1 /*
2 * Copyright (c) 2018 Foundries.io Ltd
3 * Copyright (c) 2019 STMicroelectronics
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #include <zephyr/init.h>
9 #include <soc.h>
10 #include <stm32_ll_lptim.h>
11 #include <stm32_ll_bus.h>
12 #include <stm32_ll_rcc.h>
13 #include <stm32_ll_pwr.h>
14 #include <stm32_ll_system.h>
15 #include <zephyr/drivers/clock_control.h>
16 #include <zephyr/drivers/clock_control/stm32_clock_control.h>
17 #include <zephyr/drivers/timer/system_timer.h>
18 #include <zephyr/sys_clock.h>
19 #include <zephyr/irq.h>
20 #include <zephyr/drivers/counter.h>
21 #include <zephyr/pm/policy.h>
22
23 #include <zephyr/spinlock.h>
24
25 #define DT_DRV_COMPAT st_stm32_lptim
26
27 #if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) > 1
28 #error Only one LPTIM instance should be enabled
29 #endif
30
31 #define LPTIM (LPTIM_TypeDef *) DT_INST_REG_ADDR(0)
32
33 #if DT_INST_NUM_CLOCKS(0) == 1
34 #warning Kconfig for LPTIM source clock (LSI/LSE) is deprecated, use device tree.
35 static const struct stm32_pclken lptim_clk[] = {
36 STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
37 /* Use Kconfig to configure source clocks fields */
38 /* Fortunately, values are consistent across enabled series */
39 #ifdef CONFIG_STM32_LPTIM_CLOCK_LSI
40 {.bus = STM32_SRC_LSI, .enr = LPTIM1_SEL(1)}
41 #else
42 {.bus = STM32_SRC_LSE, .enr = LPTIM1_SEL(3)}
43 #endif
44 };
45 #else
46 static const struct stm32_pclken lptim_clk[] = STM32_DT_INST_CLOCKS(0);
47 #endif
48
49 static const struct device *const clk_ctrl = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
50
51 /*
52 * Assumptions and limitations:
53 *
54 * - system clock based on an LPTIM instance, clocked by LSI or LSE
55 * - prescaler is set to a 2^value from 1 (division of the LPTIM source clock by 1)
56 * to 128 (division of the LPTIM source clock by 128)
57 * - using LPTIM AutoReload capability to trig the IRQ (timeout irq)
58 * - when timeout irq occurs the counter is already reset
59 * - the maximum timeout duration is reached with the lptim_time_base value
60 * - with prescaler of 1, the max timeout (LPTIM_TIMEBASE) is 2 seconds:
61 * 0xFFFF / (LSE freq (32768Hz) / 1)
62 * - with prescaler of 128, the max timeout (LPTIM_TIMEBASE) is 256 seconds:
63 * 0xFFFF / (LSE freq (32768Hz) / 128)
64 */
65
66 static int32_t lptim_time_base;
67 static uint32_t lptim_clock_freq = CONFIG_STM32_LPTIM_CLOCK;
68 /* The prescaler given by the DTS and to apply to the lptim_clock_freq */
69 static uint32_t lptim_clock_presc = DT_PROP(DT_DRV_INST(0), st_prescaler);
70
71 /* Minimum nb of clock cycles to have to set autoreload register correctly */
72 #define LPTIM_GUARD_VALUE 2
73
74 /* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles.
75 * This is for example about of 65000 x 2000ms when clocked by LSI
76 */
77 static uint32_t accumulated_lptim_cnt;
78 /* Next autoreload value to set */
79 static uint32_t autoreload_next;
80 /* Indicate if the autoreload register is ready for a write */
81 static bool autoreload_ready = true;
82
83 static struct k_spinlock lock;
84
85 #ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
86
87 #define CURRENT_CPU \
88 (COND_CODE_1(CONFIG_SMP, (arch_curr_cpu()->id), (_current_cpu->id)))
89
90 #define cycle_t uint32_t
91
92 /* This local variable indicates that the timeout was set right before
93 * entering standby state.
94 *
95 * It is used for chips that has to use a separate standby timer in such
96 * case because the LPTIM is not clocked in some low power mode state.
