1 /*
2  * Copyright (c) 2019 Intel Corporation
3  * Copyright (c) 2020 Microchip Technology Inc.
4  *
5  * SPDX-License-Identifier: Apache-2.0
6  */
7 
8 #define DT_DRV_COMPAT microchip_xec_espi_saf
9 
10 #include <zephyr/kernel.h>
11 #include <soc.h>
12 #include <errno.h>
13 #include <zephyr/drivers/espi.h>
14 #include <zephyr/drivers/espi_saf.h>
15 #include <zephyr/logging/log.h>
16 
17 #include "espi_utils.h"
18 LOG_MODULE_REGISTER(espi_saf, CONFIG_ESPI_LOG_LEVEL);
19 
20 /* SAF EC Portal read/write flash access limited to 1-64 bytes */
21 #define MAX_SAF_ECP_BUFFER_SIZE 64ul
22 
23 /* 1 second maximum for flash operations */
24 #define MAX_SAF_FLASH_TIMEOUT 125000ul /* 1000ul */
25 
26 /* 64 bytes @ 24MHz quad is approx. 6 us */
27 #define SAF_WAIT_INTERVAL 8
28 
29 /* After 8 wait intervals yield */
30 #define SAF_YIELD_THRESHOLD 64
31 
32 struct espi_isr {
33 	uint32_t girq_bit;
34 	void (*the_isr)(const struct device *dev);
35 };
36 
37 /*
38  * SAF configuration from Device Tree
39  * SAF controller register block base address
40  * QMSPI controller register block base address
41  * SAF communications register block base address
42  * Flash STATUS1 poll timeout in 32KHz periods
43  * Flash consecutive read timeout in units of 20 ns
44  * Delay before first Poll-1 command after suspend in 20 ns units
45  * Hold off suspend for this interval if erase or program in 32KHz periods.
46  * Add delay between Poll STATUS1 commands in 20 ns units.
47  */
48 struct espi_saf_xec_config {
49 	uintptr_t saf_base_addr;
50 	uintptr_t qmspi_base_addr;
51 	uintptr_t saf_comm_base_addr;
52 	uint32_t poll_timeout;
53 	uint32_t consec_rd_timeout;
54 	uint32_t sus_chk_delay;
55 	uint16_t sus_rsm_interval;
56 	uint16_t poll_interval;
57 };
58 
59 struct espi_saf_xec_data {
60 	sys_slist_t callbacks;
61 	struct k_sem ecp_lock;
62 	uint32_t hwstatus;
63 };
64 
65 /* EC portal local flash r/w buffer */
66 static uint32_t slave_mem[MAX_SAF_ECP_BUFFER_SIZE];
67 
68 /*
69  * @brief eSPI SAF configuration
70  */
71 
mchp_saf_cs_descr_wr(MCHP_SAF_HW_REGS * regs,uint8_t cs,uint32_t val)72 static inline void mchp_saf_cs_descr_wr(MCHP_SAF_HW_REGS *regs, uint8_t cs,
73 					uint32_t val)
74 {
75 	regs->SAF_CS_OP[cs].OP_DESCR = val;
76 }
77 
mchp_saf_poll2_mask_wr(MCHP_SAF_HW_REGS * regs,uint8_t cs,uint16_t val)78 static inline void mchp_saf_poll2_mask_wr(MCHP_SAF_HW_REGS *regs, uint8_t cs,
79 					  uint16_t val)
80 {
81 	LOG_DBG("%s cs: %d mask %x", __func__, cs, val);
82 	if (cs == 0) {
83 		regs->SAF_CS0_CFG_P2M = val;
84 	} else {
85 		regs->SAF_CS1_CFG_P2M = val;
86 	}
87 }
88 
mchp_saf_cm_prefix_wr(MCHP_SAF_HW_REGS * regs,uint8_t cs,uint16_t val)89 static inline void mchp_saf_cm_prefix_wr(MCHP_SAF_HW_REGS *regs, uint8_t cs,
90 					 uint16_t val)
91 {
92 	if (cs == 0) {
93 		regs->SAF_CS0_CM_PRF = val;
94 	} else {
95 		regs->SAF_CS1_CM_PRF = val;
96 	}
97 }
98 
99 /* busy wait or yield until we have SAF interrupt support */
xec_saf_spin_yield(int * counter)100 static int xec_saf_spin_yield(int *counter)
101 {
102 	*counter = *counter + 1;
103 
104 	if (*counter > MAX_SAF_FLASH_TIMEOUT) {
105 		return -ETIMEDOUT;
106 	}
107 
108 	if (*counter > SAF_YIELD_THRESHOLD) {
109 		k_yield();
110 	} else {
111 		k_busy_wait(SAF_WAIT_INTERVAL);
112 	}
113 
114 	return 0;
115 }
116 
117 /*
118  * Initialize SAF flash protection regions.
119  * SAF HW implements 17 protection regions.
120  * At least one protection region must be configured to allow
121  * EC access to the local flash through the EC Portal.
122  * Each protection region is composed of 4 32-bit registers
123  * Start bits[19:0] = bits[31:12] region start address (4KB boundaries)
124  * Limit bits[19:0] = bits[31:12] region limit address (4KB boundaries)
125  * Write protect b[7:0] = masters[7:0] allow write/erase. 1=allowed
126  * Read protetc b[7:0] = masters[7:0] allow read. 1=allowed
127  *
128  * This routine configures protection region 0 for full flash array
129  * address range and read-write-erase for all masters.
