndigits <= 0) {
239 goto reject;
240 }
241 if (part_idx == DUK__PI_MILLISECOND) {
242 /* complete the millisecond field */
243 while (ndigits < 3) {
244 accum *= 10;
245 ndigits++;
246 }
247 }
248 parts[part_idx] = accum;
249 DUK_DDD(DUK_DDDPRINT("wrote part %ld -> value %ld", (long) part_idx, (long) accum));
250
251 accum = 0;
252 ndigits = 0;
253
254 for (i = 0; i < (duk_small_uint_t) (sizeof(duk__parse_iso8601_seps) / sizeof(duk_uint8_t)); i++) {
255 if (duk__parse_iso8601_seps[i] == ch) {
256 break;
257 }
258 }
259 if (i == (duk_small_uint_t) (sizeof(duk__parse_iso8601_seps) / sizeof(duk_uint8_t))) {
260 DUK_DDD(DUK_DDDPRINT("separator character doesn't match -> reject"));
261 goto reject;
262 }
263
264 sep_idx = i;
265 match_val = (1UL << part_idx) + (1UL << (sep_idx + 9)); /* match against rule part/sep bits */
266
267 for (i = 0; i < (duk_small_uint_t) (sizeof(duk__parse_iso8601_control) / sizeof(duk_uint32_t)); i++) {
268 duk_uint_fast32_t rule = duk__parse_iso8601_control[i];
269 duk_small_uint_t nextpart;
270 duk_small_uint_t cflags;
271
272 DUK_DDD(DUK_DDDPRINT("part_idx=%ld, sep_idx=%ld, match_val=0x%08lx, considering rule=0x%08lx",
273 (long) part_idx, (long) sep_idx,
274 (unsigned long) match_val, (unsigned long) rule));
275
276 if ((rule & match_val) != match_val) {
277 continue;
278 }
279
280 DUK__UNPACK_RULE(rule, nextpart, cflags);
281
282 DUK_DDD(DUK_DDDPRINT("rule match -> part_idx=%ld, sep_idx=%ld, match_val=0x%08lx, "
283 "rule=0x%08lx -> nextpart=%ld, cflags=0x%02lx",
284 (long) part_idx, (long) sep_idx,
285 (unsigned long) match_val, (unsigned long) rule,
286 (long) nextpart, (unsigned long) cflags));
287
288 if (cflags & DUK__CF_NEG) {
289 neg_tzoffset = 1;
290 }
291
292 if (cflags & DUK__CF_ACCEPT) {
293 goto accept;
294 }
295
296 if (cflags & DUK__CF_ACCEPT_NUL) {
297 DUK_ASSERT(*(p - 1) != (char) 0);
298 if (*p == DUK_ASC_NUL) {
299 goto accept;
300 }
301 goto reject;
302 }
303
304 part_idx = nextpart;
305 break;
306 } /* rule match */
307
308 if (i == (duk_small_uint_t) (sizeof(duk__parse_iso8601_control) / sizeof(duk_uint32_t))) {
309 DUK_DDD(DUK_DDDPRINT("no rule matches -> reject"));
310 goto reject;
311 }
312
313 if (ch == 0) {
314 /* This shouldn't be necessary, but check just in case
315 * to avoid any chance of overruns.
316 */
317 DUK_DDD(DUK_DDDPRINT("NUL after rule matching (should not happen) -> reject"));
318 goto reject;
319 }
320 } /* if-digit-else-ctrl */
321 } /* char loop */
322
323 /* We should never exit the loop above. */
324 DUK_UNREACHABLE();
325
326 reject:
327 DUK_DDD(DUK_DDDPRINT("reject"));
328 return 0;
329
330 accept:
331 DUK_DDD(DUK_DDDPRINT("accept"));
332
333 /* Apply timezone offset to get the main parts in UTC */
334 if (neg_year) {
335 parts[DUK__PI_YEAR] = -parts[DUK__PI_YEAR];
336 }
337 if (neg_tzoffset) {
338 parts[DUK__PI_HOUR] += parts[DUK__PI_TZHOUR];
339 parts[DUK__PI_MINUTE] += parts[DUK__PI_TZMINUTE];
340 } else {
341 parts[DUK__PI_HOUR] -= parts[DUK__PI_TZHOUR];
342 parts[DUK__PI_MINUTE] -= parts[DUK__PI_TZMINUTE];
343 }
344 parts[DUK__PI_MONTH] -= 1; /* zero-based month */
345 parts[DUK__PI_DAY] -= 1; /* zero-based day */
346
347 /* Use double parts, they tolerate unnormalized time.
348 *
349 * Note: DUK_DATE_IDX_WEEKDAY is initialized with a bogus value (DUK__PI_TZHOUR)
350 * on purpose. It won't be actually used by duk_bi_date_get_timeval_from_dparts(),
351 * but will make the value initialized just in case, and avoid any
352 * potential for Valgrind issues.
353 */
354 for (i = 0; i < DUK_DATE_IDX_NUM_PARTS; i++) {
355 DUK_DDD(DUK_DDDPRINT("part[%ld] = %ld", (long) i, (long) parts[i]));
356 dparts[i] = parts[i];
357 }
358
359 d = duk_bi_date_get_timeval_from_dparts(dparts, 0 /*flags*/);
360 duk_push_number(ctx, d);
361 return 1;
362 }
363
364 /*
365 * Date/time parsing helper.
366 *
367 * Parse a datetime string into a time value. We must first try to parse
368 * the input according to the standard format in E5.1 Section 15.9.1.15.
369 * If that fails, we can try to parse using custom parsing, which can
370 * either be platform neutral (custom code) or platform specific (using
371 * existing platform API calls).
372 *
373 * Note in particular that we must parse whatever toString(), toUTCString(),
374 * and toISOString() can produce; see E5.1 Section 15.9.4.2.
375 *
376 * Returns 1 to allow tail calling.
377 *
378 * There is much room for improvement here with respect to supporting
379 * alternative datetime formats. For instance, V8 parses '2012-01-01' as
380 * UTC and '2012/01/01' as local time.
381 */
382
duk__parse_string(duk_context * ctx,const char * str)383 DUK_LOCAL duk_ret_t duk__parse_string(duk_context *ctx, const char *str) {
384 /* XXX: there is a small risk here: because the ISO 8601 parser is
385 * very loose, it may end up parsing some datetime values which
386 * would be better parsed with a platform specific parser.
387 */
388
389 DUK_ASSERT(str != NULL);
390 DUK_DDD(DUK_DDDPRINT("parse datetime from string '%s'", (const char *) str));
391
392 if (duk__parse_string_iso8601_subset(ctx, str) != 0) {
393 return 1;
394 }
395
396 #if defined(DUK_USE_DATE_PARSE_STRING)
397 /* Contract, either:
398 * - Push value on stack and return 1
399 * - Don't push anything on stack and return 0
400 */
401
402 if (DUK_USE_DATE_PARSE_STRING(ctx, str) != 0) {
403 return 1;
404 }
405 #else
406 /* No platform-specific parsing, this is not an error. */
407 #endif
408
409 duk_push_nan(ctx);
410 return 1;
411 }
412
413 /*
414 * Calendar helpers
415 *
416 * Some helpers are used for getters and can operate on normalized values
417 * which can be represented with 32-bit signed integers. Other helpers are
418 * needed by setters and operate on un-normalized double values, must watch
419 * out for non-finite numbers etc.
420 */
421
422 DUK_LOCAL duk_uint8_t duk__days_in_month[12] = {
423 (duk_uint8_t) 31, (duk_uint8_t) 28, (duk_uint8_t) 31, (duk_uint8_t) 30,
424 (duk_uint8_t) 31, (duk_uint8_t) 30, (duk_uint8_t) 31, (duk_uint8_t) 31,
425 (duk_uint8_t) 30, (duk_uint8_t) 31, (duk_uint8_t) 30, (duk_uint8_t) 31
426 };
427
428 /* Maximum iteration count for computing UTC-to-local time offset when
429 * creating an Ecmascript time value from local parts.
430 */
431 #define DUK__LOCAL_TZOFFSET_MAXITER 4
432
433 /* Because 'day since epoch' can be negative and is used to compute weekday
434 * using a modulo operation, add this multiple of 7 to avoid negative values
435 * when year is below 1970 epoch. Ecmascript time values are restricted to
436 * +/- 100 million days from epoch, so this adder fits nicely into 32 bits.
437 * Round to a multiple of 7 (= floor(100000000 / 7) * 7) and add margin.