97 */
98 static bool timeout_stdby;
99
100 /* Cycle counter before entering the standby state. */
101 static cycle_t lptim_cnt_pre_stdby;
102
103 /* Standby timer value before entering the standby state. */
104 static uint32_t stdby_timer_pre_stdby;
105
106 /* Standby timer used for timer while entering the standby state */
107 static const struct device *stdby_timer = DEVICE_DT_GET(DT_CHOSEN(st_lptim_stdby_timer));
108
109 #endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
110
arrm_state_get(void)111 static inline bool arrm_state_get(void)
112 {
113 return (LL_LPTIM_IsActiveFlag_ARRM(LPTIM) && LL_LPTIM_IsEnabledIT_ARRM(LPTIM));
114 }
115
lptim_irq_handler(const struct device * unused)116 static void lptim_irq_handler(const struct device *unused)
117 {
118
119 ARG_UNUSED(unused);
120
121 uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);
122
123 if ((LL_LPTIM_IsActiveFlag_ARROK(LPTIM) != 0)
124 && LL_LPTIM_IsEnabledIT_ARROK(LPTIM) != 0) {
125 LL_LPTIM_ClearFlag_ARROK(LPTIM);
126 if ((autoreload_next > 0) && (autoreload_next != autoreload)) {
127 /* the new autoreload value change, we set it */
128 autoreload_ready = false;
129 LL_LPTIM_SetAutoReload(LPTIM, autoreload_next);
130 } else {
131 autoreload_ready = true;
132 }
133 }
134
135 if (arrm_state_get()) {
136 k_spinlock_key_t key = k_spin_lock(&lock);
137
138 /* do not change ARR yet, sys_clock_announce will do */
139 LL_LPTIM_ClearFLAG_ARRM(LPTIM);
140
141 /* increase the total nb of autoreload count
142 * used in the sys_clock_cycle_get_32() function.
143 */
144 autoreload++;
145
146 accumulated_lptim_cnt += autoreload;
147
148 k_spin_unlock(&lock, key);
149
150 /* announce the elapsed time in ms (count register is 16bit) */
151 uint32_t dticks = (autoreload
152 * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
153 / lptim_clock_freq;
154
155 sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL)
156 ? dticks : (dticks > 0));
157 }
158 }
159
lptim_set_autoreload(uint32_t arr)160 static void lptim_set_autoreload(uint32_t arr)
161 {
162 /* Update autoreload register */
163 autoreload_next = arr;
164
165 if (!autoreload_ready) {
166 return;
167 }
168
169 /* The ARR register ready, we could set it directly */
170 if ((arr > 0) && (arr != LL_LPTIM_GetAutoReload(LPTIM))) {
171 /* The new autoreload value change, we set it */
172 autoreload_ready = false;
173 LL_LPTIM_ClearFlag_ARROK(LPTIM);
174 LL_LPTIM_SetAutoReload(LPTIM, arr);
175 }
176 }
177
z_clock_lptim_getcounter(void)178 static inline uint32_t z_clock_lptim_getcounter(void)
179 {
180 uint32_t lp_time;
181 uint32_t lp_time_prev_read;
182
183 /* It should be noted that to read reliably the content
184 * of the LPTIM_CNT register, two successive read accesses
185 * must be performed and compared
186 */
187 lp_time = LL_LPTIM_GetCounter(LPTIM);
188 do {
189 lp_time_prev_read = lp_time;
190 lp_time = LL_LPTIM_GetCounter(LPTIM);
191 } while (lp_time != lp_time_prev_read);
192 return lp_time;
193 }
194
sys_clock_set_timeout(int32_t ticks,bool idle)195 void sys_clock_set_timeout(int32_t ticks, bool idle)
196 {
197 /* new LPTIM AutoReload value to set (aligned on Kernel ticks) */
198 uint32_t next_arr = 0;
199 int err;
200
201 ARG_UNUSED(idle);
202
203 #ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
204 const struct pm_state_info *next;
205
206 next = pm_policy_next_state(CURRENT_CPU, ticks);
207
208 /* Check if STANBY or STOP3 is requested */
209 timeout_stdby = false;
210 if ((next != NULL) && idle) {
211 #ifdef CONFIG_PM_S2RAM
212 if (next->state == PM_STATE_SUSPEND_TO_RAM) {
213 timeout_stdby = true;
214 }
215 #endif
216 #ifdef CONFIG_STM32_STOP3_LP_MODE
217 if ((next->state == PM_STATE_SUSPEND_TO_IDLE) && (next->substate_id == 4)) {
218 timeout_stdby = true;
219 }
220 #endif
221 }
222
223 if (timeout_stdby) {
224 uint64_t timeout_us =
225 ((uint64_t)ticks * USEC_PER_SEC) / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
226
227 struct counter_alarm_cfg cfg = {
228 .callback = NULL,
229 .ticks = counter_us_to_ticks(stdby_timer, timeout_us),
230 .user_data = NULL,
231 .flags = 0,
232 };
233
234 /* Set the alarm using timer that runs the standby.