130  * This routine must be called AFTER the flash configuration size/limit and
131  * threshold registers have been programmed.
132  *
133  * POR default values:
134  * Start = 0x7ffff
135  * Limit = 0
136  * Write Prot = 0x01 Master 0 always granted write/erase
137  * Read Prot = 0x01 Master 0 always granted read
138  *
139  * Sample code configures PR[0]
140  * Start = 0
141  * Limit = 0x7ffff
142  * WR = 0xFF
143  * RD = 0xFF
144  */
saf_protection_regions_init(MCHP_SAF_HW_REGS * regs)145 static void saf_protection_regions_init(MCHP_SAF_HW_REGS *regs)
146 {
147 	LOG_DBG("%s", __func__);
148 
149 	for (size_t n = 0; n < MCHP_ESPI_SAF_PR_MAX; n++) {
150 		if (n == 0) {
151 			regs->SAF_PROT_RG[0].START = 0U;
152 			regs->SAF_PROT_RG[0].LIMIT =
153 				regs->SAF_FL_CFG_SIZE_LIM >> 12;
154 			regs->SAF_PROT_RG[0].WEBM = MCHP_SAF_MSTR_ALL;
155 			regs->SAF_PROT_RG[0].RDBM = MCHP_SAF_MSTR_ALL;
156 		} else {
157 			regs->SAF_PROT_RG[n].START =
158 				MCHP_SAF_PROT_RG_START_DFLT;
159 			regs->SAF_PROT_RG[n].LIMIT =
160 				MCHP_SAF_PROT_RG_LIMIT_DFLT;
161 			regs->SAF_PROT_RG[n].WEBM = 0U;
162 			regs->SAF_PROT_RG[n].RDBM = 0U;
163 		}
164 
165 		LOG_DBG("PROT[%d] START %x", n, regs->SAF_PROT_RG[n].START);
166 		LOG_DBG("PROT[%d] LIMIT %x", n, regs->SAF_PROT_RG[n].LIMIT);
167 		LOG_DBG("PROT[%d] WEBM %x", n, regs->SAF_PROT_RG[n].WEBM);
168 		LOG_DBG("PROT[%d] RDBM %x", n, regs->SAF_PROT_RG[n].RDBM);
169 	}
170 }
171 
qmspi_freq_div(uint32_t freqhz)172 static uint32_t qmspi_freq_div(uint32_t freqhz)
173 {
174 	uint32_t fdiv;
175 
176 	if (freqhz < (MCHP_QMSPI_MIN_FREQ_KHZ * 1000U)) {
177 		fdiv = 0U; /* freq divider field -> 256 */
178 	} else if (freqhz >= (MCHP_QMSPI_MAX_FREQ_KHZ * 1000U)) {
179 		fdiv = 1U;
180 	} else {
181 		/* truncation produces next higher integer frequency */
182 		fdiv = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ / freqhz;
183 	}
184 
185 	fdiv &= MCHP_QMSPI_M_FDIV_MASK0;
186 	fdiv <<= MCHP_QMSPI_M_FDIV_POS;
187 
188 	return fdiv;
189 }
190 
191 /*
192  * Take over and re-initialize QMSPI for use by SAF HW engine.
193  * When SAF is activated, QMSPI registers are controlled by SAF
194  * HW engine. CPU no longer has access to QMSPI registers.
195  * 1. Save QMSPI driver frequency divider, SPI signalling mode, and
196  *    chip select timing.
197  * 2. Put QMSPI controller in a known state by performing a soft reset.
198  * 3. Clear QMSPI GIRQ status
199  * 4. Configure QMSPI interface control for SAF.
200  * 5. Load flash device independent (generic) descriptors.
201  * 6. Enable transfer done interrupt in QMSPI
202  * 7. Enable QMSPI SAF mode
203  * 8. If user configuration overrides frequency, signalling mode,
204  *    or chip select timing derive user values.
205  * 9. Program QMSPI MODE and CSTIM registers with activate set.