438 */
439 #define DUK__WEEKDAY_MOD_ADDER (20000000 * 7) /* 0x08583b00 */
440
duk_bi_date_is_leap_year(duk_int_t year)441 DUK_INTERNAL duk_bool_t duk_bi_date_is_leap_year(duk_int_t year) {
442 if ((year % 4) != 0) {
443 return 0;
444 }
445 if ((year % 100) != 0) {
446 return 1;
447 }
448 if ((year % 400) != 0) {
449 return 0;
450 }
451 return 1;
452 }
453
duk_bi_date_timeval_in_valid_range(duk_double_t x)454 DUK_INTERNAL duk_bool_t duk_bi_date_timeval_in_valid_range(duk_double_t x) {
455 return (x >= -DUK_DATE_MSEC_100M_DAYS && x <= DUK_DATE_MSEC_100M_DAYS);
456 }
457
duk_bi_date_timeval_in_leeway_range(duk_double_t x)458 DUK_INTERNAL duk_bool_t duk_bi_date_timeval_in_leeway_range(duk_double_t x) {
459 return (x >= -DUK_DATE_MSEC_100M_DAYS_LEEWAY && x <= DUK_DATE_MSEC_100M_DAYS_LEEWAY);
460 }
461
duk_bi_date_year_in_valid_range(duk_double_t x)462 DUK_INTERNAL duk_bool_t duk_bi_date_year_in_valid_range(duk_double_t x) {
463 return (x >= DUK_DATE_MIN_ECMA_YEAR && x <= DUK_DATE_MAX_ECMA_YEAR);
464 }
465
duk__timeclip(duk_double_t x)466 DUK_LOCAL duk_double_t duk__timeclip(duk_double_t x) {
467 if (!DUK_ISFINITE(x)) {
468 return DUK_DOUBLE_NAN;
469 }
470
471 if (!duk_bi_date_timeval_in_valid_range(x)) {
472 return DUK_DOUBLE_NAN;
473 }
474
475 x = duk_js_tointeger_number(x);
476
477 /* Here we'd have the option to normalize -0 to +0. */
478 return x;
479 }
480
481 /* Integer division which floors also negative values correctly. */
duk__div_floor(duk_int_t a,duk_int_t b)482 DUK_LOCAL duk_int_t duk__div_floor(duk_int_t a, duk_int_t b) {
483 DUK_ASSERT(b > 0);
484 if (a >= 0) {
485 return a / b;
486 } else {
487 /* e.g. a = -4, b = 5 --> -4 - 5 + 1 / 5 --> -8 / 5 --> -1
488 * a = -5, b = 5 --> -5 - 5 + 1 / 5 --> -9 / 5 --> -1
489 * a = -6, b = 5 --> -6 - 5 + 1 / 5 --> -10 / 5 --> -2
490 */
491 return (a - b + 1) / b;
492 }
493 }
494
495 /* Compute day number of the first day of a given year. */
duk__day_from_year(duk_int_t year)496 DUK_LOCAL duk_int_t duk__day_from_year(duk_int_t year) {
497 /* Note: in integer arithmetic, (x / 4) is same as floor(x / 4) for non-negative
498 * values, but is incorrect for negative ones.
499 */
500 return 365 * (year - 1970)
501 + duk__div_floor(year - 1969, 4)
502 - duk__div_floor(year - 1901, 100)
503 + duk__div_floor(year - 1601, 400);
504 }
505
506 /* Given a day number, determine year and day-within-year. */
duk__year_from_day(duk_int_t day,duk_small_int_t * out_day_within_year)507 DUK_LOCAL duk_int_t duk__year_from_day(duk_int_t day, duk_small_int_t *out_day_within_year) {
508 duk_int_t year;
509 duk_int_t diff_days;
510
511 /* estimate year upwards (towards positive infinity), then back down;
512 * two iterations should be enough
513 */
514
515 if (day >= 0) {
516 year = 1970 + day / 365;
517 } else {
518 year = 1970 + day / 366;
519 }
520
521 for (;;) {
522 diff_days = duk__day_from_year(year) - day;
523 DUK_DDD(DUK_DDDPRINT("year=%ld day=%ld, diff_days=%ld", (long) year, (long) day, (long) diff_days));
524 if (diff_days <= 0) {
525 DUK_ASSERT(-diff_days < 366); /* fits into duk_small_int_t */
526 *out_day_within_year = -diff_days;
527 DUK_DDD(DUK_DDDPRINT("--> year=%ld, day-within-year=%ld",
528 (long) year, (long) *out_day_within_year));
529 DUK_ASSERT(*out_day_within_year >= 0);
530 DUK_ASSERT(*out_day_within_year < (duk_bi_date_is_leap_year(year) ? 366 : 365));
531 return year;
532 }
533
534 /* Note: this is very tricky; we must never 'overshoot' the
535 * correction downwards.
536 */
537 year -= 1 + (diff_days - 1) / 366; /* conservative */
538 }
539 }
540
541 /* Given a (year, month, day-within-month) triple, compute day number.
542 * The input triple is un-normalized and may contain non-finite values.
543 */
duk__make_day(duk_double_t year,duk_double_t month,duk_double_t day)544 DUK_LOCAL duk_double_t duk__make_day(duk_double_t year, duk_double_t month, duk_double_t day) {
545 duk_int_t day_num;
546 duk_bool_t is_leap;
547 duk_small_int_t i, n;
548
549 /* Assume that year, month, day are all coerced to whole numbers.
550 * They may also be NaN or infinity, in which case this function
551 * must return NaN or infinity to ensure time value becomes NaN.
552 * If 'day' is NaN, the final return will end up returning a NaN,
553 * so it doesn't need to be checked here.
554 */
555
556 if (!DUK_ISFINITE(year) || !DUK_ISFINITE(month)) {
557 return DUK_DOUBLE_NAN;
558 }
559
560 year += DUK_FLOOR(month / 12.0);
561
562 month = DUK_FMOD(month, 12.0);
563 if (month < 0.0) {
564 /* handle negative values */
565 month += 12.0;
566 }
567
568 /* The algorithm in E5.1 Section 15.9.1.12 normalizes month, but
569 * does not normalize the day-of-month (nor check whether or not
570 * it is finite) because it's not necessary for finding the day
571 * number which matches the (year,month) pair.
572 *
573 * We assume that duk__day_from_year() is exact here.
574 *
575 * Without an explicit infinity / NaN check in the beginning,
576 * day_num would be a bogus integer here.
577 *
578 * It's possible for 'year' to be out of integer range here.
579 * If so, we need to return NaN without integer overflow.
580 * This fixes test-bug-setyear-overflow.js.
581 */
582
583 if (!duk_bi_date_year_in_valid_range(year)) {
584 DUK_DD(DUK_DDPRINT("year not in ecmascript valid range, avoid integer overflow: %lf", (double) year));
585 return DUK_DOUBLE_NAN;
586 }
587 day_num = duk__day_from_year((duk_int_t) year);
588 is_leap = duk_bi_date_is_leap_year((duk_int_t) year);
589
590 n = (duk_small_int_t) month;
591 for (i = 0; i < n; i++) {
592 day_num += duk__days_in_month[i];
593 if (i == 1 && is_leap) {
594 day_num++;
595 }
596 }
597
598 /* If 'day' is NaN, returns NaN. */
599 return (duk_double_t) day_num + day;
600 }
601
602 /* Split time value into parts. The time value is assumed to be an internal
603 * one, i.e. finite, no fractions. Possible local time adjustment has already
604 * been applied when reading the time value.
605 */
duk_bi_date_timeval_to_parts(duk_double_t d,duk_int_t * parts,duk_double_t * dparts,duk_small_uint_t flags)606 DUK_INTERNAL void duk_bi_date_timeval_to_parts(duk_double_t d, duk_int_t *parts, duk_double_t *dparts, duk_small_uint_t flags) {
607 duk_double_t d1, d2;
608 duk_int_t t1, t2;
609 duk_int_t day_since_epoch;
610 duk_int_t year; /* does not fit into 16 bits */
611 duk_small_int_t day_in_year;
612 duk_small_int_t month;
613 duk_small_int_t day;
614 duk_small_int_t dim;
615 duk_int_t jan1_since_epoch;
616 duk_small_int_t jan1_weekday;
617 duk_int_t equiv_year;
618 duk_small_uint_t i;
619 duk_bool_t is_leap;
620 duk_small_int_t arridx;
621
622 DUK_ASSERT(DUK_ISFINITE(d)); /* caller checks */
623 DUK_ASSERT(DUK_FLOOR(d) == d); /* no fractions in internal time */
624
625 /* The timevalue must be in valid Ecmascript range, but since a local
626 * time offset can be applied, we need to allow a +/- 24h leeway to
627 * the value. In other words, although the UTC time is within the
628 * Ecmascript range, the local part values can be just outside of it.
629 */
630 DUK_UNREF(duk_bi_date_timeval_in_leeway_range);
631 DUK_ASSERT(duk_bi_date_timeval_in_leeway_range(d));
632
633 /* these computations are guaranteed to be exact for the valid
634 * E5 time value range, assuming milliseconds without fractions.
