1 /*
2  * Copyright (c) 2024 Nordic Semiconductor ASA
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include <stdint.h>
8 #include <zephyr/kernel.h>
9 #include <zephyr/drivers/uart.h>
10 #include <zephyr/cache.h>
11 #include <zephyr/shell/shell.h>
12 #include <zephyr/logging/log.h>
13 #include <zephyr/logging/log_output.h>
14 #include <zephyr/logging/log_frontend_stmesp.h>
15 #include <zephyr/logging/log_frontend_stmesp_demux.h>
16 #include <zephyr/debug/coresight/cs_trace_defmt.h>
17 #include <zephyr/debug/mipi_stp_decoder.h>
18 #include <zephyr/linker/devicetree_regions.h>
19 #include <zephyr/drivers/misc/coresight/nrf_etr.h>
20 #include <zephyr/drivers/serial/uart_async_rx.h>
21 #include <zephyr/sys/printk.h>
22 #include <dmm.h>
23 #include <nrfx_tbm.h>
24 #include <stdio.h>
25 LOG_MODULE_REGISTER(cs_etr_tbm);
26 
27 #define UART_NODE DT_CHOSEN(zephyr_console)
28 
29 #define ETR_BUFFER_NODE DT_NODELABEL(etr_buffer)
30 
31 #define DROP_CHECK_PERIOD                            \
32 	COND_CODE_1(CONFIG_NRF_ETR_DECODE, \
33 		    (CONFIG_NRF_ETR_DECODE_DROP_PERIOD), (0))
34 
35 #define MIN_DATA (2 * CORESIGHT_TRACE_FRAME_SIZE32)
36 
37 /* Since ETR debug is a part of logging infrastructure, logging cannot be used
38  * for debugging. Printk is used (assuming CONFIG_LOG_PRINTK=n)
39  */
40 #define DBG(...) IF_ENABLED(CONFIG_NRF_ETR_DEBUG, (printk(__VA_ARGS__)))
41 
42 /** @brief Macro for dumping debug data.
43  *
44  * @param _data Data variable.
45  * @param _nlen Number of nibbles in @p _data to print.
46  */
47 #define DBG_DATA(_data, _nlen, _marked)                   \
48 	do {                                              \
49 		char *fmt;                                \
50 		switch (_nlen) {                          \
51 		case 2:                                   \
52 			fmt = "D%s\t%02x ";               \
53 			break;                            \
54 		case 4:                                   \
55 			fmt = "D%s\t%04x ";               \
56 			break;                            \
57 		case 8:                                   \
58 			fmt = "D%s\t%08x ";               \
59 			break;                            \
60 		default:                                  \
61 			fmt = "D%s\t%016x ";              \
62 			break;                            \
63 		}                                         \
64 		DBG(fmt, _marked ? "M" : "", _data);      \
65 		for (int i = 0; i < _nlen / 2; i++) {     \
66 			DBG("%c ", ((char *)&_data)[i]);  \
67 		}                                         \
68 		DBG("\n");                                \
69 	} while (0)
70 
71 static const uint32_t wsize_mask = DT_REG_SIZE(ETR_BUFFER_NODE) / sizeof(int) - 1;
72 static const uint32_t wsize_inc = DT_REG_SIZE(ETR_BUFFER_NODE) / sizeof(int) - 1;
73 
74 static bool in_sync;
75 static int oosync_cnt;
76 static volatile bool tbm_full;
77 static volatile uint32_t base_wr_idx;
78 static uint32_t etr_rd_idx;
79 /* Counts number of new messages completed in the current formatter frame decoding. */
80 static uint32_t new_msg_cnt;
81 
82 static bool volatile use_async_uart;
83 
84 static struct k_sem uart_sem;
85 static const struct device *uart_dev = DEVICE_DT_GET(UART_NODE);
86 static uint32_t frame_buf0[CORESIGHT_TRACE_FRAME_SIZE32] DMM_MEMORY_SECTION(UART_NODE);
87 static uint32_t frame_buf1[CORESIGHT_TRACE_FRAME_SIZE32] DMM_MEMORY_SECTION(UART_NODE);
88 static uint32_t frame_buf_decode[CORESIGHT_TRACE_FRAME_SIZE32];
89 static uint32_t *frame_buf = IS_ENABLED(CONFIG_NRF_ETR_DECODE) ?