235 * Needed rump-up/setting time, lower accurency etc. should be
236 * included in the exit-latency in the power state definition.
237 */
238 counter_cancel_channel_alarm(stdby_timer, 0);
239 counter_set_channel_alarm(stdby_timer, 0, &cfg);
240
241 /* Store current values to calculate a difference in
242 * measurements after exiting the standby state.
243 */
244 counter_get_value(stdby_timer, &stdby_timer_pre_stdby);
245 lptim_cnt_pre_stdby = z_clock_lptim_getcounter();
246
247 /* Stop clocks for LPTIM, since RTC is used instead */
248 clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
249
250 return;
251 }
252 #endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
253
254 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
255 return;
256 }
257
258 /*
259 * When CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE = y, ticks equals to -1
260 * is treated as a lptim off ; never waking up ; lptim not clocked anymore
261 */
262 if (ticks == K_TICKS_FOREVER) {
263 clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
264 return;
265 }
266 /*
267 * When CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE = n, ticks equals to INT_MAX
268 * is treated as a maximum possible value LPTIM_MAX_TIMEBASE (16bit counter)
269 */
270
271 /* if LPTIM clock was previously stopped, it must now be restored */
272 err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
273
274 if (err < 0) {
275 return;
276 }
277 /* passing ticks==1 means "announce the next tick",
278 * ticks value of zero (or even negative) is legal and
279 * treated identically: it simply indicates the kernel would like the
280 * next tick announcement as soon as possible.
281 */
282 ticks = CLAMP(ticks - 1, 1, lptim_time_base);
283
284 k_spinlock_key_t key = k_spin_lock(&lock);
285
286 /* read current counter value (cannot exceed 16bit) */
287
288 uint32_t lp_time = z_clock_lptim_getcounter();
289
290 uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);
291
292 if (LL_LPTIM_IsActiveFlag_ARRM(LPTIM)
293 || ((autoreload - lp_time) < LPTIM_GUARD_VALUE)) {
294 /* interrupt happens or happens soon.
295 * It's impossible to set autoreload value.
296 */
297 k_spin_unlock(&lock, key);
298 return;
299 }
300
301 /* calculate the next arr value (cannot exceed 16bit)
302 * adjust the next ARR match value to align on Ticks
303 * from the current counter value to first next Tick
304 */
305 next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
306 / lptim_clock_freq) + 1) * lptim_clock_freq
307 / (CONFIG_SYS_CLOCK_TICKS_PER_SEC);
308 next_arr = next_arr + ((uint32_t)(ticks) * lptim_clock_freq)
309 / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
310 /* if the lptim_clock_freq < one ticks/sec, then next_arr must be > 0 */
311
312 /* maximise to TIMEBASE */
313 if (next_arr > lptim_time_base) {
314 next_arr = lptim_time_base;
315 }
316 /* The new autoreload value must be LPTIM_GUARD_VALUE clock cycles
317 * after current lptim to make sure we don't miss
318 * an autoreload interrupt
319 */
320 else if (next_arr < (lp_time + LPTIM_GUARD_VALUE)) {
321 next_arr = lp_time + LPTIM_GUARD_VALUE;
322 }
323 /* with slow lptim_clock_freq, LPTIM_GUARD_VALUE of 1 is enough */
324 next_arr = next_arr - 1;
325
326 /* Update autoreload register */
327 lptim_set_autoreload(next_arr);
328
329 k_spin_unlock(&lock, key);
330 }
331
