1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <chre.h>
18 #include <cinttypes>
19
20 #include "chre/util/macros.h"
21 #include "chre/util/nanoapp/log.h"
22 #include "chre/util/time.h"
23
24 #define LOG_TAG "[SensorWorld]"
25
26 #ifdef CHRE_NANOAPP_INTERNAL
27 namespace chre {
28 namespace {
29 #endif // CHRE_NANOAPP_INTERNAL
30
31 using chre::kOneMillisecondInNanoseconds;
32 using chre::Milliseconds;
33 using chre::Seconds;
34
35 namespace {
36
37 //! Enable BreakIt test mode.
38 // In BreakIt test mode, a timer will be set periodically to randomly
39 // enable/disable each sensor.
40 constexpr bool kBreakIt = false;
41 constexpr Milliseconds kBreakItPeriod = Milliseconds(2000);
42
43 //! Whether to enable sensor event logging or not.
44 constexpr bool kEnableSensorEventLogging = true;
45
46 //! Enable/disable all sensors by default.
47 // This allows disabling all sensens by default and enabling only targeted
48 // sensors for testing by locally overriding 'enable' field in SensorState.
49 // Note that enabling BreakIt test disables all sensors at init by default.
50 constexpr bool kEnableDefault = !kBreakIt;
51
52 struct SensorState {
53 const uint8_t type;
54 const uint8_t sensorIndex;
55 uint32_t handle;
56 bool isInitialized;
57 bool enable;
58 uint64_t interval; // nsec
59 uint64_t latency; // nsec
60 chreSensorInfo info;
61 };
62
63 SensorState sensors[] = {
64 {
65 .type = CHRE_SENSOR_TYPE_ACCELEROMETER,
66 .sensorIndex = 0,
67 .handle = 0,
68 .isInitialized = false,
69 .enable = kEnableDefault,
70 .interval = Milliseconds(80).toRawNanoseconds(),
71 .latency = Seconds(4).toRawNanoseconds(),
72 .info = {},
73 },
74 {
75 .type = CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT,
76 .sensorIndex = 0,
77 .handle = 0,
78 .isInitialized = false,
79 .enable = false, // InstantMotion is triggered by Prox
80 .interval = CHRE_SENSOR_INTERVAL_DEFAULT,
81 .latency = CHRE_SENSOR_LATENCY_DEFAULT,
82 .info = {},
83 },
84 {
85 .type = CHRE_SENSOR_TYPE_STATIONARY_DETECT,
86 .sensorIndex = 0,
87 .handle = 0,
88 .isInitialized = false,
89 .enable = false, // StationaryDetect is triggered by Prox
90 .interval = CHRE_SENSOR_INTERVAL_DEFAULT,
91 .latency = CHRE_SENSOR_LATENCY_DEFAULT,
92 .info = {},
93 },
94 {
95 .type = CHRE_SENSOR_TYPE_GYROSCOPE,
96 .sensorIndex = 0,
97 .handle = 0,
98 .isInitialized = false,
99 .enable = kEnableDefault,
100 .interval = Milliseconds(80).toRawNanoseconds(),
101 .latency = Seconds(4).toRawNanoseconds(),
102 .info = {},
103 },
104 {
105 .type = CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD,
106 .sensorIndex = 0,
107 .handle = 0,
108 .isInitialized = false,
109 .enable = kEnableDefault,
110 .interval = Milliseconds(80).toRawNanoseconds(),
111 .latency = Seconds(4).toRawNanoseconds(),
112 .info = {},
113 },
114 {
115 .type = CHRE_SENSOR_TYPE_PRESSURE,
116 .sensorIndex = 0,
117 .handle = 0,
118 .isInitialized = false,
119 .enable = kEnableDefault,
120 .interval = Milliseconds(200).toRawNanoseconds(),
121 .latency = Seconds(4).toRawNanoseconds(),
122 .info = {},
123 },
124 {
125 .type = CHRE_SENSOR_TYPE_LIGHT,
126 .sensorIndex = 0,
127 .handle = 0,
128 .isInitialized = false,
129 .enable = kEnableDefault,
130 .interval = Milliseconds(200).toRawNanoseconds(),