206  */
saf_qmspi_init(const struct espi_saf_xec_config * xcfg,const struct espi_saf_cfg * cfg)207 static int saf_qmspi_init(const struct espi_saf_xec_config *xcfg,
208 			  const struct espi_saf_cfg *cfg)
209 {
210 	uint32_t qmode, cstim, n;
211 	QMSPI_Type *regs = (QMSPI_Type *)xcfg->qmspi_base_addr;
212 	const struct espi_saf_hw_cfg *hwcfg = &cfg->hwcfg;
213 
214 	qmode = regs->MODE;
215 	if (!(qmode & MCHP_QMSPI_M_ACTIVATE)) {
216 		return -EAGAIN;
217 	}
218 
219 	qmode = regs->MODE & (MCHP_QMSPI_M_FDIV_MASK | MCHP_QMSPI_M_SIG_MASK);
220 	cstim = regs->CSTM;
221 	regs->MODE = MCHP_QMSPI_M_SRST;
222 	regs->STS = MCHP_QMSPI_STS_RW1C_MASK;
223 
224 	MCHP_GIRQ_ENCLR(MCHP_QMSPI_GIRQ_NUM) = MCHP_QMSPI_GIRQ_VAL;
225 	MCHP_GIRQ_SRC(MCHP_QMSPI_GIRQ_NUM) = MCHP_QMSPI_GIRQ_VAL;
226 
227 	regs->IFCTRL =
228 		(MCHP_QMSPI_IFC_WP_OUT_HI | MCHP_QMSPI_IFC_WP_OUT_EN |
229 		 MCHP_QMSPI_IFC_HOLD_OUT_HI | MCHP_QMSPI_IFC_HOLD_OUT_EN);
230 
231 	for (n = 0; n < MCHP_SAF_NUM_GENERIC_DESCR; n++) {
232 		regs->DESCR[MCHP_SAF_CM_EXIT_START_DESCR + n] =
233 			hwcfg->generic_descr[n];
234 	}
235 
236 	regs->IEN = MCHP_QMSPI_IEN_XFR_DONE;
237 
238 	qmode |= (MCHP_QMSPI_M_SAF_DMA_MODE_EN | MCHP_QMSPI_M_CS0 |
239 		  MCHP_QMSPI_M_ACTIVATE);
240 
241 	if (hwcfg->flags & MCHP_SAF_HW_CFG_FLAG_CPHA) {
242 		qmode = (qmode & ~(MCHP_QMSPI_M_SIG_MASK)) |
243 			((hwcfg->qmspi_cpha << MCHP_QMSPI_M_SIG_POS) &
244 			 MCHP_QMSPI_M_SIG_MASK);
245 	}
246 
247 	if (hwcfg->flags & MCHP_SAF_HW_CFG_FLAG_FREQ) {
248 		qmode = (qmode & ~(MCHP_QMSPI_M_FDIV_MASK)) |
249 			qmspi_freq_div(hwcfg->qmspi_freq_hz);
250 	}
251 
252 	if (hwcfg->flags & MCHP_SAF_HW_CFG_FLAG_CSTM) {
253 		cstim = hwcfg->qmspi_cs_timing;
254 	}
255 
256 	regs->MODE = qmode;
257 	regs->CSTM = cstim;
258 
259 	return 0;
260 }
261 
262 /*
263  * Registers at offsets:
264  * SAF Poll timeout @ 0x194.  Hard coded to 0x28000. Default value = 0.
265  *	recommended value = 0x28000 32KHz clocks (5 seconds). b[17:0]
266  * SAF Poll interval @ 0x198.  Hard coded to 0
267  *	Default value = 0. Recommended = 0. b[15:0]
268  * SAF Suspend/Resume Interval @ 0x19c.  Hard coded to 0x8
269  *	Default value = 0x01. Min time erase/prog in 32KHz units.
270  * SAF Consecutive Read Timeout @ 0x1a0. Hard coded to 0x2. b[15:0]
271  *	Units of MCLK. Recommend < 20us. b[19:0]
272  * SAF Suspend Check Delay @ 0x1ac. Not touched.
273  *	Default = 0. Recommend = 20us. Units = MCLK. b[19:0]
274  */
saf_flash_timing_init(MCHP_SAF_HW_REGS * regs,const struct espi_saf_xec_config * cfg)275 static void saf_flash_timing_init(MCHP_SAF_HW_REGS *regs,
276 				  const struct espi_saf_xec_config *cfg)
277 {
278 	LOG_DBG("%s\n", __func__);
279 	regs->SAF_POLL_TMOUT = cfg->poll_timeout;
280 	regs->SAF_POLL_INTRVL = cfg->poll_interval;
281 	regs->SAF_SUS_RSM_INTRVL = cfg->sus_rsm_interval;
282 	regs->SAF_CONSEC_RD_TMOUT = cfg->consec_rd_timeout;
283 	regs->SAF_SUS_CHK_DLY = cfg->sus_chk_delay;
284 	LOG_DBG("SAF_POLL_TMOUT %x\n", regs->SAF_POLL_TMOUT);
285 	LOG_DBG("SAF_POLL_INTRVL %x\n", regs->SAF_POLL_INTRVL);
286 	LOG_DBG("SAF_SUS_RSM_INTRVL %x\n", regs->SAF_SUS_RSM_INTRVL);
287 	LOG_DBG("SAF_CONSEC_RD_TMOUT %x\n", regs->SAF_CONSEC_RD_TMOUT);
288 	LOG_DBG("SAF_SUS_CHK_DLY %x\n", regs->SAF_SUS_CHK_DLY);
289 }
290 
291 /*
292  * Disable DnX bypass feature.
293  */
saf_dnx_bypass_init(MCHP_SAF_HW_REGS * regs)294 static void saf_dnx_bypass_init(MCHP_SAF_HW_REGS *regs)
295 {
296 	regs->SAF_DNX_PROT_BYP = 0;
297 	regs->SAF_DNX_PROT_BYP = 0xffffffff;
298 }
299 
300 /*
301  * Bitmap of flash erase size from 1KB up to 128KB.
302  * eSPI SAF specification requires 4KB erase support.
303  * MCHP SAF supports 4KB, 32KB, and 64KB.
304  * Only report 32KB and 64KB to Host if supported by both
305  * flash devices.