sys_clock_lp_time_get(void)332 static uint32_t sys_clock_lp_time_get(void)
333 {
334 uint32_t lp_time;
335
336 do {
337 /* In case of counter roll-over, add the autoreload value,
338 * because the irq has not yet been handled
339 */
340 if (arrm_state_get()) {
341 lp_time = LL_LPTIM_GetAutoReload(LPTIM) + 1;
342 lp_time += z_clock_lptim_getcounter();
343 break;
344 }
345
346 lp_time = z_clock_lptim_getcounter();
347
348 /* Check if the flag ARRM wasn't be set during the process */
349 } while (arrm_state_get());
350
351 return lp_time;
352 }
353
354
sys_clock_elapsed(void)355 uint32_t sys_clock_elapsed(void)
356 {
357 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
358 return 0;
359 }
360
361 k_spinlock_key_t key = k_spin_lock(&lock);
362
363 uint32_t lp_time = sys_clock_lp_time_get();
364
365 k_spin_unlock(&lock, key);
366
367 /* gives the value of LPTIM counter (ms)
368 * since the previous 'announce'
369 */
370 uint64_t ret = ((uint64_t)lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq;
371
372 return (uint32_t)(ret);
373 }
374
sys_clock_cycle_get_32(void)375 uint32_t sys_clock_cycle_get_32(void)
376 {
377 /* just gives the accumulated count in a number of hw cycles */
378
379 k_spinlock_key_t key = k_spin_lock(&lock);
380
381 uint32_t lp_time = sys_clock_lp_time_get();
382
383 lp_time += accumulated_lptim_cnt;
384
385 /* convert lptim count in a nb of hw cycles with precision */
386 uint64_t ret = ((uint64_t)lp_time * sys_clock_hw_cycles_per_sec()) / lptim_clock_freq;
387
388 k_spin_unlock(&lock, key);
389
390 /* convert in hw cycles (keeping 32bit value) */
391 return (uint32_t)(ret);
392 }
393
394 /* Wait for the IER register of the stm32U5 ready, after any bit write operation */
stm32_lptim_wait_ready(void)395 void stm32_lptim_wait_ready(void)
396 {
397 #ifdef CONFIG_SOC_SERIES_STM32U5X
398 while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) {
399 }
400 LL_LPTIM_ClearFlag_DIEROK(LPTIM);
401 #else
402 /* Empty : not relevant */
403 #endif
404 }
405
sys_clock_driver_init(void)406 static int sys_clock_driver_init(void)
407 {
408 uint32_t count_per_tick;
409 int err;
410
411 if (!device_is_ready(clk_ctrl)) {
412 return -ENODEV;
413 }
414
415 /* Enable LPTIM bus clock */
416 err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
417 if (err < 0) {
418 return -EIO;
419 }
420
421 #if defined(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN)
422 LL_SRDAMR_GRP1_EnableAutonomousClock(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN);
423 #endif
424
425 /* Enable LPTIM clock source */
426 err = clock_control_configure(clk_ctrl,
427 (clock_control_subsys_t) &lptim_clk[1],
428 NULL);
429 if (err < 0) {
430 return -EIO;
431 }
432
433 /* Get LPTIM clock freq */
434 err = clock_control_get_rate(clk_ctrl, (clock_control_subsys_t) &lptim_clk[1],
435 &lptim_clock_freq);
436
437 if (err < 0) {
438 return -EIO;
439 }
440 #if defined(CONFIG_SOC_SERIES_STM32L0X)
441 /* Driver only supports freqs up to 32768Hz. On L0, LSI freq is 37KHz,
442 * which will overflow the LPTIM counter.
443 * Previous LPTIM configuration using device tree was doing forcing this
444 * with a Kconfig default. Impact is that time is 1.13 faster than reality.
445 * Following lines reproduce this behavior in order not to change behavior.
446 * This issue will be fixed by implementation LPTIM prescaler support.