90 				frame_buf_decode : frame_buf0;
91 
92 K_KERNEL_STACK_DEFINE(etr_stack, CONFIG_NRF_ETR_STACK_SIZE);
93 static struct k_thread etr_thread;
94 
95 BUILD_ASSERT((DT_REG_SIZE(ETR_BUFFER_NODE) % CONFIG_DCACHE_LINE_SIZE) == 0);
96 BUILD_ASSERT((DT_REG_ADDR(ETR_BUFFER_NODE) % CONFIG_DCACHE_LINE_SIZE) == 0);
97 
98 /* Domain details and prefixes. */
99 static const uint16_t stm_m_id[] = {0x21, 0x22, 0x23, 0x2c, 0x2d, 0x2e, 0x24, 0x80};
100 static uint32_t source_id_buf[ARRAY_SIZE(stm_m_id) * 8];
101 static const char *const stm_m_name[] = {"sec", "app", "rad", "sys", "flpr", "ppr", "mod", "hw"};
102 static const char *const hw_evts[] = {
103 	"CTI211_0",  /* 0 CTI211 triger out 1 */
104 	"CTI211_1",  /* 1 CTI211 triger out 1 inverted */
105 	"CTI211_2",  /* 2 CTI211 triger out 2 */
106 	"CTI211_3",  /* 3 CTI211 triger out 2 inverted*/
107 	"Sec up",    /* 4 Secure Domain up */
108 	"Sec down",  /* 5 Secure Domain down */
109 	"App up",    /* 6 Application Domain up */
110 	"App down",  /* 7 Application Domain down */
111 	"Rad up",    /* 8 Radio Domain up */
112 	"Rad down",  /* 9 Radio Domain down */
113 	"Radf up",   /* 10 Radio fast up */
114 	"Radf down", /* 11 Radio fast down */
115 	NULL, /* Reserved */
116 	NULL, /* Reserved */
117 	NULL, /* Reserved */
118 	NULL, /* Reserved */
119 	NULL, /* Reserved */
120 	NULL, /* Reserved */
121 	NULL, /* Reserved */
122 	NULL, /* Reserved */
123 	NULL, /* Reserved */
124 	NULL, /* Reserved */
125 	NULL, /* Reserved */
126 	NULL, /* Reserved */
127 	NULL, /* Reserved */
128 	NULL, /* Reserved */
129 	"GD LL up",    /* 26 Global domain low leakage up */
130 	"GD LL down",  /* 27 Global domain low leakage down */
131 	"GD1 HS up",   /* 28 Global domain high speed 1 up */
132 	"GD1 HS up",   /* 29 Global domain high speed 1 up */
133 	"GD0 HS down", /* 30 Global domain high speed 0 down */
134 	"GD0 HS down", /* 31 Global domain high speed 0 down */
135 };
136 
137 #ifdef CONFIG_NRF_ETR_SHELL
138 #define RX_BUF_SIZE \
139 	(CONFIG_NRF_ETR_SHELL_ASYNC_RX_BUFFER_SIZE * CONFIG_NRF_ETR_SHELL_ASYNC_RX_BUFFER_COUNT)
140 
141 static void etr_timer_handler(struct k_timer *timer);
142 K_TIMER_DEFINE(etr_timer, etr_timer_handler, NULL);
143 static uint8_t rx_buf[RX_BUF_SIZE] DMM_MEMORY_SECTION(UART_NODE);
144 static struct uart_async_rx async_rx;
145 static atomic_t pending_rx_req;
146 static const struct shell etr_shell;
147 static shell_transport_handler_t shell_handler;
148 static void *shell_context;
149 #endif
150 
log_output_func(uint8_t * buf,size_t size,void * ctx)151 static int log_output_func(uint8_t *buf, size_t size, void *ctx)
152 {
153 	if (use_async_uart) {
154 		int err;
155 		static uint8_t *tx_buf = (uint8_t *)frame_buf0;
156 
157 		err = k_sem_take(&uart_sem, K_FOREVER);
158 		__ASSERT_NO_MSG(err >= 0);
159 
160 		memcpy(tx_buf, buf, size);
161 
162 		err = uart_tx(uart_dev, tx_buf, size, SYS_FOREVER_US);
163 		__ASSERT_NO_MSG(err >= 0);
164 
165 		tx_buf = (tx_buf == (uint8_t *)frame_buf0) ?
166 			(uint8_t *)frame_buf1 : (uint8_t *)frame_buf0;
167 	} else {
168 		for (int i = 0; i < size; i++) {
169 			uart_poll_out(uart_dev, buf[i]);
170 		}
171 	}
172 
173 	return size;
174 }
175 
176 static uint8_t log_output_buf[CORESIGHT_TRACE_FRAME_SIZE];
177 LOG_OUTPUT_DEFINE(log_output, log_output_func, log_output_buf, sizeof(log_output_buf));
178 
179 /** @brief Process a log message. */
log_message_process(struct log_frontend_stmesp_demux_log * packet)180 static void log_message_process(struct log_frontend_stmesp_demux_log *packet)
181 {
182 	uint32_t flags = LOG_OUTPUT_FLAG_COLORS | LOG_OUTPUT_FLAG_LEVEL |
183 			 LOG_OUTPUT_FLAG_TIMESTAMP | LOG_OUTPUT_FLAG_FORMAT_TIMESTAMP;
184 	uint64_t ts = packet->timestamp;
185 	uint8_t level = packet->hdr.level;
186 	uint16_t plen = packet->hdr.package_len;
187 	const char *dname = stm_m_name[packet->hdr.major];
188 	const uint8_t *package = packet->data;
189 	const char *sname = &packet->data[plen];
190 	size_t sname_len = strlen(sname) + 1;
191 	uint16_t dlen = packet->hdr.total_len - (plen + sname_len);
192 	uint8_t *data = dlen ? &packet->data[plen + sname_len] : NULL;
193 
194 	log_output_process(&log_output, ts, dname, sname, NULL, level, package, data, dlen, flags);