131 .latency = 0,
132 .info = {},
133 },
134 {
135 .type = CHRE_SENSOR_TYPE_PROXIMITY,
136 .sensorIndex = 0,
137 .handle = 0,
138 .isInitialized = false,
139 .enable = kEnableDefault,
140 .interval = Milliseconds(200).toRawNanoseconds(),
141 .latency = 0,
142 .info = {},
143 },
144 {
145 .type = CHRE_SENSOR_TYPE_STEP_DETECT,
146 .sensorIndex = 0,
147 .handle = 0,
148 .isInitialized = false,
149 .enable = kEnableDefault,
150 .interval = CHRE_SENSOR_INTERVAL_DEFAULT,
151 .latency = CHRE_SENSOR_LATENCY_ASAP,
152 .info = {},
153 },
154 {
155 .type = CHRE_SENSOR_TYPE_STEP_COUNTER,
156 .sensorIndex = 0,
157 .handle = 0,
158 .isInitialized = false,
159 .enable = kEnableDefault,
160 .interval = CHRE_SENSOR_INTERVAL_DEFAULT,
161 .latency = CHRE_SENSOR_LATENCY_ASAP,
162 .info = {},
163 },
164 {
165 .type = CHRE_SENSOR_TYPE_ACCELEROMETER_TEMPERATURE,
166 .sensorIndex = 0,
167 .handle = 0,
168 .isInitialized = false,
169 .enable = kEnableDefault,
170 .interval = Seconds(2).toRawNanoseconds(),
171 .latency = 0,
172 .info = {},
173 },
174 {
175 .type = CHRE_SENSOR_TYPE_GYROSCOPE_TEMPERATURE,
176 .sensorIndex = 0,
177 .handle = 0,
178 .isInitialized = false,
179 .enable = kEnableDefault,
180 .interval = Seconds(2).toRawNanoseconds(),
181 .latency = 0,
182 .info = {},
183 },
184 {
185 .type = CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD_TEMPERATURE,
186 .sensorIndex = 0,
187 .handle = 0,
188 .isInitialized = false,
189 .enable = kEnableDefault,
190 .interval = Seconds(2).toRawNanoseconds(),
191 .latency = 0,
192 .info = {},
193 },
194 {
195 .type = CHRE_SENSOR_TYPE_UNCALIBRATED_ACCELEROMETER,
196 .sensorIndex = 0,
197 .handle = 0,
198 .isInitialized = false,
199 .enable = kEnableDefault,
200 .interval = Milliseconds(80).toRawNanoseconds(),
201 .latency = Seconds(4).toRawNanoseconds(),
202 .info = {},
203 },
204 {
205 .type = CHRE_SENSOR_TYPE_UNCALIBRATED_GYROSCOPE,
206 .sensorIndex = 0,
207 .handle = 0,
208 .isInitialized = false,
209 .enable = kEnableDefault,
210 .interval = Milliseconds(80).toRawNanoseconds(),
211 .latency = Seconds(4).toRawNanoseconds(),
212 .info = {},
213 },
214 {
215 .type = CHRE_SENSOR_TYPE_UNCALIBRATED_GEOMAGNETIC_FIELD,
216 .sensorIndex = 0,
217 .handle = 0,
218 .isInitialized = false,
219 .enable = kEnableDefault,
220 .interval = Milliseconds(80).toRawNanoseconds(),
221 .latency = Seconds(4).toRawNanoseconds(),
222 .info = {},
223 },
224 };
225
226 uint32_t gBreakItTimerHandle;
227
228 // Conditional logging macro
229 #define CLOGI(fmt, ...) \
230 do { \
231 if (kEnableSensorEventLogging) { \
232 LOGI(fmt, ##__VA_ARGS__); \
233 } \
234 } while (0);
235
236 // Helpers for testing InstantMotion and StationaryDetect
237 enum class MotionMode {
238 Instant,
239 Stationary,
240 };
241
242 // Storage to help access InstantMotion and StationaryDetect sensor handle and
243 // info
244 size_t motionSensorIndices[2];
245 MotionMode motionMode = MotionMode::Instant;
246
getMotionSensorIndex()247 size_t getMotionSensorIndex() {
248 motionMode = (motionMode == MotionMode::Instant) ? MotionMode::Stationary
249 : MotionMode::Instant;
250 return motionSensorIndices[static_cast<size_t>(motionMode)];
251 }
252
253 //! Used to loop through all sensors to query sensor sampling status.