306  */
saf_init_erase_block_size(const struct espi_saf_cfg * cfg)307 static int saf_init_erase_block_size(const struct espi_saf_cfg *cfg)
308 {
309 	struct espi_saf_flash_cfg *fcfg = cfg->flash_cfgs;
310 	uint32_t opb = fcfg->opb;
311 	uint8_t erase_bitmap = MCHP_ESPI_SERASE_SZ_4K;
312 
313 	LOG_DBG("%s\n", __func__);
314 
315 	if (cfg->nflash_devices > 1) {
316 		fcfg++;
317 		opb &= fcfg->opb;
318 	}
319 
320 	if ((opb & MCHP_SAF_CS_OPB_ER0_MASK) == 0) {
321 		/* One or both do not support 4KB erase! */
322 		return -EINVAL;
323 	}
324 
325 	if (opb & MCHP_SAF_CS_OPB_ER1_MASK) {
326 		erase_bitmap |= MCHP_ESPI_SERASE_SZ_32K;
327 	}
328 
329 	if (opb & MCHP_SAF_CS_OPB_ER2_MASK) {
330 		erase_bitmap |= MCHP_ESPI_SERASE_SZ_64K;
331 	}
332 
333 	ESPI_CAP_REGS->FC_SERBZ = erase_bitmap;
334 
335 	return 0;
336 }
337 
338 /*
339  * Set the continuous mode prefix and 4-byte address mode bits
340  * based upon the flash configuration information.
341  * Updates:
342  * SAF Flash Config Poll2 Mask @ 0x1A4
343  * SAF Flash Config Special Mode @ 0x1B0
344  * SAF Flash Misc Config @ 0x38
345  */
saf_flash_misc_cfg(MCHP_SAF_HW_REGS * regs,uint8_t cs,const struct espi_saf_flash_cfg * fcfg)346 static void saf_flash_misc_cfg(MCHP_SAF_HW_REGS *regs, uint8_t cs,
347 			       const struct espi_saf_flash_cfg *fcfg)
348 {
349 	uint32_t d, v;
350 
351 	d = regs->SAF_FL_CFG_MISC;
352 
353 	v = MCHP_SAF_FL_CFG_MISC_CS0_CPE;
354 	if (cs) {
355 		v = MCHP_SAF_FL_CFG_MISC_CS1_CPE;
356 	}
357 
358 	/* Does this flash device require a prefix for continuous mode? */
359 	if (fcfg->cont_prefix != 0) {
360 		d |= v;
361 	} else {
362 		d &= ~v;
363 	}
364 
365 	v = MCHP_SAF_FL_CFG_MISC_CS0_4BM;
366 	if (cs) {
367 		v = MCHP_SAF_FL_CFG_MISC_CS1_4BM;
368 	}
369 
370 	/* Use 32-bit addressing for this flash device? */
371 	if (fcfg->flags & MCHP_FLASH_FLAG_ADDR32) {
372 		d |= v;
373 	} else {
374 		d &= ~v;
375 	}
376 
377 	regs->SAF_FL_CFG_MISC = d;
378 	LOG_DBG("%s SAF_FL_CFG_MISC: %x", __func__, d);
379 }
380 
381 /*
382  * Program flash device specific SAF and QMSPI registers.
383  *
384  * CS0 OpA @ 0x4c or CS1 OpA @ 0x5C
385  * CS0 OpB @ 0x50 or CS1 OpB @ 0x60
386  * CS0 OpC @ 0x54 or CS1 OpC @ 0x64
387  * Poll 2 Mask @ 0x1a4
388  * Continuous Prefix @ 0x1b0
389  * CS0: QMSPI descriptors 0-5 or CS1 QMSPI descriptors 6-11
390  * CS0 Descrs @ 0x58 or CS1 Descrs @ 0x68
391  */
saf_flash_cfg(const struct device * dev,const struct espi_saf_flash_cfg * fcfg,uint8_t cs)392 static void saf_flash_cfg(const struct device *dev,
393 			  const struct espi_saf_flash_cfg *fcfg, uint8_t cs)
394 {
395 	uint32_t d, did;
396 	const struct espi_saf_xec_config *xcfg = dev->config;
397 	MCHP_SAF_HW_REGS *regs = (MCHP_SAF_HW_REGS *)xcfg->saf_base_addr;
398 	QMSPI_Type *qregs = (QMSPI_Type *)xcfg->qmspi_base_addr;
399 
400 	LOG_DBG("%s cs=%u", __func__, cs);
401 
402 	regs->SAF_CS_OP[cs].OPA = fcfg->opa;
403 	regs->SAF_CS_OP[cs].OPB = fcfg->opb;
404 	regs->SAF_CS_OP[cs].OPC = fcfg->opc;
405 	regs->SAF_CS_OP[cs].OP_DESCR = (uint32_t)fcfg->cs_cfg_descr_ids;
406 
407 	did = MCHP_SAF_QMSPI_CS0_START_DESCR;
408 	if (cs != 0) {
409 		did = MCHP_SAF_QMSPI_CS1_START_DESCR;
410 	}
411 
412 	for (size_t i = 0; i < MCHP_SAF_QMSPI_NUM_FLASH_DESCR; i++) {
413 		d = fcfg->descr[i] & ~(MCHP_QMSPI_C_NEXT_DESCR_MASK);
414 		d |= (((did + 1) << MCHP_QMSPI_C_NEXT_DESCR_POS) &
415 		      MCHP_QMSPI_C_NEXT_DESCR_MASK);
416 		qregs->DESCR[did++] = d;
417 	}
418 
419 	mchp_saf_poll2_mask_wr(regs, cs, fcfg->poll2_mask);
420 	mchp_saf_cm_prefix_wr(regs, cs, fcfg->cont_prefix);
421 	saf_flash_misc_cfg(regs, cs, fcfg);
422 }
423 
424 static const uint32_t tag_map_dflt[MCHP_ESPI_SAF_TAGMAP_MAX] = {
425 	MCHP_SAF_TAG_MAP0_DFLT, MCHP_SAF_TAG_MAP1_DFLT, MCHP_SAF_TAG_MAP2_DFLT
426 };
427 
saf_tagmap_init(MCHP_SAF_HW_REGS * regs,const struct espi_saf_cfg * cfg)428 static void saf_tagmap_init(MCHP_SAF_HW_REGS *regs,
429 			    const struct espi_saf_cfg *cfg)
430 {
431 	const struct espi_saf_hw_cfg *hwcfg = &cfg->hwcfg;
432 
433 	for (int i = 0; i < MCHP_ESPI_SAF_TAGMAP_MAX; i++) {
434 		if (hwcfg->tag_map[i] & MCHP_SAF_HW_CFG_TAGMAP_USE) {
435 			regs->SAF_TAG_MAP[i] = hwcfg->tag_map[i];
436 		} else {
437 			regs->SAF_TAG_MAP[i] = tag_map_dflt[i];
438 		}
439 	}
440 
441 	LOG_DBG("SAF TAG0 %x", regs->SAF_TAG_MAP[0]);
442 	LOG_DBG("SAF TAG1 %x", regs->SAF_TAG_MAP[1]);
443 	LOG_DBG("SAF TAG2 %x", regs->SAF_TAG_MAP[2]);
444 }
445 
446 /*
447  * Configure SAF and QMSPI for SAF operation based upon the
448  * number and characteristics of local SPI flash devices.