195 }
196 
197 /** @brief Process a trace point message. */
trace_point_process(struct log_frontend_stmesp_demux_trace_point * packet)198 static void trace_point_process(struct log_frontend_stmesp_demux_trace_point *packet)
199 {
200 	static const uint32_t flags = LOG_OUTPUT_FLAG_TIMESTAMP | LOG_OUTPUT_FLAG_FORMAT_TIMESTAMP |
201 				      LOG_OUTPUT_FLAG_LEVEL;
202 	static const char *tp = "%d";
203 	static const char *tp_d32 = "%d %08x";
204 	const char *dname = stm_m_name[packet->major];
205 	static const char *sname = "tp";
206 	const char **lptr;
207 
208 	if (packet->id >= CONFIG_LOG_FRONTEND_STMESP_TURBO_LOG_BASE) {
209 		TYPE_SECTION_GET(const char *, log_stmesp_ptr,
210 				 packet->id - CONFIG_LOG_FRONTEND_STMESP_TURBO_LOG_BASE, &lptr);
211 		uint8_t level = (uint8_t)((*lptr)[0]) - (uint8_t)'0';
212 		const char *ptr = *lptr + 1;
213 		static const union cbprintf_package_hdr desc0 = {
214 			.desc = {.len = 2 /* hdr + fmt */}};
215 		static const union cbprintf_package_hdr desc1 = {
216 			.desc = {.len = 3 /* hdr + fmt + data */}};
217 		uint32_t tp_log[] = {packet->has_data ? (uint32_t)desc1.raw : (uint32_t)desc0.raw,
218 				     (uint32_t)ptr, packet->data};
219 		const char *source =
220 			log_frontend_stmesp_demux_sname_get(packet->major, packet->source_id);
221 
222 		log_output_process(&log_output, packet->timestamp, dname, source, NULL, level,
223 				   (const uint8_t *)tp_log, NULL, 0, flags);
224 		return;
225 	} else if (packet->has_data) {
226 		uint32_t id = (uint32_t)packet->id - CONFIG_LOG_FRONTEND_STMESP_TP_CHAN_BASE;
227 		static const union cbprintf_package_hdr desc = {
228 			.desc = {.len = 4 /* hdr + fmt + id + data */}};
229 		uint32_t tp_d32_p[] = {(uint32_t)desc.raw, (uint32_t)tp_d32, id, packet->data};
230 
231 		log_output_process(&log_output, packet->timestamp, dname, sname, NULL, 1,
232 				   (const uint8_t *)tp_d32_p, NULL, 0, flags);
233 		return;
234 	}
235 
236 	static const union cbprintf_package_hdr desc = {.desc = {.len = 3 /* hdr + fmt + id */}};
237 	uint32_t tp_p[] = {(uint32_t)desc.raw, (uint32_t)tp, packet->id};
238 
239 	log_output_process(&log_output, packet->timestamp, dname, sname, NULL,
240 			   1, (const uint8_t *)tp_p, NULL, 0, flags);
241 }
242 
243 /** @brief Process a HW event message. */
hw_event_process(struct log_frontend_stmesp_demux_hw_event * packet)244 static void hw_event_process(struct log_frontend_stmesp_demux_hw_event *packet)
245 {
246 	static const uint32_t flags = LOG_OUTPUT_FLAG_TIMESTAMP | LOG_OUTPUT_FLAG_FORMAT_TIMESTAMP;
247 	static const char *tp = "%s";
248 	static const char *dname = "hw";
249 	static const char *sname = "event";
250 	const char *evt_name = packet->evt < ARRAY_SIZE(hw_evts) ? hw_evts[packet->evt] : "invalid";
251 	static const union cbprintf_package_hdr desc = {.desc = {.len = 3 /* hdr + fmt + id */}};
252 	uint32_t tp_p[] = {(uint32_t)desc.raw, (uint32_t)tp, (uint32_t)evt_name};
253 
254 	log_output_process(&log_output, packet->timestamp, dname, sname, NULL,
255 			   1, (const uint8_t *)tp_p, NULL, 0, flags);
256 }
257 
message_process(union log_frontend_stmesp_demux_packet packet)258 static void message_process(union log_frontend_stmesp_demux_packet packet)
259 {
260 	switch (packet.generic_packet->type) {
261 	case LOG_FRONTEND_STMESP_DEMUX_TYPE_TRACE_POINT:
262 		trace_point_process(packet.trace_point);
263 		break;
264 	case LOG_FRONTEND_STMESP_DEMUX_TYPE_HW_EVENT:
265 		hw_event_process(packet.hw_event);
266 		break;
267 	default:
268 		log_message_process(packet.log);
269 		break;
270 	}
271 }
272 
273 /** @brief Function called when potential STPv2 stream data drop is detected.
274  *
275  * When that occurs all active messages in the demultiplexer are marked as invalid and
276  * stp_decoder is switching to re-synchronization mode where data is decoded in
277  * search for ASYNC opcode.
278  */
sync_loss(void)279 static void sync_loss(void)
280 {
281 	if (IS_ENABLED(CONFIG_NRF_ETR_DECODE)) {
282 		mipi_stp_decoder_sync_loss();
283 		log_frontend_stmesp_demux_reset();
284 		oosync_cnt++;
285 		in_sync = false;
286 	}
287 }
288 
289 /** @brief Indicate that STPv2 decoder is synchronized.
290  *
291  * That occurs when ASYNC opcode is found.