635 */
636 d1 = (duk_double_t) DUK_FMOD(d, (double) DUK_DATE_MSEC_DAY);
637 if (d1 < 0.0) {
638 /* deal with negative values */
639 d1 += (duk_double_t) DUK_DATE_MSEC_DAY;
640 }
641 d2 = DUK_FLOOR((double) (d / (duk_double_t) DUK_DATE_MSEC_DAY));
642 DUK_ASSERT(d2 * ((duk_double_t) DUK_DATE_MSEC_DAY) + d1 == d);
643 /* now expected to fit into a 32-bit integer */
644 t1 = (duk_int_t) d1;
645 t2 = (duk_int_t) d2;
646 day_since_epoch = t2;
647 DUK_ASSERT((duk_double_t) t1 == d1);
648 DUK_ASSERT((duk_double_t) t2 == d2);
649
650 /* t1 = milliseconds within day (fits 32 bit)
651 * t2 = day number from epoch (fits 32 bit, may be negative)
652 */
653
654 parts[DUK_DATE_IDX_MILLISECOND] = t1 % 1000; t1 /= 1000;
655 parts[DUK_DATE_IDX_SECOND] = t1 % 60; t1 /= 60;
656 parts[DUK_DATE_IDX_MINUTE] = t1 % 60; t1 /= 60;
657 parts[DUK_DATE_IDX_HOUR] = t1;
658 DUK_ASSERT(parts[DUK_DATE_IDX_MILLISECOND] >= 0 && parts[DUK_DATE_IDX_MILLISECOND] <= 999);
659 DUK_ASSERT(parts[DUK_DATE_IDX_SECOND] >= 0 && parts[DUK_DATE_IDX_SECOND] <= 59);
660 DUK_ASSERT(parts[DUK_DATE_IDX_MINUTE] >= 0 && parts[DUK_DATE_IDX_MINUTE] <= 59);
661 DUK_ASSERT(parts[DUK_DATE_IDX_HOUR] >= 0 && parts[DUK_DATE_IDX_HOUR] <= 23);
662
663 DUK_DDD(DUK_DDDPRINT("d=%lf, d1=%lf, d2=%lf, t1=%ld, t2=%ld, parts: hour=%ld min=%ld sec=%ld msec=%ld",
664 (double) d, (double) d1, (double) d2, (long) t1, (long) t2,
665 (long) parts[DUK_DATE_IDX_HOUR],
666 (long) parts[DUK_DATE_IDX_MINUTE],
667 (long) parts[DUK_DATE_IDX_SECOND],
668 (long) parts[DUK_DATE_IDX_MILLISECOND]));
669
670 /* This assert depends on the input parts representing time inside
671 * the Ecmascript range.
672 */
673 DUK_ASSERT(t2 + DUK__WEEKDAY_MOD_ADDER >= 0);
674 parts[DUK_DATE_IDX_WEEKDAY] = (t2 + 4 + DUK__WEEKDAY_MOD_ADDER) % 7; /* E5.1 Section 15.9.1.6 */
675 DUK_ASSERT(parts[DUK_DATE_IDX_WEEKDAY] >= 0 && parts[DUK_DATE_IDX_WEEKDAY] <= 6);
676
677 year = duk__year_from_day(t2, &day_in_year);
678 day = day_in_year;
679 is_leap = duk_bi_date_is_leap_year(year);
680 for (month = 0; month < 12; month++) {
681 dim = duk__days_in_month[month];
682 if (month == 1 && is_leap) {
683 dim++;
684 }
685 DUK_DDD(DUK_DDDPRINT("month=%ld, dim=%ld, day=%ld",
686 (long) month, (long) dim, (long) day));
687 if (day < dim) {
688 break;
689 }
690 day -= dim;
691 }
692 DUK_DDD(DUK_DDDPRINT("final month=%ld", (long) month));
693 DUK_ASSERT(month >= 0 && month <= 11);
694 DUK_ASSERT(day >= 0 && day <= 31);
695
696 /* Equivalent year mapping, used to avoid DST trouble when platform
697 * may fail to provide reasonable DST answers for dates outside the
698 * ordinary range (e.g. 1970-2038). An equivalent year has the same
699 * leap-year-ness as the original year and begins on the same weekday
700 * (Jan 1).
701 *
702 * The year 2038 is avoided because there seem to be problems with it
703 * on some platforms. The year 1970 is also avoided as there were
704 * practical problems with it; an equivalent year is used for it too,
705 * which breaks some DST computations for 1970 right now, see e.g.
706 * test-bi-date-tzoffset-brute-fi.js.
707 */
708 if ((flags & DUK_DATE_FLAG_EQUIVYEAR) && (year < 1971 || year > 2037)) {
709 DUK_ASSERT(is_leap == 0 || is_leap == 1);
710
711 jan1_since_epoch = day_since_epoch - day_in_year; /* day number for Jan 1 since epoch */
712 DUK_ASSERT(jan1_since_epoch + DUK__WEEKDAY_MOD_ADDER >= 0);
713 jan1_weekday = (jan1_since_epoch + 4 + DUK__WEEKDAY_MOD_ADDER) % 7; /* E5.1 Section 15.9.1.6 */
714 DUK_ASSERT(jan1_weekday >= 0 && jan1_weekday <= 6);
715 arridx = jan1_weekday;
716 if (is_leap) {
717 arridx += 7;
718 }
719 DUK_ASSERT(arridx >= 0 && arridx < (duk_small_int_t) (sizeof(duk__date_equivyear) / sizeof(duk_uint8_t)));
720
721 equiv_year = (duk_int_t) duk__date_equivyear[arridx] + 1970;
722 year = equiv_year;
723 DUK_DDD(DUK_DDDPRINT("equiv year mapping, year=%ld, day_in_year=%ld, day_since_epoch=%ld, "
724 "jan1_since_epoch=%ld, jan1_weekday=%ld -> equiv year %ld",
725 (long) year, (long) day_in_year, (long) day_since_epoch,
726 (long) jan1_since_epoch, (long) jan1_weekday, (long) equiv_year));
727 }
728
729 parts[DUK_DATE_IDX_YEAR] = year;
730 parts[DUK_DATE_IDX_MONTH] = month;
731 parts[DUK_DATE_IDX_DAY] = day;
732
733 if (flags & DUK_DATE_FLAG_ONEBASED) {
734 parts[DUK_DATE_IDX_MONTH]++; /* zero-based -> one-based */
735 parts[DUK_DATE_IDX_DAY]++; /* -""- */
736 }
737
738 if (dparts != NULL) {
739 for (i = 0; i < DUK_DATE_IDX_NUM_PARTS; i++) {
740 dparts[i] = (duk_double_t) parts[i];
741 }
742 }
743 }
744
745 /* Compute time value from (double) parts. The parts can be either UTC
746 * or local time; if local, they need to be (conceptually) converted into
747 * UTC time. The parts may represent valid or invalid time, and may be
748 * wildly out of range (but may cancel each other and still come out in
749 * the valid Date range).
750 */
duk_bi_date_get_timeval_from_dparts(duk_double_t * dparts,duk_small_uint_t flags)751 DUK_INTERNAL duk_double_t duk_bi_date_get_timeval_from_dparts(duk_double_t *dparts, duk_small_uint_t flags) {
752 #if defined(DUK_USE_PARANOID_DATE_COMPUTATION)
753 /* See comments below on MakeTime why these are volatile. */
754 volatile duk_double_t tmp_time;
755 volatile duk_double_t tmp_day;
756 volatile duk_double_t d;
757 #else
758 duk_double_t tmp_time;
759 duk_double_t tmp_day;
760 duk_double_t d;
761 #endif
762 duk_small_uint_t i;
763 duk_int_t tzoff, tzoffprev1, tzoffprev2;
764
765 /* Expects 'this' at top of stack on entry. */
766
767 /* Coerce all finite parts with ToInteger(). ToInteger() must not
768 * be called for NaN/Infinity because it will convert e.g. NaN to
769 * zero. If ToInteger() has already been called, this has no side
770 * effects and is idempotent.
771 *
772 * Don't read dparts[DUK_DATE_IDX_WEEKDAY]; it will cause Valgrind
773 * issues if the value is uninitialized.
774 */
775 for (i = 0; i <= DUK_DATE_IDX_MILLISECOND; i++) {
776 /* SCANBUILD: scan-build complains here about assigned value
777 * being garbage or undefined. This is correct but operating
778 * on undefined values has no ill effect and is ignored by the
779 * caller in the case where this happens.
780 */
781 d = dparts[i];
782 if (DUK_ISFINITE(d)) {
783 dparts[i] = duk_js_tointeger_number(d);
784 }
785 }
786
787 /* Use explicit steps in computation to try to ensure that
788 * computation happens with intermediate results coerced to
789 * double values (instead of using something more accurate).
790 * E.g. E5.1 Section 15.9.1.11 requires use of IEEE 754
791 * rules (= Ecmascript '+' and '*' operators).
792 *
793 * Without 'volatile' even this approach fails on some platform
794 * and compiler combinations. For instance, gcc 4.8.1 on Ubuntu
795 * 64-bit, with -m32 and without -std=c99, test-bi-date-canceling.js
796 * would fail because of some optimizations when computing tmp_time
797 * (MakeTime below). Adding 'volatile' to tmp_time solved this
798 * particular problem (annoyingly, also adding debug prints or
799 * running the executable under valgrind hides it).