449  * NOTE: SAF is configured but not activated. SAF should be
450  * activated only when eSPI master sends Flash Channel enable
451  * message with MAF/SAF select flag.
452  */
espi_saf_xec_configuration(const struct device * dev,const struct espi_saf_cfg * cfg)453 static int espi_saf_xec_configuration(const struct device *dev,
454 				      const struct espi_saf_cfg *cfg)
455 {
456 	int ret = 0;
457 	uint32_t totalsz = 0;
458 	uint32_t u = 0;
459 
460 	LOG_DBG("%s", __func__);
461 
462 	if ((dev == NULL) || (cfg == NULL)) {
463 		return -EINVAL;
464 	}
465 
466 	const struct espi_saf_xec_config *xcfg = dev->config;
467 	MCHP_SAF_HW_REGS *regs = (MCHP_SAF_HW_REGS *)xcfg->saf_base_addr;
468 	const struct espi_saf_flash_cfg *fcfg = cfg->flash_cfgs;
469 
470 	if ((fcfg == NULL) || (cfg->nflash_devices == 0U) ||
471 	    (cfg->nflash_devices > MCHP_SAF_MAX_FLASH_DEVICES)) {
472 		return -EINVAL;
473 	}
474 
475 	if (regs->SAF_FL_CFG_MISC & MCHP_SAF_FL_CFG_MISC_SAF_EN) {
476 		return -EAGAIN;
477 	}
478 
479 	saf_qmspi_init(xcfg, cfg);
480 
481 	regs->SAF_CS0_CFG_P2M = 0;
482 	regs->SAF_CS1_CFG_P2M = 0;
483 
484 	regs->SAF_FL_CFG_GEN_DESCR = MCHP_SAF_FL_CFG_GEN_DESCR_STD;
485 
486 	/* flash device connected to CS0 required */
487 	totalsz = fcfg->flashsz;
488 	regs->SAF_FL_CFG_THRH = totalsz;
489 	saf_flash_cfg(dev, fcfg, 0);
490 
491 	/* optional second flash device connected to CS1 */
492 	if (cfg->nflash_devices > 1) {
493 		fcfg++;
494 		totalsz += fcfg->flashsz;
495 	}
496 	/* Program CS1 configuration (same as CS0 if only one device) */
497 	saf_flash_cfg(dev, fcfg, 1);
498 
499 	if (totalsz == 0) {
500 		return -EAGAIN;
501 	}
502 
503 	regs->SAF_FL_CFG_SIZE_LIM = totalsz - 1;
504 
505 	LOG_DBG("SAF_FL_CFG_THRH = %x SAF_FL_CFG_SIZE_LIM = %x",
506 		regs->SAF_FL_CFG_THRH, regs->SAF_FL_CFG_SIZE_LIM);
507 
508 	saf_tagmap_init(regs, cfg);
509 
510 	saf_protection_regions_init(regs);
511 
512 	saf_dnx_bypass_init(regs);
513 
514 	saf_flash_timing_init(regs, xcfg);
515 
516 	ret = saf_init_erase_block_size(cfg);
517 	if (ret != 0) {
518 		LOG_ERR("SAF Config bad flash erase config");
519 		return ret;
520 	}
521 
522 	/* Default or expedited prefetch? */
523 	u = MCHP_SAF_FL_CFG_MISC_PFOE_DFLT;
524 	if (cfg->hwcfg.flags & MCHP_SAF_HW_CFG_FLAG_PFEXP) {
525 		u = MCHP_SAF_FL_CFG_MISC_PFOE_EXP;
526 	}
527 
528 	regs->SAF_FL_CFG_MISC =
529 		(regs->SAF_FL_CFG_MISC & ~(MCHP_SAF_FL_CFG_MISC_PFOE_MASK)) | u;
530 
531 	/* enable prefetch ? */
532 	if (cfg->hwcfg.flags & MCHP_SAF_HW_CFG_FLAG_PFEN) {
533 		MCHP_SAF_COMM_MODE_REG |= MCHP_SAF_COMM_MODE_PF_EN;
534 	} else {
535 		MCHP_SAF_COMM_MODE_REG &= ~(MCHP_SAF_COMM_MODE_PF_EN);
536 	}
537 
538 	LOG_DBG("%s SAF_FL_CFG_MISC: %x", __func__, regs->SAF_FL_CFG_MISC);
539 	LOG_DBG("%s Aft MCHP_SAF_COMM_MODE_REG: %x", __func__,
540 		MCHP_SAF_COMM_MODE_REG);
541 
542 	return 0;
543 }
544 
espi_saf_xec_set_pr(const struct device * dev,const struct espi_saf_protection * pr)545 static int espi_saf_xec_set_pr(const struct device *dev,
546 			       const struct espi_saf_protection *pr)
