1 /*
2 * Copyright (c) 2017 Erwin Rol <erwin@erwinrol.com>
3 * Copyright (c) 2018 Nordic Semiconductor ASA
4 * Copyright (c) 2017 Exati Tecnologia Ltda.
5 * Copyright (c) 2020 STMicroelectronics.
6 *
7 * SPDX-License-Identifier: Apache-2.0
8 */
9
10 #define DT_DRV_COMPAT st_stm32_rng
11
12 #include <zephyr/kernel.h>
13 #include <zephyr/device.h>
14 #include <zephyr/drivers/entropy.h>
15 #include <zephyr/random/random.h>
16 #include <zephyr/init.h>
17 #include <zephyr/sys/__assert.h>
18 #include <zephyr/sys/util.h>
19 #include <errno.h>
20 #include <soc.h>
21 #include <zephyr/pm/policy.h>
22 #include <stm32_ll_bus.h>
23 #include <stm32_ll_rcc.h>
24 #include <stm32_ll_rng.h>
25 #include <stm32_ll_pka.h>
26 #include <stm32_ll_system.h>
27 #include <zephyr/sys/printk.h>
28 #include <zephyr/pm/device.h>
29 #include <zephyr/drivers/clock_control.h>
30 #include <zephyr/drivers/clock_control/stm32_clock_control.h>
31 #include <zephyr/irq.h>
32 #include <zephyr/sys/barrier.h>
33 #include "stm32_hsem.h"
34
35 #define IRQN DT_INST_IRQN(0)
36 #define IRQ_PRIO DT_INST_IRQ(0, priority)
37
38 #if defined(RNG_CR_CONDRST)
39 #define STM32_CONDRST_SUPPORT
40 #endif
41
42 /*
43 * This driver need to take into account all STM32 family:
44 * - simple rng without hardware fifo and no DMA.
45 * - Variable delay between two consecutive random numbers
46 * (depending on family and clock settings)
47 *
48 *
49 * Due to the first byte in a stream of bytes being more costly on
50 * some platforms a "water system" inspired algorithm is used to
51 * amortize the cost of the first byte.
52 *
53 * The algorithm will delay generation of entropy until the amount of
54 * bytes goes below THRESHOLD, at which point it will generate entropy
55 * until the BUF_LEN limit is reached.
56 *
57 * The entropy level is checked at the end of every consumption of
58 * entropy.
59 *
60 */
61
62 struct rng_pool {
63 uint8_t first_alloc;
64 uint8_t first_read;
65 uint8_t last;
66 uint8_t mask;
67 uint8_t threshold;
68 FLEXIBLE_ARRAY_DECLARE(uint8_t, buffer);
69 };
70
71 #define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)]
72
73 BUILD_ASSERT((CONFIG_ENTROPY_STM32_ISR_POOL_SIZE &
74 (CONFIG_ENTROPY_STM32_ISR_POOL_SIZE - 1)) == 0,
75 "The CONFIG_ENTROPY_STM32_ISR_POOL_SIZE must be a power of 2!");
76
77 BUILD_ASSERT((CONFIG_ENTROPY_STM32_THR_POOL_SIZE &
78 (CONFIG_ENTROPY_STM32_THR_POOL_SIZE - 1)) == 0,
79 "The CONFIG_ENTROPY_STM32_THR_POOL_SIZE must be a power of 2!");
80
81 struct entropy_stm32_rng_dev_cfg {
82 struct stm32_pclken *pclken;
83 };
84
85 struct entropy_stm32_rng_dev_data {
86 RNG_TypeDef *rng;
87 const struct device *clock;
88 struct k_sem sem_lock;
89 struct k_sem sem_sync;
90 struct k_work filling_work;
91 bool filling_pools;
92
93 RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_STM32_ISR_POOL_SIZE);
94 RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_STM32_THR_POOL_SIZE);
95 };
96
97 static struct stm32_pclken pclken_rng[] = STM32_DT_INST_CLOCKS(0);
98
99 static struct entropy_stm32_rng_dev_cfg entropy_stm32_rng_config = {
100 .pclken = pclken_rng
101 };
102
103 static struct entropy_stm32_rng_dev_data entropy_stm32_rng_data = {
104 .rng = (RNG_TypeDef *)DT_INST_REG_ADDR(0),
105 };
106
entropy_stm32_suspend(void)107 static int entropy_stm32_suspend(void)
108 {