800 */
801
802 /* MakeTime */
803 tmp_time = 0.0;
804 tmp_time += dparts[DUK_DATE_IDX_HOUR] * ((duk_double_t) DUK_DATE_MSEC_HOUR);
805 tmp_time += dparts[DUK_DATE_IDX_MINUTE] * ((duk_double_t) DUK_DATE_MSEC_MINUTE);
806 tmp_time += dparts[DUK_DATE_IDX_SECOND] * ((duk_double_t) DUK_DATE_MSEC_SECOND);
807 tmp_time += dparts[DUK_DATE_IDX_MILLISECOND];
808
809 /* MakeDay */
810 tmp_day = duk__make_day(dparts[DUK_DATE_IDX_YEAR], dparts[DUK_DATE_IDX_MONTH], dparts[DUK_DATE_IDX_DAY]);
811
812 /* MakeDate */
813 d = tmp_day * ((duk_double_t) DUK_DATE_MSEC_DAY) + tmp_time;
814
815 DUK_DDD(DUK_DDDPRINT("time=%lf day=%lf --> timeval=%lf",
816 (double) tmp_time, (double) tmp_day, (double) d));
817
818 /* Optional UTC conversion. */
819 if (flags & DUK_DATE_FLAG_LOCALTIME) {
820 /* DUK_USE_DATE_GET_LOCAL_TZOFFSET() needs to be called with a
821 * time value computed from UTC parts. At this point we only
822 * have 'd' which is a time value computed from local parts, so
823 * it is off by the UTC-to-local time offset which we don't know
824 * yet. The current solution for computing the UTC-to-local
825 * time offset is to iterate a few times and detect a fixed
826 * point or a two-cycle loop (or a sanity iteration limit),
827 * see test-bi-date-local-parts.js and test-bi-date-tzoffset-basic-fi.js.
828 *
829 * E5.1 Section 15.9.1.9:
830 * UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA)
831 *
832 * For NaN/inf, DUK_USE_DATE_GET_LOCAL_TZOFFSET() returns 0.
833 */
834
835 #if 0
836 /* Old solution: don't iterate, incorrect */
837 tzoff = DUK_USE_DATE_GET_LOCAL_TZOFFSET(d);
838 DUK_DDD(DUK_DDDPRINT("tzoffset w/o iteration, tzoff=%ld", (long) tzoff));
839 d -= tzoff * 1000L;
840 DUK_UNREF(tzoffprev1);
841 DUK_UNREF(tzoffprev2);
842 #endif
843
844 /* Iteration solution */
845 tzoff = 0;
846 tzoffprev1 = 999999999L; /* invalid value which never matches */
847 for (i = 0; i < DUK__LOCAL_TZOFFSET_MAXITER; i++) {
848 tzoffprev2 = tzoffprev1;
849 tzoffprev1 = tzoff;
850 tzoff = DUK_USE_DATE_GET_LOCAL_TZOFFSET(d - tzoff * 1000L);
851 DUK_DDD(DUK_DDDPRINT("tzoffset iteration, i=%d, tzoff=%ld, tzoffprev1=%ld tzoffprev2=%ld",
852 (int) i, (long) tzoff, (long) tzoffprev1, (long) tzoffprev2));
853 if (tzoff == tzoffprev1) {
854 DUK_DDD(DUK_DDDPRINT("tzoffset iteration finished, i=%d, tzoff=%ld, tzoffprev1=%ld, tzoffprev2=%ld",
855 (int) i, (long) tzoff, (long) tzoffprev1, (long) tzoffprev2));
856 break;
857 } else if (tzoff == tzoffprev2) {
858 /* Two value cycle, see e.g. test-bi-date-tzoffset-basic-fi.js.
859 * In these cases, favor a higher tzoffset to get a consistent
860 * result which is independent of iteration count. Not sure if
861 * this is a generically correct solution.
862 */
863 DUK_DDD(DUK_DDDPRINT("tzoffset iteration two-value cycle, i=%d, tzoff=%ld, tzoffprev1=%ld, tzoffprev2=%ld",
864 (int) i, (long) tzoff, (long) tzoffprev1, (long) tzoffprev2));
865 if (tzoffprev1 > tzoff) {
866 tzoff = tzoffprev1;
867 }
868 break;
869 }
870 }
871 DUK_DDD(DUK_DDDPRINT("tzoffset iteration, tzoff=%ld", (long) tzoff));
872 d -= tzoff * 1000L;
873 }
874
875 /* TimeClip(), which also handles Infinity -> NaN conversion */
876 d = duk__timeclip(d);
877
878 return d;
879 }
880
881 /*
882 * API oriented helpers
883 */
884
885 /* Push 'this' binding, check that it is a Date object; then push the
886 * internal time value. At the end, stack is: [ ... this timeval ].
887 * Returns the time value. Local time adjustment is done if requested.
888 */
duk__push_this_get_timeval_tzoffset(duk_context * ctx,duk_small_uint_t flags,duk_int_t * out_tzoffset)889 DUK_LOCAL duk_double_t duk__push_this_get_timeval_tzoffset(duk_context *ctx, duk_small_uint_t flags, duk_int_t *out_tzoffset) {
890 duk_hthread *thr = (duk_hthread *) ctx;
891 duk_hobject *h;
892 duk_double_t d;
893 duk_int_t tzoffset = 0;
894
895 duk_push_this(ctx);
896 h = duk_get_hobject(ctx, -1); /* XXX: getter with class check, useful in built-ins */
897 if (h == NULL || DUK_HOBJECT_GET_CLASS_NUMBER(h) != DUK_HOBJECT_CLASS_DATE) {
898 DUK_ERROR_TYPE(thr, "expected Date");
899 }
900
901 duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
902 d = duk_to_number(ctx, -1);
903 duk_pop(ctx);
904
905 if (DUK_ISNAN(d)) {
906 if (flags & DUK_DATE_FLAG_NAN_TO_ZERO) {
907 d = 0.0;
908 }
909 if (flags & DUK_DATE_FLAG_NAN_TO_RANGE_ERROR) {
910 DUK_ERROR_RANGE(thr, "Invalid Date");
911 }
912 }
913 /* if no NaN handling flag, may still be NaN here, but not Inf */
914 DUK_ASSERT(!DUK_ISINF(d));
915
916 if (flags & DUK_DATE_FLAG_LOCALTIME) {
917 /* Note: DST adjustment is determined using UTC time.
918 * If 'd' is NaN, tzoffset will be 0.
919 */
920 tzoffset = DUK_USE_DATE_GET_LOCAL_TZOFFSET(d); /* seconds */
921 d += tzoffset * 1000L;
922 }
923 if (out_tzoffset) {
924 *out_tzoffset = tzoffset;
925 }
926
927 /* [ ... this ] */
928 return d;
929 }
930
duk__push_this_get_timeval(duk_context * ctx,duk_small_uint_t flags)931 DUK_LOCAL duk_double_t duk__push_this_get_timeval(duk_context *ctx, duk_small_uint_t flags) {
932 return duk__push_this_get_timeval_tzoffset(ctx, flags, NULL);
933 }
934
935 /* Set timeval to 'this' from dparts, push the new time value onto the
936 * value stack and return 1 (caller can then tail call us). Expects
937 * the value stack to contain 'this' on the stack top.
938 */
duk__set_this_timeval_from_dparts(duk_context * ctx,duk_double_t * dparts,duk_small_uint_t flags)939 DUK_LOCAL duk_ret_t duk__set_this_timeval_from_dparts(duk_context *ctx, duk_double_t *dparts, duk_small_uint_t flags) {
940 duk_double_t d;
941
942 /* [ ... this ] */
943
944 d = duk_bi_date_get_timeval_from_dparts(dparts, flags);
945 duk_push_number(ctx, d); /* -> [ ... this timeval_new ] */
946 duk_dup_top(ctx); /* -> [ ... this timeval_new timeval_new ] */
947 duk_put_prop_stridx(ctx, -3, DUK_STRIDX_INT_VALUE);
948
949 /* stack top: new time value, return 1 to allow tail calls */
950 return 1;
951 }
952
953 /* 'out_buf' must be at least DUK_BI_DATE_ISO8601_BUFSIZE long. */
duk__format_parts_iso8601(duk_int_t * parts,duk_int_t tzoffset,duk_small_uint_t flags,duk_uint8_t * out_buf)954 DUK_LOCAL void duk__format_parts_iso8601(duk_int_t *parts, duk_int_t tzoffset, duk_small_uint_t flags, duk_uint8_t *out_buf) {
955 char yearstr[8]; /* "-123456\0" */
956 char tzstr[8]; /* "+11:22\0" */
957 char sep = (flags & DUK_DATE_FLAG_SEP_T) ? DUK_ASC_UC_T : DUK_ASC_SPACE;
958
959 DUK_ASSERT(parts[DUK_DATE_IDX_MONTH] >= 1 && parts[DUK_DATE_IDX_MONTH] <= 12);
960 DUK_ASSERT(parts[DUK_DATE_IDX_DAY] >= 1 && parts[DUK_DATE_IDX_DAY] <= 31);
961 DUK_ASSERT(parts[DUK_DATE_IDX_YEAR] >= -999999 && parts[DUK_DATE_IDX_YEAR] <= 999999);
962
963 /* Note: %06d for positive value, %07d for negative value to include
964 * sign and 6 digits.
965 */
966 DUK_SNPRINTF(yearstr,
967 sizeof(yearstr),
968 (parts[DUK_DATE_IDX_YEAR] >= 0 && parts[DUK_DATE_IDX_YEAR] <= 9999) ? "%04ld" :
969 ((parts[DUK_DATE_IDX_YEAR] >= 0) ? "+%06ld" : "%07ld"),
970 (long) parts[DUK_DATE_IDX_YEAR]);
971 yearstr[sizeof(yearstr) - 1] = (char) 0;
972
973 if (flags & DUK_DATE_FLAG_LOCALTIME) {
974 /* tzoffset seconds are dropped; 16 bits suffice for
975 * time offset in minutes
976 */
977 if (tzoffset >= 0) {
978 duk_small_int_t tmp = tzoffset / 60;
979 DUK_SNPRINTF(tzstr, sizeof(tzstr), "+%02d:%02d", (int) (tmp / 60), (int) (tmp % 60));
980 } else {
981 duk_small_int_t tmp = -tzoffset / 60;
982 DUK_SNPRINTF(tzstr, sizeof(tzstr), "-%02d:%02d", (int) (tmp / 60), (int) (tmp % 60));
983 }
984 tzstr[sizeof(tzstr) - 1] = (char) 0;
985 } else {
986 tzstr[0] = DUK_ASC_UC_Z;
987 tzstr[1] = (char) 0;
988 }
989
990 /* Unlike year, the other parts fit into 16 bits so %d format
991 * is portable.