292  */
on_resync(void)293 static void on_resync(void)
294 {
295 	if (IS_ENABLED(CONFIG_NRF_ETR_DECODE)) {
296 		in_sync = true;
297 	}
298 }
299 
decoder_cb_debug(enum mipi_stp_decoder_ctrl_type type,union mipi_stp_decoder_data data,uint64_t * ts,bool marked)300 static void decoder_cb_debug(enum mipi_stp_decoder_ctrl_type type,
301 			     union mipi_stp_decoder_data data,
302 			     uint64_t *ts, bool marked)
303 {
304 	switch (type) {
305 	case STP_DECODER_MAJOR:
306 		DBG("M%04x\n", data.id);
307 		break;
308 	case STP_DECODER_CHANNEL:
309 		DBG("C%04x\n", data.id);
310 		break;
311 	case STP_DATA8:
312 		DBG_DATA(data.data, 2, marked);
313 		if (ts) {
314 			DBG("TS:%lld\n", *ts);
315 		}
316 		break;
317 	case STP_DATA16:
318 		DBG_DATA(data.data, 4, marked);
319 		break;
320 	case STP_DATA32:
321 		DBG_DATA(data.data, 8, marked);
322 		if (ts) {
323 			DBG("TS:%lld\n", *ts);
324 		}
325 		break;
326 	case STP_DATA64:
327 		DBG_DATA(data.data, 16, marked);
328 		break;
329 	case STP_DECODER_FLAG:
330 		DBG("F%s\n", ts ? "TS" : "");
331 		break;
332 	case STP_DECODER_NULL:
333 		DBG("NULL\n");
334 		break;
335 	case STP_DECODER_MERROR:
336 		DBG("MERR\n");
337 		break;
338 	case STP_DECODER_VERSION:
339 		DBG("VER\n");
340 		break;
341 	case STP_DECODER_FREQ: {
342 		DBG("FREQ%s %d\n", ts ? "TS" : "", (int)data.freq);
343 		break;
344 	}
345 	case STP_DECODER_GERROR:
346 		DBG("GERR\n");
347 		break;
348 	case STP_DECODER_ASYNC:
349 		DBG("ASYNC\n");
350 		break;
351 	case STP_DECODER_NOT_SUPPORTED:
352 		DBG("NOTSUP\n");
353 		break;
354 	default:
355 		DBG("OTHER\n");
356 		break;
357 	}
358 }
359 
decoder_cb(enum mipi_stp_decoder_ctrl_type type,union mipi_stp_decoder_data data,uint64_t * ts,bool marked)360 static void decoder_cb(enum mipi_stp_decoder_ctrl_type type,
361 		       union mipi_stp_decoder_data data, uint64_t *ts,
362 		       bool marked)
363 {
364 	int rv = 0;
365 
366 	decoder_cb_debug(type, data, ts, marked);
367 
368 	if (!IS_ENABLED(CONFIG_NRF_ETR_DECODE)) {
369 		return;
370 	}
371 
372 	switch (type) {
373 	case STP_DECODER_ASYNC:
374 		on_resync();
375 		break;
376 	case STP_DECODER_MAJOR:
377 		log_frontend_stmesp_demux_major(data.id);
378 		break;
379 	case STP_DECODER_CHANNEL:
380 		log_frontend_stmesp_demux_channel(data.id);
381 		break;
382 	case STP_DATA8:
383 		if (marked) {
384 			rv = log_frontend_stmesp_demux_packet_start((uint32_t *)&data.data, ts);
385 			new_msg_cnt += rv;
386 		} else {
387 			log_frontend_stmesp_demux_data((char *)&data.data, 1);
388 		}
389 		break;
390 	case STP_DATA16:
391 		if (marked) {
392 			if (ts) {
393 				rv = log_frontend_stmesp_demux_log0((uint16_t)data.data, ts);
394 				new_msg_cnt += rv;
395 			} else {
396 				log_frontend_stmesp_demux_source_id((uint16_t)data.data);
397 			}
398 		} else {
399 			log_frontend_stmesp_demux_data((char *)&data.data, 2);
400 		}
401 		break;
402 	case STP_DATA32:
403 		if (marked) {
404 			rv = log_frontend_stmesp_demux_packet_start((uint32_t *)&data.data, ts);
405 			new_msg_cnt += rv;
406 		} else {
407 			log_frontend_stmesp_demux_data((char *)&data.data, 4);
408 			if (ts) {
409 				log_frontend_stmesp_demux_timestamp(*ts);
410 			}
411 		}
412 		break;
413 	case STP_DATA64:
414 		log_frontend_stmesp_demux_data((char *)&data.data, 8);
415 		break;
416 	case STP_DECODER_FLAG:
417 		if (ts) {
418 			log_frontend_stmesp_demux_packet_start(NULL, ts);
419 		} else {
420 			log_frontend_stmesp_demux_packet_end();
421 		}
422 		new_msg_cnt++;
423 		break;
424 	case STP_DECODER_FREQ: {
425 		static uint32_t freq;
426 		/* Avoid calling log_output function multiple times as frequency
427 		 * is sent periodically.