109 const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
110 struct entropy_stm32_rng_dev_data *dev_data = dev->data;
111 const struct entropy_stm32_rng_dev_cfg *dev_cfg = dev->config;
112 RNG_TypeDef *rng = dev_data->rng;
113 int res;
114
115 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
116 /* Prevent concurrent access with PM */
117 z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
118 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
119 LL_RNG_Disable(rng);
120
121 #ifdef CONFIG_SOC_SERIES_STM32WBAX
122 uint32_t wait_cycles, rng_rate;
123
124 if (LL_PKA_IsEnabled(PKA)) {
125 return 0;
126 }
127
128 if (clock_control_get_rate(dev_data->clock,
129 (clock_control_subsys_t) &dev_cfg->pclken[0],
130 &rng_rate) < 0) {
131 return -EIO;
132 }
133
134 wait_cycles = SystemCoreClock / rng_rate * 2;
135
136 for (int i = wait_cycles; i >= 0; i--) {
137 }
138 #endif /* CONFIG_SOC_SERIES_STM32WBAX */
139
140 res = clock_control_off(dev_data->clock,
141 (clock_control_subsys_t)&dev_cfg->pclken[0]);
142
143 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
144 z_stm32_hsem_unlock(CFG_HW_RNG_SEMID);
145 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
146
147 return res;
148 }
149
entropy_stm32_resume(void)150 static int entropy_stm32_resume(void)
151 {
152 const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
153 struct entropy_stm32_rng_dev_data *dev_data = dev->data;
154 const struct entropy_stm32_rng_dev_cfg *dev_cfg = dev->config;
155 RNG_TypeDef *rng = dev_data->rng;
156 int res;
157
158 res = clock_control_on(dev_data->clock,
159 (clock_control_subsys_t)&dev_cfg->pclken[0]);
160 LL_RNG_Enable(rng);
161 LL_RNG_EnableIT(rng);
162
163 return res;
164 }
165
configure_rng(void)166 static void configure_rng(void)
167 {
168 RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
169
170 #ifdef STM32_CONDRST_SUPPORT
171 uint32_t desired_nist_cfg = DT_INST_PROP_OR(0, nist_config, 0U);
172 uint32_t desired_htcr = DT_INST_PROP_OR(0, health_test_config, 0U);
173 uint32_t cur_nist_cfg = 0U;
174 uint32_t cur_htcr = 0U;
175
176 #if DT_INST_NODE_HAS_PROP(0, nist_config)
177 /*
178 * Configure the RNG_CR in compliance with the NIST SP800.
179 * The nist-config is direclty copied from the DTS.
180 * The RNG clock must be 48MHz else the clock DIV is not adpated.
181 * The RNG_CR_CONDRST is set to 1 at the same time the RNG_CR is written
182 */
183 cur_nist_cfg = READ_BIT(rng->CR,
184 (RNG_CR_NISTC | RNG_CR_CLKDIV | RNG_CR_RNG_CONFIG1 |
185 RNG_CR_RNG_CONFIG2 | RNG_CR_RNG_CONFIG3
186 #if defined(RNG_CR_ARDIS)
187 | RNG_CR_ARDIS
188 /* For STM32U5 series, the ARDIS bit7 is considered in the nist-config */
189 #endif /* RNG_CR_ARDIS */
190 ));
191 #endif /* nist_config */
192
193 #if DT_INST_NODE_HAS_PROP(0, health_test_config)
194 cur_htcr = LL_RNG_GetHealthConfig(rng);
195 #endif /* health_test_config */
196
197 if (cur_nist_cfg != desired_nist_cfg || cur_htcr != desired_htcr) {
198 MODIFY_REG(rng->CR, cur_nist_cfg, (desired_nist_cfg | RNG_CR_CONDRST));
199
200 #if DT_INST_NODE_HAS_PROP(0, health_test_config)
201 #if DT_INST_NODE_HAS_PROP(0, health_test_magic)
202 LL_RNG_SetHealthConfig(rng, DT_INST_PROP(0, health_test_magic));
203 #endif /* health_test_magic */
204 LL_RNG_SetHealthConfig(rng, desired_htcr);
205 #endif /* health_test_config */
206