254 size_t statusIndex = 0;
255
256 // Obtains 16-bit psuedo-random numbers.
getNextLfsrState()257 uint16_t getNextLfsrState() {
258 // 15-bit LFSR with feedback polynomial x^15 + x^14 + 1 gives us a
259 // pseudo-random sequence over all 32767 possible values
260 static uint16_t lfsr = 0x1337;
261 uint16_t nextBit = ((lfsr << 14) ^ (lfsr << 13)) & 0x4000;
262 lfsr = nextBit | (lfsr >> 1);
263
264 return lfsr;
265 }
266
getSensorName(uint32_t sensorHandle)267 const char *getSensorName(uint32_t sensorHandle) {
268 for (size_t i = 0; i < ARRAY_SIZE(sensors); i++) {
269 if (sensors[i].handle == sensorHandle) {
270 return sensors[i].info.sensorName;
271 }
272 }
273 return nullptr;
274 }
275
handleTimerEvent(const void * eventData)276 void handleTimerEvent(const void *eventData) {
277 for (size_t i = 0; i < ARRAY_SIZE(sensors); i++) {
278 SensorState &sensor = sensors[i];
279
280 bool enable = getNextLfsrState() & 0x1;
281 if (sensor.isInitialized && sensor.enable != enable) {
282 sensor.enable = enable;
283
284 bool status;
285 if (!enable) {
286 status = chreSensorConfigureModeOnly(sensor.handle,
287 CHRE_SENSOR_CONFIGURE_MODE_DONE);
288 } else {
289 enum chreSensorConfigureMode mode =
290 sensor.info.isOneShot ? CHRE_SENSOR_CONFIGURE_MODE_ONE_SHOT
291 : CHRE_SENSOR_CONFIGURE_MODE_CONTINUOUS;
292 status = chreSensorConfigure(sensor.handle, mode, sensor.interval,
293 sensor.latency);
294 }
295
296 LOGI("Configure [enable %d, status %d]: %s", enable, status,
297 sensor.info.sensorName);
298 }
299 }
300
301 gBreakItTimerHandle = chreTimerSet(kBreakItPeriod.toRawNanoseconds(),
302 nullptr /* data */, true /* oneShot */);
303 }
304
305 } // namespace
306
nanoappStart()307 bool nanoappStart() {
308 LOGI("App started on platform ID %" PRIx64, chreGetPlatformId());
309
310 for (size_t i = 0; i < ARRAY_SIZE(sensors); i++) {
311 SensorState &sensor = sensors[i];
312 sensor.isInitialized =
313 chreSensorFind(sensor.type, sensor.sensorIndex, &sensor.handle);
314 LOGI("Sensor %zu initialized: %s with handle %" PRIu32, i,
315 sensor.isInitialized ? "true" : "false", sensor.handle);
316
317 if (sensor.type == CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT) {
318 motionSensorIndices[static_cast<size_t>(MotionMode::Instant)] = i;
319 } else if (sensor.type == CHRE_SENSOR_TYPE_STATIONARY_DETECT) {
320 motionSensorIndices[static_cast<size_t>(MotionMode::Stationary)] = i;
321 }
322
323 if (sensor.isInitialized) {
324 // Get sensor info
325 chreSensorInfo &info = sensor.info;
326 bool infoStatus = chreGetSensorInfo(sensor.handle, &info);
327 if (infoStatus) {
328 LOGI("SensorInfo: %s, Type=%" PRIu8
329 " OnChange=%d OneShot=%d Passive=%d "
330 "minInterval=%" PRIu64 "nsec",
331 info.sensorName, info.sensorType, info.isOnChange, info.isOneShot,
332 info.supportsPassiveMode, info.minInterval);
333 } else {
334 LOGE("chreGetSensorInfo failed");
335 }
336
337 // Subscribe to sensors
338 if (sensor.enable) {
339 float odrHz = 1e9f / static_cast<float>(sensor.interval);
340 float latencySec = static_cast<float>(sensor.latency) / 1e9f;
341 bool status = chreSensorConfigure(sensor.handle,
342 CHRE_SENSOR_CONFIGURE_MODE_CONTINUOUS,
343 sensor.interval, sensor.latency);
344 LOGI("Requested data: odr %f Hz, latency %f sec, %s", odrHz, latencySec,
345 status ? "success" : "failure");
346 }
347 }
348 }
349
350 // Set timer for BreakIt test.