428 		 */
429 		if (freq != (uint32_t)data.freq) {
430 			freq = (uint32_t)data.freq;
431 			log_output_timestamp_freq_set(freq);
432 		}
433 		break;
434 	}
435 	case STP_DECODER_MERROR: {
436 		sync_loss();
437 		break;
438 	}
439 	default:
440 		break;
441 	}
442 
443 	/* Only -ENOMEM is accepted failure. */
444 	__ASSERT_NO_MSG((rv >= 0) || (rv == -ENOMEM));
445 }
446 
deformatter_cb(uint32_t id,const uint8_t * data,size_t len)447 static void deformatter_cb(uint32_t id, const uint8_t *data, size_t len)
448 {
449 	mipi_stp_decoder_decode(data, len);
450 }
451 
452 /** @brief Get write index.
453  *
454  * It is a non-wrapping 32 bit write index. To get actual index in the ETR buffer
455  * result must be masked by ETR buffer size mask.
456  */
get_wr_idx(void)457 static uint32_t get_wr_idx(void)
458 {
459 	uint32_t cnt = nrfx_tbm_count_get();
460 
461 	if (tbm_full && (cnt < wsize_mask)) {
462 		/* TBM full event is generated when max value is reached and not when
463 		 * overflow occurs. We cannot increment base_wr_idx just after the
464 		 * event but only when counter actually wraps.
465 		 */
466 		base_wr_idx += wsize_inc;
467 		tbm_full = false;
468 	}
469 
470 	return cnt + base_wr_idx;
471 }
472 
473 /** @brief Get amount of pending data in ETR buffer. */
pending_data(void)474 static uint32_t pending_data(void)
475 {
476 	return get_wr_idx() - etr_rd_idx;
477 }
478 
479 /** @brief Get current read index.
480  *
481  * Read index is not exact index in the ETR buffer. It does not wrap (32 bit word).
482  * So ETR read index is derived by masking the value by the ETR buffer size mask.
483  */
rd_idx_inc(void)484 static void rd_idx_inc(void)
485 {
486 	etr_rd_idx += CORESIGHT_TRACE_FRAME_SIZE32;
487 }
488 
489 /** @brief Process frame. */
process_frame(uint8_t * buf,uint32_t pending)490 static void process_frame(uint8_t *buf, uint32_t pending)
491 {
492 	DBG("%d (wr:%d): ", pending, get_wr_idx() & wsize_mask);
493 	for (int j = 0; j < CORESIGHT_TRACE_FRAME_SIZE; j++) {
494 		DBG("%02x ", ((uint8_t *)buf)[j]);
495 	}
496 	DBG("\n");
497 	cs_trace_defmt_process((uint8_t *)buf, CORESIGHT_TRACE_FRAME_SIZE);
498 	DBG("\n");
499 }
500 
process_messages(void)501 static void process_messages(void)
502 {
503 	static union log_frontend_stmesp_demux_packet curr_msg;
504 
505 	/* Process any new messages. curr_msg remains the same if panic
506 	 * interrupts currently ongoing processing (curr_msg is not NULL then).
507 	 * In such a case it is processed once again, which may lead to
508 	 * a partial repetition of that message on the output.
509 	 */
510 	while (new_msg_cnt || curr_msg.generic_packet) {
511 		if (!curr_msg.generic_packet) {
512 			curr_msg = log_frontend_stmesp_demux_claim();
513 		}
514 		if (curr_msg.generic_packet) {
515 			message_process(curr_msg);
516 			log_frontend_stmesp_demux_free(curr_msg);
517 			curr_msg.generic_packet = NULL;
518 		} else {
519 			break;
520 		}
521 	}
522 	new_msg_cnt = 0;
523 }
524 
525 /** @brief Dump frame over UART (using polling or async API). */
dump_frame(uint8_t * buf)526 static void dump_frame(uint8_t *buf)
527 {
528 	int err;
529 
530 	if (use_async_uart) {
531 		err = k_sem_take(&uart_sem, K_FOREVER);
532 		__ASSERT_NO_MSG(err >= 0);
533 
534 		err = uart_tx(uart_dev, buf, CORESIGHT_TRACE_FRAME_SIZE, SYS_FOREVER_US);
535 		__ASSERT_NO_MSG(err >= 0);
536 	} else {
537 		for (int i = 0; i < CORESIGHT_TRACE_FRAME_SIZE; i++) {
538 			uart_poll_out(uart_dev, buf[i]);
539 		}
540 	}
541 }
542 
543 /** @brief Attempt to process data pending in the ETR circular buffer.
544  *
545  * Data is processed in 16 bytes packages. Each package is a STPv2 frame which
546  * contain data generated by STM stimulus ports.
547  *
548  */
process(void)549 static void process(void)
550 {
551 	static const uint32_t *const etr_buf = (uint32_t *)(DT_REG_ADDR(ETR_BUFFER_NODE));
552 	static uint32_t sync_cnt;
553 	uint32_t pending;
554 
555 	/* If function is called in panic mode then it may interrupt ongoing
556 	 * processing. This must be carefully handled as function decodes data
557 	 * that must be synchronized. Losing synchronization results in failure.
558 	 *
559 	 * Special measures are taken to ensure proper synchronization when
560 	 * processing is preempted by panic.