207 LL_RNG_DisableCondReset(rng);
208 /* Wait for conditioning reset process to be completed */
209 while (LL_RNG_IsEnabledCondReset(rng) == 1) {
210 }
211 }
212 #endif /* STM32_CONDRST_SUPPORT */
213
214 LL_RNG_Enable(rng);
215 LL_RNG_EnableIT(rng);
216 }
217
acquire_rng(void)218 static void acquire_rng(void)
219 {
220 entropy_stm32_resume();
221 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
222 /* Lock the RNG to prevent concurrent access */
223 z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
224 /* RNG configuration could have been changed by the other core */
225 configure_rng();
226 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
227 }
228
release_rng(void)229 static void release_rng(void)
230 {
231 entropy_stm32_suspend();
232 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
233 z_stm32_hsem_unlock(CFG_HW_RNG_SEMID);
234 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
235 }
236
entropy_stm32_got_error(RNG_TypeDef * rng)237 static int entropy_stm32_got_error(RNG_TypeDef *rng)
238 {
239 __ASSERT_NO_MSG(rng != NULL);
240
241 if (LL_RNG_IsActiveFlag_CECS(rng)) {
242 return 1;
243 }
244
245 if (LL_RNG_IsActiveFlag_SEIS(rng)) {
246 return 1;
247 }
248
249 return 0;
250 }
251
252 #if defined(STM32_CONDRST_SUPPORT)
253 /* SOCS w/ soft-reset support: execute the reset */
recover_seed_error(RNG_TypeDef * rng)254 static int recover_seed_error(RNG_TypeDef *rng)
255 {
256 uint32_t count_timeout = 0;
257
258 LL_RNG_EnableCondReset(rng);
259 LL_RNG_DisableCondReset(rng);
260 /* When reset process is done cond reset bit is read 0
261 * This typically takes: 2 AHB clock cycles + 2 RNG clock cycles.
262 */
263
264 while (LL_RNG_IsEnabledCondReset(rng) ||
265 LL_RNG_IsActiveFlag_SEIS(rng) ||
266 LL_RNG_IsActiveFlag_SECS(rng)) {
267 count_timeout++;
268 if (count_timeout == 10) {
269 return -ETIMEDOUT;
270 }
271 }
272
273 return 0;
274 }
275
276 #else /* !STM32_CONDRST_SUPPORT */
277 /* SOCS w/o soft-reset support: flush pipeline */
recover_seed_error(RNG_TypeDef * rng)278 static int recover_seed_error(RNG_TypeDef *rng)
279 {
280 LL_RNG_ClearFlag_SEIS(rng);
281
282 for (int i = 0; i < 12; ++i) {
283 LL_RNG_ReadRandData32(rng);
284 }
285
286 if (LL_RNG_IsActiveFlag_SEIS(rng) != 0) {
287 return -EIO;
288 }
289
290 return 0;
291 }
292 #endif /* !STM32_CONDRST_SUPPORT */
293
random_byte_get(void)294 static int random_byte_get(void)
295 {
296 int retval = -EAGAIN;
297 unsigned int key;
298 RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
299
300 key = irq_lock();
301
302 if (IS_ENABLED(CONFIG_ENTROPY_STM32_CLK_CHECK) && !k_is_pre_kernel()) {
303 /* CECS bit signals that a clock configuration issue is detected,
304 * which may lead to generation of non truly random data.
305 */
306 __ASSERT(LL_RNG_IsActiveFlag_CECS(rng) == 0,
307 "CECS = 1: RNG domain clock is too slow.\n"
308 "\tSee ref man and update target clock configuration.");
309 }
310
311 if (LL_RNG_IsActiveFlag_SEIS(rng) && (recover_seed_error(rng) < 0)) {
312 retval = -EIO;
313 goto out;
314 }
315
316 if ((LL_RNG_IsActiveFlag_DRDY(rng) == 1)) {
317 if (entropy_stm32_got_error(rng)) {
318 retval = -EIO;
319 goto out;
320 }
321
322 retval = LL_RNG_ReadRandData32(rng);
323 if (retval == 0) {
324 /* A seed error could have occurred between RNG_SR
325 * polling and RND_DR output reading.