992 */
993 if ((flags & DUK_DATE_FLAG_TOSTRING_DATE) && (flags & DUK_DATE_FLAG_TOSTRING_TIME)) {
994 DUK_SPRINTF((char *) out_buf, "%s-%02d-%02d%c%02d:%02d:%02d.%03d%s",
995 (const char *) yearstr, (int) parts[DUK_DATE_IDX_MONTH], (int) parts[DUK_DATE_IDX_DAY], (int) sep,
996 (int) parts[DUK_DATE_IDX_HOUR], (int) parts[DUK_DATE_IDX_MINUTE],
997 (int) parts[DUK_DATE_IDX_SECOND], (int) parts[DUK_DATE_IDX_MILLISECOND], (const char *) tzstr);
998 } else if (flags & DUK_DATE_FLAG_TOSTRING_DATE) {
999 DUK_SPRINTF((char *) out_buf, "%s-%02d-%02d",
1000 (const char *) yearstr, (int) parts[DUK_DATE_IDX_MONTH], (int) parts[DUK_DATE_IDX_DAY]);
1001 } else {
1002 DUK_ASSERT(flags & DUK_DATE_FLAG_TOSTRING_TIME);
1003 DUK_SPRINTF((char *) out_buf, "%02d:%02d:%02d.%03d%s",
1004 (int) parts[DUK_DATE_IDX_HOUR], (int) parts[DUK_DATE_IDX_MINUTE],
1005 (int) parts[DUK_DATE_IDX_SECOND], (int) parts[DUK_DATE_IDX_MILLISECOND],
1006 (const char *) tzstr);
1007 }
1008 }
1009
1010 /* Helper for string conversion calls: check 'this' binding, get the
1011 * internal time value, and format date and/or time in a few formats.
1012 * Return value allows tail calls.
1013 */
duk__to_string_helper(duk_context * ctx,duk_small_uint_t flags)1014 DUK_LOCAL duk_ret_t duk__to_string_helper(duk_context *ctx, duk_small_uint_t flags) {
1015 duk_double_t d;
1016 duk_int_t parts[DUK_DATE_IDX_NUM_PARTS];
1017 duk_int_t tzoffset; /* seconds, doesn't fit into 16 bits */
1018 duk_bool_t rc;
1019 duk_uint8_t buf[DUK_BI_DATE_ISO8601_BUFSIZE];
1020
1021 DUK_UNREF(rc); /* unreferenced with some options */
1022
1023 d = duk__push_this_get_timeval_tzoffset(ctx, flags, &tzoffset);
1024 if (DUK_ISNAN(d)) {
1025 duk_push_hstring_stridx(ctx, DUK_STRIDX_INVALID_DATE);
1026 return 1;
1027 }
1028 DUK_ASSERT(DUK_ISFINITE(d));
1029
1030 /* formatters always get one-based month/day-of-month */
1031 duk_bi_date_timeval_to_parts(d, parts, NULL, DUK_DATE_FLAG_ONEBASED);
1032 DUK_ASSERT(parts[DUK_DATE_IDX_MONTH] >= 1 && parts[DUK_DATE_IDX_MONTH] <= 12);
1033 DUK_ASSERT(parts[DUK_DATE_IDX_DAY] >= 1 && parts[DUK_DATE_IDX_DAY] <= 31);
1034
1035 if (flags & DUK_DATE_FLAG_TOSTRING_LOCALE) {
1036 /* try locale specific formatter; if it refuses to format the
1037 * string, fall back to an ISO 8601 formatted value in local
1038 * time.
1039 */
1040 #if defined(DUK_USE_DATE_FORMAT_STRING)
1041 /* Contract, either:
1042 * - Push string to value stack and return 1
1043 * - Don't push anything and return 0
1044 */
1045
1046 rc = DUK_USE_DATE_FORMAT_STRING(ctx, parts, tzoffset, flags);
1047 if (rc != 0) {
1048 return 1;
1049 }
1050 #else
1051 /* No locale specific formatter; this is OK, we fall back
1052 * to ISO 8601.
1053 */
1054 #endif
1055 }
1056
1057 /* Different calling convention than above used because the helper
1058 * is shared.
1059 */
1060 duk__format_parts_iso8601(parts, tzoffset, flags, buf);
1061 duk_push_string(ctx, (const char *) buf);
1062 return 1;
1063 }
1064
1065 /* Helper for component getter calls: check 'this' binding, get the
1066 * internal time value, split it into parts (either as UTC time or
1067 * local time), push a specified component as a return value to the
1068 * value stack and return 1 (caller can then tail call us).
1069 */
duk__get_part_helper(duk_context * ctx,duk_small_uint_t flags_and_idx)1070 DUK_LOCAL duk_ret_t duk__get_part_helper(duk_context *ctx, duk_small_uint_t flags_and_idx) {
1071 duk_double_t d;
1072 duk_int_t parts[DUK_DATE_IDX_NUM_PARTS];
1073 duk_small_uint_t idx_part = (duk_small_uint_t) (flags_and_idx >> DUK_DATE_FLAG_VALUE_SHIFT); /* unpack args */
1074
1075 DUK_ASSERT_DISABLE(idx_part >= 0); /* unsigned */
1076 DUK_ASSERT(idx_part < DUK_DATE_IDX_NUM_PARTS);
1077
1078 d = duk__push_this_get_timeval(ctx, flags_and_idx);
1079 if (DUK_ISNAN(d)) {
1080 duk_push_nan(ctx);
1081 return 1;
1082 }
1083 DUK_ASSERT(DUK_ISFINITE(d));
1084
1085 duk_bi_date_timeval_to_parts(d, parts, NULL, flags_and_idx); /* no need to mask idx portion */
1086
1087 /* Setter APIs detect special year numbers (0...99) and apply a +1900
1088 * only in certain cases. The legacy getYear() getter applies -1900
1089 * unconditionally.
1090 */
1091 duk_push_int(ctx, (flags_and_idx & DUK_DATE_FLAG_SUB1900) ? parts[idx_part] - 1900 : parts[idx_part]);
1092 return 1;
1093 }
1094
1095 /* Helper for component setter calls: check 'this' binding, get the
1096 * internal time value, split it into parts (either as UTC time or
1097 * local time), modify one or more components as specified, recompute
1098 * the time value, set it as the internal value. Finally, push the
1099 * new time value as a return value to the value stack and return 1
1100 * (caller can then tail call us).
1101 */
duk__set_part_helper(duk_context * ctx,duk_small_uint_t flags_and_maxnargs)1102 DUK_LOCAL duk_ret_t duk__set_part_helper(duk_context *ctx, duk_small_uint_t flags_and_maxnargs) {
1103 duk_double_t d;
1104 duk_int_t parts[DUK_DATE_IDX_NUM_PARTS];
1105 duk_double_t dparts[DUK_DATE_IDX_NUM_PARTS];
1106 duk_idx_t nargs;
1107 duk_small_uint_t maxnargs = (duk_small_uint_t) (flags_and_maxnargs >> DUK_DATE_FLAG_VALUE_SHIFT); /* unpack args */
1108 duk_small_uint_t idx_first, idx;
1109 duk_small_uint_t i;
1110
1111 nargs = duk_get_top(ctx);
1112 d = duk__push_this_get_timeval(ctx, flags_and_maxnargs);
1113 DUK_ASSERT(DUK_ISFINITE(d) || DUK_ISNAN(d));
1114
1115 if (DUK_ISFINITE(d)) {
1116 duk_bi_date_timeval_to_parts(d, parts, dparts, flags_and_maxnargs);
1117 } else {
1118 /* NaN timevalue: we need to coerce the arguments, but
1119 * the resulting internal timestamp needs to remain NaN.
1120 * This works but is not pretty: parts and dparts will
1121 * be partially uninitialized, but we only write to them.
1122 */
1123 }
1124
1125 /*
1126 * Determining which datetime components to overwrite based on
1127 * stack arguments is a bit complicated, but important to factor
1128 * out from setters themselves for compactness.
1129 *
1130 * If DUK_DATE_FLAG_TIMESETTER, maxnargs indicates setter type:
1131 *
1132 * 1 -> millisecond
1133 * 2 -> second, [millisecond]
1134 * 3 -> minute, [second], [millisecond]
1135 * 4 -> hour, [minute], [second], [millisecond]
1136 *
1137 * Else:
1138 *
1139 * 1 -> date
1140 * 2 -> month, [date]
1141 * 3 -> year, [month], [date]
1142 *
1143 * By comparing nargs and maxnargs (and flags) we know which
1144 * components to override. We rely on part index ordering.