561 	 *
562 	 */
563 	while ((pending = pending_data()) >= MIN_DATA) {
564 		/* Do not read the data that has already been read but not yet processed. */
565 		if (sync_cnt || (CONFIG_NRF_ETR_SYNC_PERIOD == 0)) {
566 			sync_cnt--;
567 			sys_cache_data_invd_range((void *)&etr_buf[etr_rd_idx & wsize_mask],
568 						  CORESIGHT_TRACE_FRAME_SIZE);
569 			for (int i = 0; i < CORESIGHT_TRACE_FRAME_SIZE32; i++) {
570 				frame_buf[i] = etr_buf[(etr_rd_idx + i) & wsize_mask];
571 			}
572 			rd_idx_inc();
573 			__sync_synchronize();
574 		} else {
575 			sync_cnt = CONFIG_NRF_ETR_SYNC_PERIOD;
576 			memset(frame_buf, 0xff, CORESIGHT_TRACE_FRAME_SIZE);
577 		}
578 
579 		if (IS_ENABLED(CONFIG_NRF_ETR_DECODE) || IS_ENABLED(CONFIG_NRF_ETR_DEBUG)) {
580 			if ((pending >= (wsize_mask - MIN_DATA)) ||
581 			    (pending_data() >= (wsize_mask - MIN_DATA))) {
582 				/* If before or after reading the frame it is close to full
583 				 * then assume overwrite and sync loss.
584 				 */
585 				sync_loss();
586 			}
587 
588 			process_frame((uint8_t *)frame_buf, pending);
589 			if (IS_ENABLED(CONFIG_NRF_ETR_DECODE)) {
590 				process_messages();
591 			}
592 		} else {
593 			dump_frame((uint8_t *)frame_buf);
594 			frame_buf = (use_async_uart && (frame_buf == frame_buf0)) ?
595 						frame_buf1 : frame_buf0;
596 		}
597 	}
598 
599 	/* Fill the buffer to ensure that all logs are processed on time. */
600 	if (pending < MIN_DATA) {
601 		log_frontend_stmesp_dummy_write();
602 	}
603 }
604 
decoder_init(void)605 static int decoder_init(void)
606 {
607 	int err;
608 	static bool once;
609 
610 	if (once) {
611 		return -EALREADY;
612 	}
613 
614 	once = true;
615 	if (IS_ENABLED(CONFIG_NRF_ETR_DECODE)) {
616 		static const struct log_frontend_stmesp_demux_config config = {
617 			.m_ids = stm_m_id,
618 			.m_ids_cnt = ARRAY_SIZE(stm_m_id),
619 			.source_id_buf = source_id_buf,
620 			.source_id_buf_len = ARRAY_SIZE(source_id_buf)};
621 
622 		err = log_frontend_stmesp_demux_init(&config);
623 		if (err < 0) {
624 			return err;
625 		}
626 	}
627 
628 	static const struct mipi_stp_decoder_config stp_decoder_cfg = {.cb = decoder_cb,
629 								  .start_out_of_sync = true};
630 
631 	mipi_stp_decoder_init(&stp_decoder_cfg);
632 
633 	cs_trace_defmt_init(deformatter_cb);
634 
635 	return 0;
636 }
637 
nrf_etr_flush(void)638 void nrf_etr_flush(void)
639 {
640 	int cnt = 4;
641 
642 	if (IS_ENABLED(CONFIG_NRF_ETR_DECODE) ||
643 	    IS_ENABLED(CONFIG_NRF_ETR_DEBUG)) {
644 		(void)decoder_init();
645 	}
646 
647 	/* Set flag which forces uart to use blocking polling out instead of
648 	 * asynchronous API.
649 	 */
650 	use_async_uart = false;
651 	uint32_t k = irq_lock();
652 
653 	/* Repeat arbitrary number of times to ensure that all that is flushed. */
654 	while (cnt--) {
655 		process();
656 	}
657 
658 	irq_unlock(k);
659 }
660 
661 #ifndef CONFIG_NRF_ETR_SHELL
etr_thread_func(void * dummy1,void * dummy2,void * dummy3)662 static void etr_thread_func(void *dummy1, void *dummy2, void *dummy3)
663 {
664 	uint64_t checkpoint = 0;
665 
666 	if (IS_ENABLED(CONFIG_NRF_ETR_DECODE) ||
667 	    IS_ENABLED(CONFIG_NRF_ETR_DEBUG)) {
668 		int err;
669 
670 		err = decoder_init();
671 		if (err < 0) {
672 			return;
673 		}
674 	}
675 
676 	while (1) {
677 		process();
678 
679 		uint64_t now = k_uptime_get();
680 
681 		if (DROP_CHECK_PERIOD && (now - checkpoint) > DROP_CHECK_PERIOD) {
682 			uint32_t cnt = log_frontend_stmesp_demux_get_dropped();
683 
684 			checkpoint = now;
685 			if (cnt || oosync_cnt) {
686 				oosync_cnt = 0;
687 				LOG_WRN("Too many log messages, some dropped");
688 			}
689 		}
690 
691 		k_sleep(K_MSEC(CONFIG_NRF_ETR_BACKOFF));
692 	}
693 }
694 #endif
695 
uart_event_handler(const struct device * dev,struct uart_event * evt,void * user_data)696 static void uart_event_handler(const struct device *dev, struct uart_event *evt, void *user_data)
697 {