547 {
548 	if ((dev == NULL) || (pr == NULL)) {
549 		return -EINVAL;
550 	}
551 
552 	if (pr->nregions >= MCHP_ESPI_SAF_PR_MAX) {
553 		return -EINVAL;
554 	}
555 
556 	const struct espi_saf_xec_config *xcfg = dev->config;
557 	MCHP_SAF_HW_REGS *regs = (MCHP_SAF_HW_REGS *)xcfg->saf_base_addr;
558 
559 	if (regs->SAF_FL_CFG_MISC & MCHP_SAF_FL_CFG_MISC_SAF_EN) {
560 		return -EAGAIN;
561 	}
562 
563 	const struct espi_saf_pr *preg = pr->pregions;
564 	size_t n = pr->nregions;
565 
566 	while (n--) {
567 		uint8_t regnum = preg->pr_num;
568 
569 		if (regnum >= MCHP_ESPI_SAF_PR_MAX) {
570 			return -EINVAL;
571 		}
572 
573 		/* NOTE: If previously locked writes have no effect */
574 		if (preg->flags & MCHP_SAF_PR_FLAG_ENABLE) {
575 			regs->SAF_PROT_RG[regnum].START = preg->start >> 12U;
576 			regs->SAF_PROT_RG[regnum].LIMIT =
577 				(preg->start + preg->size - 1U) >> 12U;
578 			regs->SAF_PROT_RG[regnum].WEBM = preg->master_bm_we;
579 			regs->SAF_PROT_RG[regnum].RDBM = preg->master_bm_rd;
580 		} else {
581 			regs->SAF_PROT_RG[regnum].START = 0x7FFFFU;
582 			regs->SAF_PROT_RG[regnum].LIMIT = 0U;
583 			regs->SAF_PROT_RG[regnum].WEBM = 0U;
584 			regs->SAF_PROT_RG[regnum].RDBM = 0U;
585 		}
586 
587 		if (preg->flags & MCHP_SAF_PR_FLAG_LOCK) {
588 			regs->SAF_PROT_LOCK |= (1UL << regnum);
589 		}
590 
591 		preg++;
592 	}
593 
594 	return 0;
595 }
596 
espi_saf_xec_channel_ready(const struct device * dev)597 static bool espi_saf_xec_channel_ready(const struct device *dev)
598 {
599 	const struct espi_saf_xec_config *cfg = dev->config;
600 	MCHP_SAF_HW_REGS *regs = (MCHP_SAF_HW_REGS *)cfg->saf_base_addr;
601 
602 	if (regs->SAF_FL_CFG_MISC & MCHP_SAF_FL_CFG_MISC_SAF_EN) {
603 		return true;
604 	}
605 
606 	return false;
607 }
608 
609 /*
610  * MCHP SAF hardware supports a range of flash block erase
611  * sizes from 1KB to 128KB. The eSPI Host specification requires
612  * 4KB must be supported. The MCHP SAF QMSPI HW interface only
613  * supported three erase sizes. Most SPI flash devices chosen for
614  * SAF support 4KB, 32KB, and 64KB.
615  * Get flash erase sizes driver has configured from eSPI capabilities
616  * registers. We assume driver flash tables have opcodes to match
617  * capabilities configuration.
618  * Check requested erase size is supported.
619  */
620 struct erase_size_encoding {
621 	uint8_t hwbitpos;
622 	uint8_t encoding;
623 };
624 
625 static const struct erase_size_encoding ersz_enc[] = {
626 	{ MCHP_ESPI_SERASE_SZ_4K_BITPOS, 0 },
627 	{ MCHP_ESPI_SERASE_SZ_32K_BITPOS, 1 },
628 	{ MCHP_ESPI_SERASE_SZ_64K_BITPOS, 2 }
629 };
630 
631 #define SAF_ERASE_ENCODING_MAX_ENTRY                                           \
632 	(sizeof(ersz_enc) / sizeof(struct erase_size_encoding))
633 
get_erase_size_encoding(uint32_t erase_size)634 static uint32_t get_erase_size_encoding(uint32_t erase_size)
635 {
636 	uint8_t supsz = ESPI_CAP_REGS->FC_SERBZ;
637 
638 	LOG_DBG("%s\n", __func__);
639 	for (int i = 0; i < SAF_ERASE_ENCODING_MAX_ENTRY; i++) {