1145 */
1146
1147 if (flags_and_maxnargs & DUK_DATE_FLAG_TIMESETTER) {
1148 DUK_ASSERT(maxnargs >= 1 && maxnargs <= 4);
1149 idx_first = DUK_DATE_IDX_MILLISECOND - (maxnargs - 1);
1150 } else {
1151 DUK_ASSERT(maxnargs >= 1 && maxnargs <= 3);
1152 idx_first = DUK_DATE_IDX_DAY - (maxnargs - 1);
1153 }
1154 DUK_ASSERT_DISABLE(idx_first >= 0); /* unsigned */
1155 DUK_ASSERT(idx_first < DUK_DATE_IDX_NUM_PARTS);
1156
1157 for (i = 0; i < maxnargs; i++) {
1158 if ((duk_idx_t) i >= nargs) {
1159 /* no argument given -> leave components untouched */
1160 break;
1161 }
1162 idx = idx_first + i;
1163 DUK_ASSERT_DISABLE(idx >= 0); /* unsigned */
1164 DUK_ASSERT(idx < DUK_DATE_IDX_NUM_PARTS);
1165
1166 if (idx == DUK_DATE_IDX_YEAR && (flags_and_maxnargs & DUK_DATE_FLAG_YEAR_FIXUP)) {
1167 duk__twodigit_year_fixup(ctx, (duk_idx_t) i);
1168 }
1169
1170 dparts[idx] = duk_to_number(ctx, i);
1171
1172 if (idx == DUK_DATE_IDX_DAY) {
1173 /* Day-of-month is one-based in the API, but zero-based
1174 * internally, so fix here. Note that month is zero-based
1175 * both in the API and internally.
1176 */
1177 /* SCANBUILD: complains about use of uninitialized values.
1178 * The complaint is correct, but operating in undefined
1179 * values here is intentional in some cases and the caller
1180 * ignores the results.
1181 */
1182 dparts[idx] -= 1.0;
1183 }
1184 }
1185
1186 /* Leaves new timevalue on stack top and returns 1, which is correct
1187 * for part setters.
1188 */
1189 if (DUK_ISFINITE(d)) {
1190 return duk__set_this_timeval_from_dparts(ctx, dparts, flags_and_maxnargs);
1191 } else {
1192 /* Internal timevalue is already NaN, so don't touch it. */
1193 duk_push_nan(ctx);
1194 return 1;
1195 }
1196 }
1197
1198 /* Apply ToNumber() to specified index; if ToInteger(val) in [0,99], add
1199 * 1900 and replace value at idx_val.
1200 */
duk__twodigit_year_fixup(duk_context * ctx,duk_idx_t idx_val)1201 DUK_LOCAL void duk__twodigit_year_fixup(duk_context *ctx, duk_idx_t idx_val) {
1202 duk_double_t d;
1203
1204 /* XXX: idx_val would fit into 16 bits, but using duk_small_uint_t
1205 * might not generate better code due to casting.
1206 */
1207
1208 /* E5 Sections 15.9.3.1, B.2.4, B.2.5 */
1209 duk_to_number(ctx, idx_val);
1210 if (duk_is_nan(ctx, idx_val)) {
1211 return;
1212 }
1213 duk_dup(ctx, idx_val);
1214 duk_to_int(ctx, -1);
1215 d = duk_get_number(ctx, -1); /* get as double to handle huge numbers correctly */
1216 if (d >= 0.0 && d <= 99.0) {
1217 d += 1900.0;
1218 duk_push_number(ctx, d);
1219 duk_replace(ctx, idx_val);
1220 }
1221 duk_pop(ctx);
1222 }
1223
1224 /* Set datetime parts from stack arguments, defaulting any missing values.
1225 * Day-of-week is not set; it is not required when setting the time value.
1226 */
duk__set_parts_from_args(duk_context * ctx,duk_double_t * dparts,duk_idx_t nargs)1227 DUK_LOCAL void duk__set_parts_from_args(duk_context *ctx, duk_double_t *dparts, duk_idx_t nargs) {
1228 duk_double_t d;
1229 duk_small_uint_t i;
1230 duk_small_uint_t idx;
1231
1232 /* Causes a ToNumber() coercion, but doesn't break coercion order since
1233 * year is coerced first anyway.
1234 */
1235 duk__twodigit_year_fixup(ctx, 0);
1236
1237 /* There are at most 7 args, but we use 8 here so that also
1238 * DUK_DATE_IDX_WEEKDAY gets initialized (to zero) to avoid the potential
1239 * for any Valgrind gripes later.
1240 */
1241 for (i = 0; i < 8; i++) {
1242 /* Note: rely on index ordering */
1243 idx = DUK_DATE_IDX_YEAR + i;
1244 if ((duk_idx_t) i < nargs) {
1245 d = duk_to_number(ctx, (duk_idx_t) i);
1246 if (idx == DUK_DATE_IDX_DAY) {
1247 /* Convert day from one-based to zero-based (internal). This may
1248 * cause the day part to be negative, which is OK.
1249 */
1250 d -= 1.0;
1251 }
1252 } else {
1253 /* All components default to 0 except day-of-month which defaults
1254 * to 1. However, because our internal day-of-month is zero-based,
1255 * it also defaults to zero here.
1256 */
1257 d = 0.0;
1258 }
1259 dparts[idx] = d;
1260 }
1261
1262 DUK_DDD(DUK_DDDPRINT("parts from args -> %lf %lf %lf %lf %lf %lf %lf %lf",
1263 (double) dparts[0], (double) dparts[1],
1264 (double) dparts[2], (double) dparts[3],
1265 (double) dparts[4], (double) dparts[5],
1266 (double) dparts[6], (double) dparts[7]));
1267 }
1268
1269 /*
1270 * Helper to format a time value into caller buffer, used by logging.
1271 * 'out_buf' must be at least DUK_BI_DATE_ISO8601_BUFSIZE long.
1272 */
1273
duk_bi_date_format_timeval(duk_double_t timeval,duk_uint8_t * out_buf)1274 DUK_INTERNAL void duk_bi_date_format_timeval(duk_double_t timeval, duk_uint8_t *out_buf) {
1275 duk_int_t parts[DUK_DATE_IDX_NUM_PARTS];
1276
1277 duk_bi_date_timeval_to_parts(timeval,
1278 parts,
1279 NULL,
1280 DUK_DATE_FLAG_ONEBASED);
1281
1282 duk__format_parts_iso8601(parts,
1283 0 /*tzoffset*/,
1284 DUK_DATE_FLAG_TOSTRING_DATE |
1285 DUK_DATE_FLAG_TOSTRING_TIME |
1286 DUK_DATE_FLAG_SEP_T /*flags*/,
1287 out_buf);
1288 }
1289
1290 /*
1291 * Indirect magic value lookup for Date methods.
1292 *
1293 * Date methods don't put their control flags into the function magic value
1294 * because they wouldn't fit into a LIGHTFUNC's magic field. Instead, the
1295 * magic value is set to an index pointing to the array of control flags
1296 * below.
1297 *
1298 * This must be kept in strict sync with genbuiltins.py!