698 	ARG_UNUSED(dev);
699 
700 	switch (evt->type) {
701 	case UART_TX_ABORTED:
702 		/* An intentional fall-through to UART_TX_DONE. */
703 	case UART_TX_DONE:
704 		k_sem_give(&uart_sem);
705 		break;
706 #ifdef CONFIG_NRF_ETR_SHELL
707 	case UART_RX_RDY:
708 		uart_async_rx_on_rdy(&async_rx, evt->data.rx.buf, evt->data.rx.len);
709 		shell_handler(SHELL_TRANSPORT_EVT_RX_RDY, shell_context);
710 		break;
711 	case UART_RX_BUF_REQUEST: {
712 		uint8_t *buf = uart_async_rx_buf_req(&async_rx);
713 		size_t len = uart_async_rx_get_buf_len(&async_rx);
714 
715 		if (buf) {
716 			int err = uart_rx_buf_rsp(dev, buf, len);
717 
718 			if (err < 0) {
719 				uart_async_rx_on_buf_rel(&async_rx, buf);
720 			}
721 		} else {
722 			atomic_inc(&pending_rx_req);
723 		}
724 
725 		break;
726 	}
727 	case UART_RX_BUF_RELEASED:
728 		uart_async_rx_on_buf_rel(&async_rx, evt->data.rx_buf.buf);
729 		break;
730 	case UART_RX_DISABLED:
731 		break;
732 #endif /* CONFIG_NRF_ETR_SHELL */
733 	default:
734 		__ASSERT_NO_MSG(0);
735 	}
736 }
737 
tbm_event_handler(nrf_tbm_event_t event)738 static void tbm_event_handler(nrf_tbm_event_t event)
739 {
740 	ARG_UNUSED(event);
741 
742 	if (event == NRF_TBM_EVENT_FULL) {
743 		tbm_full = true;
744 	}
745 
746 #ifdef CONFIG_NRF_ETR_SHELL
747 	k_poll_signal_raise(&etr_shell.ctx->signals[SHELL_SIGNAL_LOG_MSG], 0);
748 #else
749 	k_wakeup(&etr_thread);
750 #endif
751 }
752 
etr_process_init(void)753 int etr_process_init(void)
754 {
755 	int err;
756 
757 	k_sem_init(&uart_sem, 1, 1);
758 
759 	err = uart_callback_set(uart_dev, uart_event_handler, NULL);
760 	use_async_uart = (err == 0);
761 
762 	static const nrfx_tbm_config_t config = {.size = wsize_mask};
763 
764 	nrfx_tbm_init(&config, tbm_event_handler);
765 
766 	IRQ_CONNECT(DT_IRQN(DT_NODELABEL(tbm)), DT_IRQ(DT_NODELABEL(tbm), priority),
767 			    nrfx_isr, nrfx_tbm_irq_handler, 0);
768 	irq_enable(DT_IRQN(DT_NODELABEL(tbm)));
769 
770 #ifdef CONFIG_NRF_ETR_SHELL
771 	uint32_t level = CONFIG_LOG_MAX_LEVEL;
772 	static const struct shell_backend_config_flags cfg_flags =
773 		SHELL_DEFAULT_BACKEND_CONFIG_FLAGS;
774 
775 	shell_init(&etr_shell, NULL, cfg_flags, true, level);
776 	k_timer_start(&etr_timer, K_MSEC(CONFIG_NRF_ETR_BACKOFF), K_NO_WAIT);
777 	if (IS_ENABLED(CONFIG_NRF_ETR_DECODE) || IS_ENABLED(CONFIG_NRF_ETR_DEBUG)) {
778 		err = decoder_init();
779 		if (err < 0) {
780 			return err;
781 		}
782 	}
783 #else
784 	k_thread_create(&etr_thread, etr_stack, K_KERNEL_STACK_SIZEOF(etr_stack), etr_thread_func,
785 			NULL, NULL, NULL, K_LOWEST_APPLICATION_THREAD_PRIO, 0, K_NO_WAIT);
786 	k_thread_name_set(&etr_thread, "etr_process");
787 #endif
788 
789 	return 0;
790 }
791 
792 SYS_INIT(etr_process_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
793 
794 #ifdef CONFIG_NRF_ETR_SHELL
795 
etr_timer_handler(struct k_timer * timer)796 static void etr_timer_handler(struct k_timer *timer)
797 {
798 	if (pending_data() >= MIN_DATA) {
799 		k_poll_signal_raise(&etr_shell.ctx->signals[SHELL_SIGNAL_LOG_MSG], 0);
800 	} else {
801 		k_timer_start(timer, K_MSEC(CONFIG_NRF_ETR_BACKOFF), K_NO_WAIT);
802 	}
803 }
804 
z_shell_log_backend_process(const struct shell_log_backend * backend)805 bool z_shell_log_backend_process(const struct shell_log_backend *backend)
806 {
807 	ARG_UNUSED(backend);
808 
809 	process();
810 	k_timer_start(&etr_timer, K_MSEC(CONFIG_NRF_ETR_BACKOFF), K_NO_WAIT);
811 
812 	return false;
813 }
814 
z_shell_log_backend_disable(const struct shell_log_backend * backend)815 void z_shell_log_backend_disable(const struct shell_log_backend *backend)
816 {
817 	ARG_UNUSED(backend);
818 }
819 
z_shell_log_backend_enable(const struct shell_log_backend * backend,void * ctx,uint32_t init_log_level)820 void z_shell_log_backend_enable(const struct shell_log_backend *backend, void *ctx,
821 				uint32_t init_log_level)
822 {
823 	ARG_UNUSED(backend);
824 	ARG_UNUSED(ctx);