447 */
448 if (lptim_clk[1].bus == STM32_SRC_LSI) {
449 lptim_clock_freq = KHZ(32);
450 }
451 #endif
452
453 #if DT_INST_NODE_HAS_PROP(0, st_timeout)
454 /*
455 * Check if prescaler corresponding to the DT_INST_PROP(0, st_timeout)
456 * is matching the lptim_clock_presc calculated one from the lptim_clock_freq
457 * max lptim period is 0xFFFF/(lptim_clock_freq/lptim_clock_presc)
458 */
459 if (DT_INST_PROP(0, st_timeout) >
460 (lptim_clock_presc / lptim_clock_freq) * 0xFFFF) {
461 return -EIO;
462 }
463
464 /*
465 * LPTIM is counting DT_INST_PROP(0, st_timeout),
466 * seconds at lptim_clock_freq divided lptim_clock_presc) Hz",
467 * lptim_time_base is the autoreload counter
468 */
469 lptim_time_base = 2 * (lptim_clock_freq *
470 (uint32_t)DT_INST_PROP(0, st_timeout))
471 / lptim_clock_presc;
472 #else
473 /* Set LPTIM time base based on clock source freq */
474 if (lptim_clock_freq == KHZ(32)) {
475 lptim_time_base = 0xF9FF;
476 } else if (lptim_clock_freq == 32768) {
477 lptim_time_base = 0xFFFF;
478 } else {
479 return -EIO;
480 }
481
482 #endif /* st_timeout */
483
484 #if !defined(CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE)
485 /*
486 * Check coherency between CONFIG_SYS_CLOCK_TICKS_PER_SEC
487 * and the lptim_clock_freq which is the CONFIG_STM32_LPTIM_CLOCK reduced
488 * by the lptim_clock_presc
489 */
490 if (lptim_clock_presc <= 8) {
491 __ASSERT(CONFIG_STM32_LPTIM_CLOCK / 8 >= CONFIG_SYS_CLOCK_TICKS_PER_SEC,
492 "It is recommended to set SYS_CLOCK_TICKS_PER_SEC to CONFIG_STM32_LPTIM_CLOCK/8");
493 } else {
494 __ASSERT(CONFIG_STM32_LPTIM_CLOCK / lptim_clock_presc >=
495 CONFIG_SYS_CLOCK_TICKS_PER_SEC,
496 "Set SYS_CLOCK_TICKS_PER_SEC to CONFIG_STM32_LPTIM_CLOCK/lptim_clock_presc");
497 }
498 #endif /* !CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE */
499
500 /* Actual lptim clock freq when the clock source is reduced by the prescaler */
501 lptim_clock_freq = lptim_clock_freq / lptim_clock_presc;
502
503 /* Clear the event flag and possible pending interrupt */
504 IRQ_CONNECT(DT_INST_IRQN(0),
505 DT_INST_IRQ(0, priority),
506 lptim_irq_handler, 0, 0);
507 irq_enable(DT_INST_IRQN(0));
508
509 #ifdef CONFIG_SOC_SERIES_STM32WLX
510 /* Enable the LPTIM wakeup EXTI line */
511 LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_29);
512 #endif
513
514 /* configure the LPTIM counter */
515 LL_LPTIM_SetClockSource(LPTIM, LL_LPTIM_CLK_SOURCE_INTERNAL);
516 /* the LPTIM clock freq is affected by the prescaler */
517 LL_LPTIM_SetPrescaler(LPTIM, (__CLZ(__RBIT(lptim_clock_presc)) << LPTIM_CFGR_PRESC_Pos));
518
519 #if defined(CONFIG_SOC_SERIES_STM32U5X) || \
520 defined(CONFIG_SOC_SERIES_STM32H5X) || \
521 defined(CONFIG_SOC_SERIES_STM32WBAX)
522 LL_LPTIM_OC_SetPolarity(LPTIM, LL_LPTIM_CHANNEL_CH1,
523 LL_LPTIM_OUTPUT_POLARITY_REGULAR);
524 #else
525 LL_LPTIM_SetPolarity(LPTIM, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
526 #endif
527 LL_LPTIM_SetUpdateMode(LPTIM, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
528 LL_LPTIM_SetCounterMode(LPTIM, LL_LPTIM_COUNTER_MODE_INTERNAL);
529 LL_LPTIM_DisableTimeout(LPTIM);
530 /* counting start is initiated by software */
531 LL_LPTIM_TrigSw(LPTIM);
532
533 #if defined(CONFIG_SOC_SERIES_STM32U5X) || \
534 defined(CONFIG_SOC_SERIES_STM32H5X) || \
535 defined(CONFIG_SOC_SERIES_STM32WBAX)
536 /* Enable the LPTIM before proceeding with configuration */
537 LL_LPTIM_Enable(LPTIM);
538
539 LL_LPTIM_DisableIT_CC1(LPTIM);
540 stm32_lptim_wait_ready();
541 LL_LPTIM_ClearFLAG_CC1(LPTIM);
542 #else
543 /* LPTIM interrupt set-up before enabling */
544 /* no Compare match Interrupt */
545 LL_LPTIM_DisableIT_CMPM(LPTIM);
546 LL_LPTIM_ClearFLAG_CMPM(LPTIM);
547 #endif