1299 */
1300
1301 static duk_uint16_t duk__date_magics[] = {
1302 /* 0: toString */
1303 DUK_DATE_FLAG_TOSTRING_DATE + DUK_DATE_FLAG_TOSTRING_TIME + DUK_DATE_FLAG_LOCALTIME,
1304
1305 /* 1: toDateString */
1306 DUK_DATE_FLAG_TOSTRING_DATE + DUK_DATE_FLAG_LOCALTIME,
1307
1308 /* 2: toTimeString */
1309 DUK_DATE_FLAG_TOSTRING_TIME + DUK_DATE_FLAG_LOCALTIME,
1310
1311 /* 3: toLocaleString */
1312 DUK_DATE_FLAG_TOSTRING_DATE + DUK_DATE_FLAG_TOSTRING_TIME + DUK_DATE_FLAG_TOSTRING_LOCALE + DUK_DATE_FLAG_LOCALTIME,
1313
1314 /* 4: toLocaleDateString */
1315 DUK_DATE_FLAG_TOSTRING_DATE + DUK_DATE_FLAG_TOSTRING_LOCALE + DUK_DATE_FLAG_LOCALTIME,
1316
1317 /* 5: toLocaleTimeString */
1318 DUK_DATE_FLAG_TOSTRING_TIME + DUK_DATE_FLAG_TOSTRING_LOCALE + DUK_DATE_FLAG_LOCALTIME,
1319
1320 /* 6: toUTCString */
1321 DUK_DATE_FLAG_TOSTRING_DATE + DUK_DATE_FLAG_TOSTRING_TIME,
1322
1323 /* 7: toISOString */
1324 DUK_DATE_FLAG_TOSTRING_DATE + DUK_DATE_FLAG_TOSTRING_TIME + DUK_DATE_FLAG_NAN_TO_RANGE_ERROR + DUK_DATE_FLAG_SEP_T,
1325
1326 /* 8: getFullYear */
1327 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_YEAR << DUK_DATE_FLAG_VALUE_SHIFT),
1328
1329 /* 9: getUTCFullYear */
1330 0 + (DUK_DATE_IDX_YEAR << DUK_DATE_FLAG_VALUE_SHIFT),
1331
1332 /* 10: getMonth */
1333 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_MONTH << DUK_DATE_FLAG_VALUE_SHIFT),
1334
1335 /* 11: getUTCMonth */
1336 0 + (DUK_DATE_IDX_MONTH << DUK_DATE_FLAG_VALUE_SHIFT),
1337
1338 /* 12: getDate */
1339 DUK_DATE_FLAG_ONEBASED + DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_DAY << DUK_DATE_FLAG_VALUE_SHIFT),
1340
1341 /* 13: getUTCDate */
1342 DUK_DATE_FLAG_ONEBASED + (DUK_DATE_IDX_DAY << DUK_DATE_FLAG_VALUE_SHIFT),
1343
1344 /* 14: getDay */
1345 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_WEEKDAY << DUK_DATE_FLAG_VALUE_SHIFT),
1346
1347 /* 15: getUTCDay */
1348 0 + (DUK_DATE_IDX_WEEKDAY << DUK_DATE_FLAG_VALUE_SHIFT),
1349
1350 /* 16: getHours */
1351 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_HOUR << DUK_DATE_FLAG_VALUE_SHIFT),
1352
1353 /* 17: getUTCHours */
1354 0 + (DUK_DATE_IDX_HOUR << DUK_DATE_FLAG_VALUE_SHIFT),
1355
1356 /* 18: getMinutes */
1357 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_MINUTE << DUK_DATE_FLAG_VALUE_SHIFT),
1358
1359 /* 19: getUTCMinutes */
1360 0 + (DUK_DATE_IDX_MINUTE << DUK_DATE_FLAG_VALUE_SHIFT),
1361
1362 /* 20: getSeconds */
1363 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_SECOND << DUK_DATE_FLAG_VALUE_SHIFT),
1364
1365 /* 21: getUTCSeconds */
1366 0 + (DUK_DATE_IDX_SECOND << DUK_DATE_FLAG_VALUE_SHIFT),
1367
1368 /* 22: getMilliseconds */
1369 DUK_DATE_FLAG_LOCALTIME + (DUK_DATE_IDX_MILLISECOND << DUK_DATE_FLAG_VALUE_SHIFT),
1370
1371 /* 23: getUTCMilliseconds */
1372 0 + (DUK_DATE_IDX_MILLISECOND << DUK_DATE_FLAG_VALUE_SHIFT),
1373
1374 /* 24: setMilliseconds */
1375 DUK_DATE_FLAG_TIMESETTER + DUK_DATE_FLAG_LOCALTIME + (1 << DUK_DATE_FLAG_VALUE_SHIFT),
1376
1377 /* 25: setUTCMilliseconds */
1378 DUK_DATE_FLAG_TIMESETTER + (1 << DUK_DATE_FLAG_VALUE_SHIFT),
1379
1380 /* 26: setSeconds */
1381 DUK_DATE_FLAG_TIMESETTER + DUK_DATE_FLAG_LOCALTIME + (2 << DUK_DATE_FLAG_VALUE_SHIFT),
1382
1383 /* 27: setUTCSeconds */
1384 DUK_DATE_FLAG_TIMESETTER + (2 << DUK_DATE_FLAG_VALUE_SHIFT),
1385
1386 /* 28: setMinutes */
1387 DUK_DATE_FLAG_TIMESETTER + DUK_DATE_FLAG_LOCALTIME + (3 << DUK_DATE_FLAG_VALUE_SHIFT),
1388
1389 /* 29: setUTCMinutes */
1390 DUK_DATE_FLAG_TIMESETTER + (3 << DUK_DATE_FLAG_VALUE_SHIFT),
1391
1392 /* 30: setHours */
1393 DUK_DATE_FLAG_TIMESETTER + DUK_DATE_FLAG_LOCALTIME + (4 << DUK_DATE_FLAG_VALUE_SHIFT),
1394
1395 /* 31: setUTCHours */
1396 DUK_DATE_FLAG_TIMESETTER + (4 << DUK_DATE_FLAG_VALUE_SHIFT),
1397
1398 /* 32: setDate */
1399 DUK_DATE_FLAG_LOCALTIME + (1 << DUK_DATE_FLAG_VALUE_SHIFT),
1400
1401 /* 33: setUTCDate */
1402 0 + (1 << DUK_DATE_FLAG_VALUE_SHIFT),
1403
1404 /* 34: setMonth */
1405 DUK_DATE_FLAG_LOCALTIME + (2 << DUK_DATE_FLAG_VALUE_SHIFT),
1406
1407 /* 35: setUTCMonth */
1408 0 + (2 << DUK_DATE_FLAG_VALUE_SHIFT),
1409
1410 /* 36: setFullYear */
1411 DUK_DATE_FLAG_NAN_TO_ZERO + DUK_DATE_FLAG_LOCALTIME + (3 << DUK_DATE_FLAG_VALUE_SHIFT),
1412
1413 /* 37: setUTCFullYear */
1414 DUK_DATE_FLAG_NAN_TO_ZERO + (3 << DUK_DATE_FLAG_VALUE_SHIFT),
1415
1416 /* 38: getYear */
1417 DUK_DATE_FLAG_LOCALTIME + DUK_DATE_FLAG_SUB1900 + (DUK_DATE_IDX_YEAR << DUK_DATE_FLAG_VALUE_SHIFT),
1418
1419 /* 39: setYear */
1420 DUK_DATE_FLAG_NAN_TO_ZERO + DUK_DATE_FLAG_YEAR_FIXUP + (3 << DUK_DATE_FLAG_VALUE_SHIFT),
1421 };
1422
duk__date_get_indirect_magic(duk_context * ctx)1423 DUK_LOCAL duk_small_uint_t duk__date_get_indirect_magic(duk_context *ctx) {
1424 duk_small_int_t magicidx = (duk_small_uint_t) duk_get_current_magic(ctx);
1425 DUK_ASSERT(magicidx >= 0 && magicidx < (duk_small_int_t) (sizeof(duk__date_magics) / sizeof(duk_uint16_t)));
1426 return (duk_small_uint_t) duk__date_magics[magicidx];
1427 }
1428
1429 /*
1430 * Constructor calls
1431 */
1432
duk_bi_date_constructor(duk_context * ctx)1433 DUK_INTERNAL duk_ret_t duk_bi_date_constructor(duk_context *ctx) {
1434 duk_idx_t nargs = duk_get_top(ctx);
1435 duk_bool_t is_cons = duk_is_constructor_call(ctx);
1436 duk_double_t dparts[DUK_DATE_IDX_NUM_PARTS];
1437 duk_double_t d;
1438
1439 DUK_DDD(DUK_DDDPRINT("Date constructor, nargs=%ld, is_cons=%ld", (long) nargs, (long) is_cons));
1440
1441 duk_push_object_helper(ctx,
1442 DUK_HOBJECT_FLAG_EXTENSIBLE |
1443 DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_DATE),
1444 DUK_BIDX_DATE_PROTOTYPE);
1445
1446 /* Unlike most built-ins, the internal [[PrimitiveValue]] of a Date
1447 * is mutable.
1448 */
1449
1450 if (nargs == 0 || !is_cons) {
1451 d = duk__timeclip(DUK_USE_DATE_GET_NOW(ctx));
1452 duk_push_number(ctx, d);
1453 duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_W);
1454 if (!is_cons) {
1455 /* called as a normal function: return new Date().toString() */
1456 duk_to_string(ctx, -1);
1457 }
1458 return 1;
1459 } else if (nargs == 1) {
1460 duk_to_primitive(ctx, 0, DUK_HINT_NONE);
1461 if (duk_is_string(ctx, 0)) {
1462 duk__parse_string(ctx, duk_to_string(ctx, 0));
1463 duk_replace(ctx, 0); /* may be NaN */
1464 }
1465 d = duk__timeclip(duk_to_number(ctx, 0));
1466 duk_push_number(ctx, d);
1467 duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_W);
1468 return 1;
1469 }
1470
1471 duk__set_parts_from_args(ctx, dparts, nargs);
1472
1473 /* Parts are in local time, convert when setting. */
1474
1475 (void) duk__set_this_timeval_from_dparts(ctx, dparts, DUK_DATE_FLAG_LOCALTIME /*flags*/); /* -> [ ... this timeval ] */
1476 duk_pop(ctx); /* -> [ ... this ] */
1477 return 1;
1478 }
1479
duk_bi_date_constructor_parse(duk_context * ctx)1480 DUK_INTERNAL duk_ret_t duk_bi_date_constructor_parse(duk_context *ctx) {
1481 return duk__parse_string(ctx, duk_to_string(ctx, 0));
1482 }
1483
duk_bi_date_constructor_utc(duk_context * ctx)1484 DUK_INTERNAL duk_ret_t duk_bi_date_constructor_utc(duk_context *ctx) {
1485 duk_idx_t nargs = duk_get_top(ctx);
1486 duk_double_t dparts[DUK_DATE_IDX_NUM_PARTS];
1487 duk_double_t d;
1488
1489 /* Behavior for nargs < 2 is implementation dependent: currently we'll
1490 * set a NaN time value (matching V8 behavior) in this case.