825 	ARG_UNUSED(init_log_level);
826 }
827 
etr_shell_write(const struct shell_transport * transport,const void * data,size_t length,size_t * cnt)828 static int etr_shell_write(const struct shell_transport *transport, const void *data, size_t length,
829 			   size_t *cnt)
830 {
831 	size_t len = length;
832 	uint8_t *buf = (uint8_t *)data;
833 	size_t chunk_len;
834 
835 	do {
836 		chunk_len = MIN(len, sizeof(log_output_buf));
837 		len -= log_output_func(buf, chunk_len, NULL);
838 		buf += chunk_len;
839 	} while (len > 0);
840 
841 	*cnt = length;
842 	shell_handler(SHELL_TRANSPORT_EVT_TX_RDY, shell_context);
843 
844 	return 0;
845 }
846 
rx_enable(uint8_t * buf,size_t len)847 static int rx_enable(uint8_t *buf, size_t len)
848 {
849 	return uart_rx_enable(uart_dev, buf, len, 10000);
850 }
851 
etr_shell_read(const struct shell_transport * transport,void * data,size_t length,size_t * cnt)852 static int etr_shell_read(const struct shell_transport *transport, void *data, size_t length,
853 			  size_t *cnt)
854 {
855 	uint8_t *buf;
856 	size_t blen;
857 	bool buf_available;
858 
859 	blen = uart_async_rx_data_claim(&async_rx, &buf, length);
860 	memcpy(data, buf, blen);
861 	buf_available = uart_async_rx_data_consume(&async_rx, blen);
862 
863 	*cnt = blen;
864 	if (pending_rx_req && buf_available) {
865 		uint8_t *buf = uart_async_rx_buf_req(&async_rx);
866 		size_t len = uart_async_rx_get_buf_len(&async_rx);
867 		int err;
868 
869 		__ASSERT_NO_MSG(buf != NULL);
870 		atomic_dec(&pending_rx_req);
871 		err = uart_rx_buf_rsp(uart_dev, buf, len);
872 		/* If it is too late and RX is disabled then re-enable it. */
873 		if (err < 0) {
874 			if (err == -EACCES) {
875 				pending_rx_req = 0;
876 				err = rx_enable(buf, len);
877 			} else {
878 				return err;
879 			}
880 		}
881 	}
882 
883 	return 0;
884 }
885 
etr_shell_enable(const struct shell_transport * transport,bool blocking_tx)886 static int etr_shell_enable(const struct shell_transport *transport, bool blocking_tx)
887 {
888 	return 0;
889 }
890 
etr_shell_uninit(const struct shell_transport * transport)891 static int etr_shell_uninit(const struct shell_transport *transport)
892 {
893 	return 0;
894 }
895 
etr_shell_init(const struct shell_transport * transport,const void * config,shell_transport_handler_t evt_handler,void * context)896 static int etr_shell_init(const struct shell_transport *transport, const void *config,
897 			  shell_transport_handler_t evt_handler, void *context)
898 {
899 	int err;
900 	uint8_t *buf;
901 	static const struct uart_async_rx_config async_rx_config = {
902 		.buffer = rx_buf,
903 		.length = sizeof(rx_buf),
904 		.buf_cnt = CONFIG_NRF_ETR_SHELL_ASYNC_RX_BUFFER_COUNT,
905 	};
906 
907 	shell_context = context;
908 	shell_handler = evt_handler;
909 	err = uart_async_rx_init(&async_rx, &async_rx_config);
910 	if (err) {
911 		return err;
912 	}
913 
914 	buf = uart_async_rx_buf_req(&async_rx);
915 
916 	return rx_enable(buf, uart_async_rx_get_buf_len(&async_rx));
917 }
918 
919 #ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
etr_shell_update(const struct shell_transport * transport)920 static void etr_shell_update(const struct shell_transport *transport)
921 {
922 }
923 #endif
924 
925 const struct shell_transport_api shell_api = {
926 	.init = etr_shell_init,
927 	.uninit = etr_shell_uninit,
928 	.enable = etr_shell_enable,
929 	.write = etr_shell_write,
930 	.read = etr_shell_read,
931 #ifdef CONFIG_MCUMGR_TRANSPORT_SHELL
932 	.update = shell_update,
933 #endif /* CONFIG_MCUMGR_TRANSPORT_SHELL */
934 };
935 
936 static struct shell_transport transport = {
937 	.api = &shell_api,
938 	.ctx = NULL,
939 };
940 
941 static uint8_t shell_out_buffer[CONFIG_SHELL_PRINTF_BUFF_SIZE];
942 Z_SHELL_DEFINE(etr_shell, CONFIG_NRF_ETR_SHELL_PROMPT, &transport, shell_out_buffer, NULL,
943 	       SHELL_FLAG_OLF_CRLF);
944 #endif /* CONFIG_NRF_ETR_SHELL */
945