640 		uint32_t sz = MCHP_ESPI_SERASE_SZ(ersz_enc[i].hwbitpos);
641 
642 		if ((sz == erase_size) &&
643 		    (supsz & (1 << ersz_enc[i].hwbitpos))) {
644 			return ersz_enc[i].encoding;
645 		}
646 	}
647 
648 	return 0xffffffffU;
649 }
650 
check_ecp_access_size(uint32_t reqlen)651 static int check_ecp_access_size(uint32_t reqlen)
652 {
653 	if ((reqlen < MCHP_SAF_ECP_CMD_RW_LEN_MIN) ||
654 	    (reqlen > MCHP_SAF_ECP_CMD_RW_LEN_MAX)) {
655 		return -EAGAIN;
656 	}
657 
658 	return 0;
659 }
660 
661 /*
662  * EC access (read/erase/write) to SAF attached flash array
663  * cmd  0 = read
664  *	1 = write
665  *	2 = erase
666  */
saf_ecp_access(const struct device * dev,struct espi_saf_packet * pckt,uint8_t cmd)667 static int saf_ecp_access(const struct device *dev,
668 			  struct espi_saf_packet *pckt, uint8_t cmd)
669 {
670 	uint32_t err_mask, n;
671 	int rc, counter;
672 	struct espi_saf_xec_data *xdat = dev->data;
673 	const struct espi_saf_xec_config *cfg = dev->config;
674 	MCHP_SAF_HW_REGS *regs = (MCHP_SAF_HW_REGS *)cfg->saf_base_addr;
675 
676 	counter = 0;
677 	err_mask = MCHP_SAF_ECP_STS_ERR_MASK;
678 
679 	LOG_DBG("%s", __func__);
680 
681 	if (!(regs->SAF_FL_CFG_MISC & MCHP_SAF_FL_CFG_MISC_SAF_EN)) {
682 		LOG_ERR("SAF is disabled");
683 		return -EIO;
684 	}
685 
686 	if (regs->SAF_ECP_BUSY & MCHP_SAF_ECP_BUSY) {
687 		LOG_ERR("SAF EC Portal is busy");
688 		return -EBUSY;
689 	}
690 
691 	if ((cmd == MCHP_SAF_ECP_CMD_CTYPE_READ0) ||
692 	    (cmd == MCHP_SAF_ECP_CMD_CTYPE_WRITE0)) {
693 		rc = check_ecp_access_size(pckt->len);
694 		if (rc) {
695 			LOG_ERR("SAF EC Portal size out of bounds");
696 			return rc;
697 		}
698 
699 		if (cmd == MCHP_SAF_ECP_CMD_CTYPE_WRITE0) {
700 			memcpy(slave_mem, pckt->buf, pckt->len);
701 		}
702 
703 		n = pckt->len;
704 	} else if (cmd == MCHP_SAF_ECP_CMD_CTYPE_ERASE0) {
705 		n = get_erase_size_encoding(pckt->len);
706 		if (n == 0xffffffff) {
707 			LOG_ERR("SAF EC Portal unsupported erase size");
708 			return -EAGAIN;
709 		}
710 	} else {
711 		LOG_ERR("SAF EC Portal bad cmd");
712 		return -EAGAIN;
713 	}
714 
715 	LOG_DBG("%s params val done", __func__);
716 
717 	k_sem_take(&xdat->ecp_lock, K_FOREVER);
718 
719 	regs->SAF_ECP_INTEN = 0;
720 	regs->SAF_ECP_STATUS = 0xffffffff;
721 
722 	/*
723 	 * TODO - Force SAF Done interrupt disabled until we have support
724 	 * from eSPI driver.
725 	 */
726 	MCHP_GIRQ_ENCLR(MCHP_SAF_GIRQ) = MCHP_SAF_GIRQ_ECP_DONE_BIT;
727 	MCHP_GIRQ_SRC(MCHP_SAF_GIRQ) = MCHP_SAF_GIRQ_ECP_DONE_BIT;
728 
729 	regs->SAF_ECP_FLAR = pckt->flash_addr;
730 	regs->SAF_ECP_BFAR = (uint32_t)&slave_mem[0];
731 
732 	regs->SAF_ECP_CMD =
733 		MCHP_SAF_ECP_CMD_PUT_FLASH_NP |
734 		((uint32_t)cmd << MCHP_SAF_ECP_CMD_CTYPE_POS) |
735 		((n << MCHP_SAF_ECP_CMD_LEN_POS) & MCHP_SAF_ECP_CMD_LEN_MASK);
736 
737 	/* TODO when interrupts are available enable here */
738 	regs->SAF_ECP_START = MCHP_SAF_ECP_START;
739 
740 	/* TODO
741 	 * ISR is in eSPI driver. Use polling until eSPI driver has been
742 	 * modified to provide callback for GIRQ19 SAF ECP Done.
