1 /*
2 * Copyright (c) 2020 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * RAM-based memory buffer backing store implementation for demo purposes
7 */
8 #include <mmu.h>
9 #include <string.h>
10 #include <kernel_arch_interface.h>
11 #include <zephyr/kernel/mm/demand_paging.h>
12
13 /*
14 * TODO:
15 *
16 * This is a demonstration backing store for testing the kernel side of the
17 * demand paging feature. In production there are basically two types of
18 * backing stores:
19 *
20 * 1) A large, sparse backing store that is big enough to capture the entire
21 * address space. Implementation of these is very simple; the location
22 * token is just a function of the evicted virtual address and no space
23 * management is necessary. Clean copies of paged-in data pages may be kept
24 * indefinitely.
25 *
26 * 2) A backing store that has limited storage space, and is not sufficiently
27 * large to hold clean copies of all mapped memory.
28 *
29 * This backing store is an example of the latter case. However, locations
30 * are freed as soon as pages are paged in, in
31 * k_mem_paging_backing_store_page_finalize().
32 * This implies that all data pages are treated as dirty as
33 * K_MEM_PAGE_FRAME_BACKED is never set, even if the data page was paged out before
34 * and not modified since then.
35 *
36 * An optimization a real backing store will want is have
37 * k_mem_paging_backing_store_page_finalize() note the storage location of
38 * a paged-in data page in a custom field of its associated k_mem_page_frame, and
39 * set the K_MEM_PAGE_FRAME_BACKED bit. Invocations of
40 * k_mem_paging_backing_store_location_get() will have logic to return
41 * the previous clean page location instead of allocating
42 * a new one if K_MEM_PAGE_FRAME_BACKED is set.
43 *
44 * This will, however, require the implementation of a clean page
45 * eviction algorithm, to free backing store locations for loaded data pages
46 * as the backing store fills up, and clear the K_MEM_PAGE_FRAME_BACKED bit
47 * appropriately.
48 *
49 * All of this logic is local to the backing store implementation; from the
50 * core kernel's perspective the only change is that K_MEM_PAGE_FRAME_BACKED
51 * starts getting set for certain page frames after a page-in (and possibly
52 * cleared at a later time).
53 */
54 #define BACKING_STORE_SIZE (CONFIG_BACKING_STORE_RAM_PAGES * CONFIG_MMU_PAGE_SIZE)
55 static char backing_store[BACKING_STORE_SIZE] __aligned(sizeof(void *));
56 static struct k_mem_slab backing_slabs;
57 static unsigned int free_slabs;
58
location_to_slab(uintptr_t location)59 static void *location_to_slab(uintptr_t location)
60 {
61 __ASSERT(location % CONFIG_MMU_PAGE_SIZE == 0,
62 "unaligned location 0x%lx", location);
63 __ASSERT(location <
64 (CONFIG_BACKING_STORE_RAM_PAGES * CONFIG_MMU_PAGE_SIZE),
65 "bad location 0x%lx, past bounds of backing store", location);
66
67 return backing_store + location;
68 }
69
slab_to_location(void * slab)70 static uintptr_t slab_to_location(void *slab)
71 {
72 char *pos = slab;
73 uintptr_t offset;
74
75 __ASSERT(pos >= backing_store &&
76 pos < backing_store + ARRAY_SIZE(backing_store),
77 "bad slab pointer %p", slab);
78 offset = pos - backing_store;
79 __ASSERT(offset % CONFIG_MMU_PAGE_SIZE == 0,
80 "unaligned slab pointer %p", slab);
81
82 return offset;
83 }
84
k_mem_paging_backing_store_location_get(struct k_mem_page_frame * pf,uintptr_t * location,bool page_fault)85 int k_mem_paging_backing_store_location_get(struct k_mem_page_frame *pf,
86 uintptr_t *location,
87 bool page_fault)
88 {
89 int ret;
90 void *slab;
91
92 if ((!page_fault && free_slabs == 1) || free_slabs == 0) {
93 return -ENOMEM;
94 }
95
96 ret = k_mem_slab_alloc(&backing_slabs, &slab, K_NO_WAIT);
97 __ASSERT(ret == 0, "slab count mismatch");
98 if (ret != 0) {
99 return ret;
100 }
101 *location = slab_to_location(slab);
102 free_slabs--;
103
104 return 0;
105 }
106
k_mem_paging_backing_store_location_free(uintptr_t location)107 void k_mem_paging_backing_store_location_free(uintptr_t location)
108 {
109 void *slab = location_to_slab(location);
110
111 k_mem_slab_free(&backing_slabs, slab);
112 free_slabs++;
113 }
114
k_mem_paging_backing_store_page_out(uintptr_t location)115 void k_mem_paging_backing_store_page_out(uintptr_t location)
116 {
117 (void)memcpy(location_to_slab(location), K_MEM_SCRATCH_PAGE,
118 CONFIG_MMU_PAGE_SIZE);
119 }
120
k_mem_paging_backing_store_page_in(uintptr_t location)121 void k_mem_paging_backing_store_page_in(uintptr_t location)
122 {
123 (void)memcpy(K_MEM_SCRATCH_PAGE, location_to_slab(location),
124 CONFIG_MMU_PAGE_SIZE);
125 }
126
k_mem_paging_backing_store_page_finalize(struct k_mem_page_frame * pf,uintptr_t location)127 void k_mem_paging_backing_store_page_finalize(struct k_mem_page_frame *pf,
128 uintptr_t location)
129 {
130 #ifdef CONFIG_DEMAND_MAPPING
131 /* ignore those */
132 if (location == ARCH_UNPAGED_ANON_ZERO || location == ARCH_UNPAGED_ANON_UNINIT) {
133 return;
134 }
135 #endif
136 k_mem_paging_backing_store_location_free(location);
137 }
138
k_mem_paging_backing_store_init(void)139 void k_mem_paging_backing_store_init(void)
140 {
141 k_mem_slab_init(&backing_slabs, backing_store, CONFIG_MMU_PAGE_SIZE,
142 CONFIG_BACKING_STORE_RAM_PAGES);
143 free_slabs = CONFIG_BACKING_STORE_RAM_PAGES;
144 }
145