1491 */
1492
1493 if (nargs < 2) {
1494 duk_push_nan(ctx);
1495 } else {
1496 duk__set_parts_from_args(ctx, dparts, nargs);
1497 d = duk_bi_date_get_timeval_from_dparts(dparts, 0 /*flags*/);
1498 duk_push_number(ctx, d);
1499 }
1500 return 1;
1501 }
1502
duk_bi_date_constructor_now(duk_context * ctx)1503 DUK_INTERNAL duk_ret_t duk_bi_date_constructor_now(duk_context *ctx) {
1504 duk_double_t d;
1505
1506 d = DUK_USE_DATE_GET_NOW(ctx);
1507 DUK_ASSERT(duk__timeclip(d) == d); /* TimeClip() should never be necessary */
1508 duk_push_number(ctx, d);
1509 return 1;
1510 }
1511
1512 /*
1513 * String/JSON conversions
1514 *
1515 * Human readable conversions are now basically ISO 8601 with a space
1516 * (instead of 'T') as the date/time separator. This is a good baseline
1517 * and is platform independent.
1518 *
1519 * A shared native helper to provide many conversions. Magic value contains
1520 * a set of flags. The helper provides:
1521 *
1522 * toString()
1523 * toDateString()
1524 * toTimeString()
1525 * toLocaleString()
1526 * toLocaleDateString()
1527 * toLocaleTimeString()
1528 * toUTCString()
1529 * toISOString()
1530 *
1531 * Notes:
1532 *
1533 * - Date.prototype.toGMTString() and Date.prototype.toUTCString() are
1534 * required to be the same Ecmascript function object (!), so it is
1535 * omitted from here.
1536 *
1537 * - Date.prototype.toUTCString(): E5.1 specification does not require a
1538 * specific format, but result should be human readable. The
1539 * specification suggests using ISO 8601 format with a space (instead
1540 * of 'T') separator if a more human readable format is not available.
1541 *
1542 * - Date.prototype.toISOString(): unlike other conversion functions,
1543 * toISOString() requires a RangeError for invalid date values.
1544 */
1545
duk_bi_date_prototype_tostring_shared(duk_context * ctx)1546 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_tostring_shared(duk_context *ctx) {
1547 duk_small_uint_t flags = duk__date_get_indirect_magic(ctx);
1548 return duk__to_string_helper(ctx, flags);
1549 }
1550
duk_bi_date_prototype_value_of(duk_context * ctx)1551 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_value_of(duk_context *ctx) {
1552 /* This native function is also used for Date.prototype.getTime()
1553 * as their behavior is identical.
1554 */
1555
1556 duk_double_t d = duk__push_this_get_timeval(ctx, 0 /*flags*/); /* -> [ this ] */
1557 DUK_ASSERT(DUK_ISFINITE(d) || DUK_ISNAN(d));
1558 duk_push_number(ctx, d);
1559 return 1;
1560 }
1561
duk_bi_date_prototype_to_json(duk_context * ctx)1562 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_to_json(duk_context *ctx) {
1563 /* Note: toJSON() is a generic function which works even if 'this'
1564 * is not a Date. The sole argument is ignored.
1565 */
1566
1567 duk_push_this(ctx);
1568 duk_to_object(ctx, -1);
1569
1570 duk_dup_top(ctx);
1571 duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
1572 if (duk_is_number(ctx, -1)) {
1573 duk_double_t d = duk_get_number(ctx, -1);
1574 if (!DUK_ISFINITE(d)) {
1575 duk_push_null(ctx);
1576 return 1;
1577 }
1578 }
1579 duk_pop(ctx);
1580
1581 duk_get_prop_stridx(ctx, -1, DUK_STRIDX_TO_ISO_STRING);
1582 duk_dup(ctx, -2); /* -> [ O toIsoString O ] */
1583 duk_call_method(ctx, 0);
1584 return 1;
1585 }
1586
1587 /*
1588 * Getters.
1589 *
1590 * Implementing getters is quite easy. The internal time value is either
1591 * NaN, or represents milliseconds (without fractions) from Jan 1, 1970.
1592 * The internal time value can be converted to integer parts, and each
1593 * part will be normalized and will fit into a 32-bit signed integer.
1594 *
1595 * A shared native helper to provide all getters. Magic value contains
1596 * a set of flags and also packs the date component index argument. The
1597 * helper provides:
1598 *
1599 * getFullYear()
1600 * getUTCFullYear()
1601 * getMonth()
1602 * getUTCMonth()
1603 * getDate()
1604 * getUTCDate()
1605 * getDay()
1606 * getUTCDay()
1607 * getHours()
1608 * getUTCHours()
1609 * getMinutes()
1610 * getUTCMinutes()
1611 * getSeconds()
1612 * getUTCSeconds()
1613 * getMilliseconds()
1614 * getUTCMilliseconds()
1615 * getYear()
1616 *
1617 * Notes:
1618 *
1619 * - Date.prototype.getDate(): 'date' means day-of-month, and is
1620 * zero-based in internal calculations but public API expects it to
1621 * be one-based.
1622 *
1623 * - Date.prototype.getTime() and Date.prototype.valueOf() have identical
1624 * behavior. They have separate function objects, but share the same C
1625 * function (duk_bi_date_prototype_value_of).
1626 */
1627
duk_bi_date_prototype_get_shared(duk_context * ctx)1628 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_get_shared(duk_context *ctx) {
1629 duk_small_uint_t flags_and_idx = duk__date_get_indirect_magic(ctx);
1630 return duk__get_part_helper(ctx, flags_and_idx);
1631 }
1632
duk_bi_date_prototype_get_timezone_offset(duk_context * ctx)1633 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_get_timezone_offset(duk_context *ctx) {
1634 /*
1635 * Return (t - LocalTime(t)) in minutes:
1636 *
1637 * t - LocalTime(t) = t - (t + LocalTZA + DaylightSavingTA(t))
1638 * = -(LocalTZA + DaylightSavingTA(t))
1639 *
1640 * where DaylightSavingTA() is checked for time 't'.
1641 *
1642 * Note that the sign of the result is opposite to common usage,
1643 * e.g. for EE(S)T which normally is +2h or +3h from UTC, this
1644 * function returns -120 or -180.
1645 *
1646 */
1647
1648 duk_double_t d;
1649 duk_int_t tzoffset;
1650
1651 /* Note: DST adjustment is determined using UTC time. */
1652 d = duk__push_this_get_timeval(ctx, 0 /*flags*/);
1653 DUK_ASSERT(DUK_ISFINITE(d) || DUK_ISNAN(d));
1654 if (DUK_ISNAN(d)) {
1655 duk_push_nan(ctx);
1656 } else {
1657 DUK_ASSERT(DUK_ISFINITE(d));
1658 tzoffset = DUK_USE_DATE_GET_LOCAL_TZOFFSET(d);
1659 duk_push_int(ctx, -tzoffset / 60);
1660 }
1661 return 1;
1662 }
1663
1664 /*
1665 * Setters.
1666 *
1667 * Setters are a bit more complicated than getters. Component setters
1668 * break down the current time value into its (normalized) component
1669 * parts, replace one or more components with -unnormalized- new values,
1670 * and the components are then converted back into a time value. As an
1671 * example of using unnormalized values:
1672 *
1673 * var d = new Date(1234567890);
1674 *
1675 * is equivalent to:
1676 *
1677 * var d = new Date(0);
1678 * d.setUTCMilliseconds(1234567890);
1679 *
1680 * A shared native helper to provide almost all setters. Magic value
1681 * contains a set of flags and also packs the "maxnargs" argument. The
1682 * helper provides:
1683 *
1684 * setMilliseconds()
1685 * setUTCMilliseconds()
1686 * setSeconds()
1687 * setUTCSeconds()
1688 * setMinutes()
1689 * setUTCMinutes()
1690 * setHours()
1691 * setUTCHours()
1692 * setDate()
1693 * setUTCDate()
1694 * setMonth()
1695 * setUTCMonth()
1696 * setFullYear()
1697 * setUTCFullYear()
1698 * setYear()
1699 *
1700 * Notes:
1701 *
1702 * - Date.prototype.setYear() (Section B addition): special year check
1703 * is omitted. NaN / Infinity will just flow through and ultimately
1704 * result in a NaN internal time value.
1705 *
1706 * - Date.prototype.setYear() does not have optional arguments for
1707 * setting month and day-in-month (like setFullYear()), but we indicate
1708 * 'maxnargs' to be 3 to get the year written to the correct component
1709 * index in duk__set_part_helper(). The function has nargs == 1, so only
1710 * the year will be set regardless of actual argument count.
1711 */
1712
duk_bi_date_prototype_set_shared(duk_context * ctx)1713 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_set_shared(duk_context *ctx) {
1714 duk_small_uint_t flags_and_maxnargs = duk__date_get_indirect_magic(ctx);
1715 return duk__set_part_helper(ctx, flags_and_maxnargs);
1716 }
1717
duk_bi_date_prototype_set_time(duk_context * ctx)1718 DUK_INTERNAL duk_ret_t duk_bi_date_prototype_set_time(duk_context *ctx) {
1719 duk_double_t d;
1720
1721 (void) duk__push_this_get_timeval(ctx, 0 /*flags*/); /* -> [ timeval this ] */
1722 d = duk__timeclip(duk_to_number(ctx, 0));
1723 duk_push_number(ctx, d);
1724 duk_dup_top(ctx);
1725 duk_put_prop_stridx(ctx, -3, DUK_STRIDX_INT_VALUE); /* -> [ timeval this timeval ] */
1726
1727 return 1;
1728 }
1729