351 if (kBreakIt) {
352 gBreakItTimerHandle = chreTimerSet(kBreakItPeriod.toRawNanoseconds(),
353 nullptr /* data */, true /* oneShot */);
354 }
355
356 return true;
357 }
358
nanoappHandleEvent(uint32_t senderInstanceId,uint16_t eventType,const void * eventData)359 void nanoappHandleEvent(uint32_t senderInstanceId, uint16_t eventType,
360 const void *eventData) {
361 uint64_t chreTime = chreGetTime();
362 uint64_t sampleTime;
363 switch (eventType) {
364 case CHRE_EVENT_SENSOR_ACCELEROMETER_DATA:
365 case CHRE_EVENT_SENSOR_UNCALIBRATED_ACCELEROMETER_DATA:
366 case CHRE_EVENT_SENSOR_GYROSCOPE_DATA:
367 case CHRE_EVENT_SENSOR_UNCALIBRATED_GYROSCOPE_DATA:
368 case CHRE_EVENT_SENSOR_GEOMAGNETIC_FIELD_DATA:
369 case CHRE_EVENT_SENSOR_UNCALIBRATED_GEOMAGNETIC_FIELD_DATA: {
370 const auto *ev = static_cast<const chreSensorThreeAxisData *>(eventData);
371 const auto header = ev->header;
372 const auto *data = ev->readings;
373 const auto accuracy = header.accuracy;
374 sampleTime = header.baseTimestamp;
375
376 float x = 0, y = 0, z = 0;
377 for (size_t i = 0; i < header.readingCount; i++) {
378 x += data[i].v[0];
379 y += data[i].v[1];
380 z += data[i].v[2];
381 sampleTime += data[i].timestampDelta;
382 }
383 x /= header.readingCount;
384 y /= header.readingCount;
385 z /= header.readingCount;
386
387 CLOGI("%s, %d samples: %f %f %f, accuracy: %u, t=%" PRIu64 " ms",
388 getSensorName(header.sensorHandle), header.readingCount, x, y, z,
389 accuracy, header.baseTimestamp / kOneMillisecondInNanoseconds);
390
391 if (eventType == CHRE_EVENT_SENSOR_UNCALIBRATED_GYROSCOPE_DATA) {
392 CLOGI("UncalGyro time: first %" PRIu64 " last %" PRIu64 " chre %" PRIu64
393 " delta [%" PRId64 ", %" PRId64 "]ms",
394 header.baseTimestamp, sampleTime, chreTime,
395 static_cast<int64_t>(header.baseTimestamp - chreTime) /
396 static_cast<int64_t>(kOneMillisecondInNanoseconds),
397 static_cast<int64_t>(sampleTime - chreTime) /
398 static_cast<int64_t>(kOneMillisecondInNanoseconds));
399 }
400 break;
401 }
402
403 case CHRE_EVENT_SENSOR_PRESSURE_DATA:
404 case CHRE_EVENT_SENSOR_LIGHT_DATA:
405 case CHRE_EVENT_SENSOR_ACCELEROMETER_TEMPERATURE_DATA:
406 case CHRE_EVENT_SENSOR_GYROSCOPE_TEMPERATURE_DATA:
407 case CHRE_EVENT_SENSOR_GEOMAGNETIC_FIELD_TEMPERATURE_DATA: {
408 const auto *ev = static_cast<const chreSensorFloatData *>(eventData);
409 const auto header = ev->header;
410
411 float v = 0;
412 for (size_t i = 0; i < header.readingCount; i++) {
413 v += ev->readings[i].value;
414 }
415 v /= header.readingCount;
416
417 CLOGI("%s, %d samples: %f, accuracy = %u, t=%" PRIu64 " ms",
418 getSensorName(header.sensorHandle), header.readingCount, v,
419 header.accuracy,
420 header.baseTimestamp / kOneMillisecondInNanoseconds);
421 break;
422 }
423
424 case CHRE_EVENT_SENSOR_PROXIMITY_DATA: {
425 const auto *ev = static_cast<const chreSensorByteData *>(eventData);
426 const auto header = ev->header;
427 const auto reading = ev->readings[0];
428 sampleTime = header.baseTimestamp;
429
430 CLOGI("%s, %d samples: isNear %d, invalid %d, accuracy: %u",
431 getSensorName(header.sensorHandle), header.readingCount,
432 reading.isNear, reading.invalid, header.accuracy);
433
434 CLOGI("Prox time: sample %" PRIu64 " chre %" PRIu64 " delta %" PRId64
435 "ms",
436 header.baseTimestamp, chreTime,
437 static_cast<int64_t>(sampleTime - chreTime) / 1000000);
438
439 // Enable InstantMotion and StationaryDetect alternatively on near->far.