548
549 /* Autoreload match Interrupt */
550 LL_LPTIM_EnableIT_ARRM(LPTIM);
551 stm32_lptim_wait_ready();
552 LL_LPTIM_ClearFLAG_ARRM(LPTIM);
553
554 /* ARROK bit validates the write operation to ARR register */
555 LL_LPTIM_EnableIT_ARROK(LPTIM);
556 stm32_lptim_wait_ready();
557 LL_LPTIM_ClearFlag_ARROK(LPTIM);
558
559 #if !defined(CONFIG_SOC_SERIES_STM32U5X) && \
560 !defined(CONFIG_SOC_SERIES_STM32H5X) && \
561 !defined(CONFIG_SOC_SERIES_STM32WBAX)
562 /* Enable the LPTIM counter */
563 LL_LPTIM_Enable(LPTIM);
564 #endif
565
566 /* Set the Autoreload value once the timer is enabled */
567 if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
568 /* LPTIM is triggered on a LPTIM_TIMEBASE period */
569 lptim_set_autoreload(lptim_time_base);
570 } else {
571 /* nb of LPTIM counter unit per kernel tick (depends on lptim clock prescaler) */
572 count_per_tick = (lptim_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC);
573 /* LPTIM is triggered on a Tick period */
574 lptim_set_autoreload(count_per_tick - 1);
575 }
576
577 /* Start the LPTIM counter in continuous mode */
578 LL_LPTIM_StartCounter(LPTIM, LL_LPTIM_OPERATING_MODE_CONTINUOUS);
579
580 #ifdef CONFIG_DEBUG
581 /* stop LPTIM during DEBUG */
582 #if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
583 LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP);
584 #elif defined(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP)
585 LL_DBGMCU_APB3_GRP1_FreezePeriph(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP);
586 #endif
587
588 #endif
589 return 0;
590 }
591
stm32_clock_control_standby_exit(void)592 void stm32_clock_control_standby_exit(void)
593 {
594 #ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
595 if (clock_control_get_status(clk_ctrl,
596 (clock_control_subsys_t) &lptim_clk[0])
597 != CLOCK_CONTROL_STATUS_ON) {
598 sys_clock_driver_init();
599 }
600 #endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
601 }
602
sys_clock_idle_exit(void)603 void sys_clock_idle_exit(void)
604 {
605 #ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
606 if (timeout_stdby) {
607 cycle_t missed_lptim_cnt;
608 uint32_t stdby_timer_diff, stdby_timer_post, dticks;
609 uint64_t stdby_timer_us;
610
611 /* Get current value for standby timer and reset LPTIM counter value
612 * to start anew.
613 */
614 LL_LPTIM_ResetCounter(LPTIM);
615 counter_get_value(stdby_timer, &stdby_timer_post);
616
617 /* Calculate how much time has passed since last measurement for standby timer */
618 /* Check IDLE timer overflow */
619 if (stdby_timer_pre_stdby > stdby_timer_post) {
620 stdby_timer_diff =
621 (counter_get_top_value(stdby_timer) - stdby_timer_pre_stdby) +
622 stdby_timer_post + 1;
623
624 } else {
625 stdby_timer_diff = stdby_timer_post - stdby_timer_pre_stdby;
626 }
627 stdby_timer_us = counter_ticks_to_us(stdby_timer, stdby_timer_diff);
628
629 /* Convert standby time in LPTIM cnt */
630 missed_lptim_cnt = (sys_clock_hw_cycles_per_sec() * stdby_timer_us) /
631 USEC_PER_SEC;
632 /* Add the LPTIM cnt pre standby */
633 missed_lptim_cnt += lptim_cnt_pre_stdby;
634
635 /* Update the cycle counter to include the cycles missed in standby */
636 accumulated_lptim_cnt += missed_lptim_cnt;
637
638 /* Announce the passed ticks to the kernel */
639 dticks = (missed_lptim_cnt * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
640 / lptim_clock_freq;
641 sys_clock_announce(dticks);
642
643 /* We've already performed all needed operations */
644 timeout_stdby = false;
645 }
646 #endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
647 }
648
649 SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
650 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
651