743 	 */
744 	rc = 0;
745 	xdat->hwstatus = regs->SAF_ECP_STATUS;
746 	while (!(xdat->hwstatus & MCHP_SAF_ECP_STS_DONE)) {
747 		rc = xec_saf_spin_yield(&counter);
748 		if (rc < 0) {
749 			goto ecp_exit;
750 		}
751 		xdat->hwstatus = regs->SAF_ECP_STATUS;
752 	}
753 
754 	/* clear hardware status and check for errors */
755 	regs->SAF_ECP_STATUS = xdat->hwstatus;
756 	if (xdat->hwstatus & MCHP_SAF_ECP_STS_ERR_MASK) {
757 		rc = -EIO;
758 		goto ecp_exit;
759 	}
760 
761 	if (cmd == MCHP_SAF_ECP_CMD_CTYPE_READ0) {
762 		memcpy(pckt->buf, slave_mem, pckt->len);
763 	}
764 
765 ecp_exit:
766 	k_sem_give(&xdat->ecp_lock);
767 
768 	return rc;
769 }
770 
771 /* Flash read using SAF EC Portal */
saf_xec_flash_read(const struct device * dev,struct espi_saf_packet * pckt)772 static int saf_xec_flash_read(const struct device *dev,
773 			      struct espi_saf_packet *pckt)
774 {
775 	LOG_DBG("%s", __func__);
776 	return saf_ecp_access(dev, pckt, MCHP_SAF_ECP_CMD_CTYPE_READ0);
777 }
778 
779 /* Flash write using SAF EC Portal */
saf_xec_flash_write(const struct device * dev,struct espi_saf_packet * pckt)780 static int saf_xec_flash_write(const struct device *dev,
781 			       struct espi_saf_packet *pckt)
782 {
783 	return saf_ecp_access(dev, pckt, MCHP_SAF_ECP_CMD_CTYPE_WRITE0);
784 }
785 
786 /* Flash erase using SAF EC Portal */
saf_xec_flash_erase(const struct device * dev,struct espi_saf_packet * pckt)787 static int saf_xec_flash_erase(const struct device *dev,
788 			       struct espi_saf_packet *pckt)
789 {
790 	return saf_ecp_access(dev, pckt, MCHP_SAF_ECP_CMD_CTYPE_ERASE0);
791 }
792 
espi_saf_xec_manage_callback(const struct device * dev,struct espi_callback * callback,bool set)793 static int espi_saf_xec_manage_callback(const struct device *dev,
794 					struct espi_callback *callback,
795 					bool set)
796 {
797 	struct espi_saf_xec_data *data = dev->data;
798 
799 	return espi_manage_callback(&data->callbacks, callback, set);
800 }
801 
espi_saf_xec_activate(const struct device * dev)802 static int espi_saf_xec_activate(const struct device *dev)
803 {
804 	const struct espi_saf_xec_config *cfg;
805 	MCHP_SAF_HW_REGS *regs;
806 
807 	if (dev == NULL) {
808 		return -EINVAL;
809 	}
810 
811 	cfg = dev->config;
812 	regs = (MCHP_SAF_HW_REGS *)cfg->saf_base_addr;
813 
814 	regs->SAF_FL_CFG_MISC |= MCHP_SAF_FL_CFG_MISC_SAF_EN;
815 
816 	return 0;
817 }
818 
819 static int espi_saf_xec_init(const struct device *dev);
820 
821 static DEVICE_API(espi_saf, espi_saf_xec_driver_api) = {
822 	.config = espi_saf_xec_configuration,
823 	.set_protection_regions = espi_saf_xec_set_pr,
824 	.activate = espi_saf_xec_activate,
825 	.get_channel_status = espi_saf_xec_channel_ready,
826 	.flash_read = saf_xec_flash_read,
827 	.flash_write = saf_xec_flash_write,
828 	.flash_erase = saf_xec_flash_erase,
829 	.manage_callback = espi_saf_xec_manage_callback,
830 };
831 
832 static struct espi_saf_xec_data espi_saf_xec_data;
833 
834 static const struct espi_saf_xec_config espi_saf_xec_config = {
835 	.saf_base_addr = DT_INST_REG_ADDR_BY_IDX(0, 0),
836 	.qmspi_base_addr = DT_INST_REG_ADDR_BY_IDX(0, 1),
837 	.saf_comm_base_addr = DT_INST_REG_ADDR_BY_IDX(0, 2),
838 	.poll_timeout = DT_INST_PROP_OR(inst, poll_timeout,
839 					MCHP_SAF_FLASH_POLL_TIMEOUT),
840 	.consec_rd_timeout = DT_INST_PROP_OR(
841 		inst, consec_rd_timeout, MCHP_SAF_FLASH_CONSEC_READ_TIMEOUT),
842 	.sus_chk_delay = DT_INST_PROP_OR(inst, sus_chk_delay,
843 					 MCHP_SAF_FLASH_SUS_CHK_DELAY),
844 	.sus_rsm_interval = DT_INST_PROP_OR(inst, sus_rsm_interval,
845 					    MCHP_SAF_FLASH_SUS_RSM_INTERVAL),
846 	.poll_interval = DT_INST_PROP_OR(inst, poll_interval,
847 					 MCHP_SAF_FLASH_POLL_INTERVAL),
848 };
849 
850 DEVICE_DT_INST_DEFINE(0, &espi_saf_xec_init, NULL,
851 		      &espi_saf_xec_data, &espi_saf_xec_config, POST_KERNEL,
852 		      CONFIG_ESPI_TAF_INIT_PRIORITY, &espi_saf_xec_driver_api);
853 
espi_saf_xec_init(const struct device * dev)854 static int espi_saf_xec_init(const struct device *dev)
855 {
856 	struct espi_saf_xec_data *data = dev->data;
857 
858 	/* ungate SAF clocks by disabling PCR sleep enable */
859 	mchp_pcr_periph_slp_ctrl(PCR_ESPI_SAF, MCHP_PCR_SLEEP_DIS);
860 
861 	/* reset the SAF block */
862 	mchp_pcr_periph_reset(PCR_ESPI_SAF);
863 
864 	/* Configure the channels and its capabilities based on build config */
865 	ESPI_CAP_REGS->GLB_CAP0 |= MCHP_ESPI_GBL_CAP0_FC_SUPP;
866 	ESPI_CAP_REGS->FC_CAP &= ~(MCHP_ESPI_FC_CAP_SHARE_MASK);
867 	ESPI_CAP_REGS->FC_CAP |= MCHP_ESPI_FC_CAP_SHARE_MAF_SAF;
868 
869 	k_sem_init(&data->ecp_lock, 1, 1);
870 
871 	return 0;
872 }
873