440 if (reading.isNear == 0 && !kBreakIt) {
441 size_t motionSensorIndex = getMotionSensorIndex();
442 bool status = chreSensorConfigure(sensors[motionSensorIndex].handle,
443 CHRE_SENSOR_CONFIGURE_MODE_ONE_SHOT,
444 CHRE_SENSOR_INTERVAL_DEFAULT,
445 CHRE_SENSOR_LATENCY_DEFAULT);
446 LOGI("Requested %s: %s", sensors[motionSensorIndex].info.sensorName,
447 status ? "success" : "failure");
448 }
449
450 // Exercise chreGetSensorSamplingStatus on one sensor on near->far.
451 if (sensors[statusIndex].isInitialized && reading.isNear == 0) {
452 struct chreSensorSamplingStatus status;
453 bool success =
454 chreGetSensorSamplingStatus(sensors[statusIndex].handle, &status);
455 LOGI("%s success %d: enabled %d interval %" PRIu64 " latency %" PRIu64,
456 sensors[statusIndex].info.sensorName, success, status.enabled,
457 status.interval, status.latency);
458 }
459 statusIndex = (statusIndex + 1) % ARRAY_SIZE(sensors);
460 break;
461 }
462
463 case CHRE_EVENT_SENSOR_INSTANT_MOTION_DETECT_DATA:
464 case CHRE_EVENT_SENSOR_STATIONARY_DETECT_DATA:
465 case CHRE_EVENT_SENSOR_STEP_DETECT_DATA: {
466 const auto *ev = static_cast<const chreSensorOccurrenceData *>(eventData);
467 const auto header = ev->header;
468
469 CLOGI("%s, %d samples, accuracy: %u", getSensorName(header.sensorHandle),
470 header.readingCount, header.accuracy);
471 break;
472 }
473
474 case CHRE_EVENT_SENSOR_STEP_COUNTER_DATA: {
475 const auto *ev = static_cast<const chreSensorUint64Data *>(eventData);
476 const auto header = ev->header;
477 const uint64_t reading = ev->readings[header.readingCount - 1].value;
478
479 CLOGI("%s, %" PRIu16 " samples: latest %" PRIu64,
480 getSensorName(header.sensorHandle), header.readingCount, reading);
481 break;
482 }
483
484 case CHRE_EVENT_SENSOR_SAMPLING_CHANGE: {
485 const auto *ev =
486 static_cast<const chreSensorSamplingStatusEvent *>(eventData);
487
488 CLOGI("Sampling Change: handle %" PRIu32 ", status: interval %" PRIu64
489 " latency %" PRIu64 " enabled %d",
490 ev->sensorHandle, ev->status.interval, ev->status.latency,
491 ev->status.enabled);
492 break;
493 }
494
495 case CHRE_EVENT_TIMER:
496 if (!kBreakIt) {
497 LOGE("Timer event received with gBreakIt is disabled");
498 } else {
499 handleTimerEvent(eventData);
500 }
501 break;
502
503 default:
504 LOGW("Unhandled event %d", eventType);
505 break;
506 }
507 }
508
nanoappEnd()509 void nanoappEnd() {
510 LOGI("Stopped");
511 }
512
513 #ifdef CHRE_NANOAPP_INTERNAL
514 } // anonymous namespace
515 } // namespace chre
516
517 #include "chre/platform/static_nanoapp_init.h"
518 #include "chre/util/nanoapp/app_id.h"
519 #include "chre/util/system/napp_permissions.h"
520
521 CHRE_STATIC_NANOAPP_INIT(SensorWorld, chre::kSensorWorldAppId, 0,
522 chre::NanoappPermissions::CHRE_PERMS_NONE);
523 #endif // CHRE_NANOAPP_INTERNAL
524