326 */
327 retval = -EAGAIN;
328 goto out;
329 }
330
331 retval &= 0xFF;
332 }
333
334 out:
335
336 irq_unlock(key);
337
338 return retval;
339 }
340
generate_from_isr(uint8_t * buf,uint16_t len)341 static uint16_t generate_from_isr(uint8_t *buf, uint16_t len)
342 {
343 uint16_t remaining_len = len;
344
345 __ASSERT_NO_MSG(!irq_is_enabled(IRQN));
346
347 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
348 __ASSERT_NO_MSG(z_stm32_hsem_is_owned(CFG_HW_RNG_SEMID));
349 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
350
351 /* do not proceed if a Seed error occurred */
352 if (LL_RNG_IsActiveFlag_SECS(entropy_stm32_rng_data.rng) ||
353 LL_RNG_IsActiveFlag_SEIS(entropy_stm32_rng_data.rng)) {
354
355 (void)random_byte_get(); /* this will recover the error */
356
357 return 0; /* return cnt is null : no random data available */
358 }
359
360 /* Clear NVIC pending bit. This ensures that a subsequent
361 * RNG event will set the Cortex-M single-bit event register
362 * to 1 (the bit is set when NVIC pending IRQ status is
363 * changed from 0 to 1)
364 */
365 NVIC_ClearPendingIRQ(IRQN);
366
367 do {
368 int byte;
369
370 while (LL_RNG_IsActiveFlag_DRDY(
371 entropy_stm32_rng_data.rng) != 1) {
372 /*
373 * To guarantee waking up from the event, the
374 * SEV-On-Pend feature must be enabled (enabled
375 * during ARCH initialization).
376 *
377 * DSB is recommended by spec before WFE (to
378 * guarantee completion of memory transactions)
379 */
380 barrier_dsync_fence_full();
381 __WFE();
382 __SEV();
383 __WFE();
384 }
385
386 byte = random_byte_get();
387 NVIC_ClearPendingIRQ(IRQN);
388
389 if (byte < 0) {
390 continue;
391 }
392
393 buf[--remaining_len] = byte;
394 } while (remaining_len);
395
396 return len;
397 }
398
start_pool_filling(bool wait)399 static int start_pool_filling(bool wait)
400 {
401 unsigned int key;
402 bool already_filling;
403
404 key = irq_lock();
405 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
406 /* In non-blocking mode, return immediately if the RNG is not available */
407 if (!wait && z_stm32_hsem_try_lock(CFG_HW_RNG_SEMID) != 0) {
408 irq_unlock(key);
409 return -EAGAIN;
410 }
411 #else
412 ARG_UNUSED(wait);
413 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
414
415 already_filling = entropy_stm32_rng_data.filling_pools;
416 entropy_stm32_rng_data.filling_pools = true;
417 irq_unlock(key);
418
419 if (unlikely(already_filling)) {
420 return 0;
421 }
422
423 /* Prevent the clocks to be stopped during the duration the rng pool is
424 * being populated. The ISR will release the constraint again when the
425 * rng pool is filled.
426 */
427 pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
428 if (IS_ENABLED(CONFIG_PM_S2RAM)) {
429 pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
430 }
431
432 acquire_rng();
433 irq_enable(IRQN);
434
435 return 0;
436 }
437
pool_filling_work_handler(struct k_work * work)438 static void pool_filling_work_handler(struct k_work *work)
439 {
440 if (start_pool_filling(false) != 0) {
441 /* RNG could not be acquired, try again */
442 k_work_submit(work);
443 }
444 }
445
rng_pool_get(struct rng_pool * rngp,uint8_t * buf,uint16_t len)446 static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf,
447 uint16_t len)
448 {
449 uint32_t last = rngp->last;
450 uint32_t mask = rngp->mask;
451 uint8_t *dst = buf;
452 uint32_t first, available;
453 uint32_t other_read_in_progress;
454 unsigned int key;
455
456 key = irq_lock();
457 first = rngp->first_alloc;
458
459 /*
460 * The other_read_in_progress is non-zero if rngp->first_read != first,
461 * which means that lower-priority code (which was interrupted by this
462 * call) already allocated area for read.
463 */
464 other_read_in_progress = (rngp->first_read ^ first);
465
466 available = (last - first) & mask;
467 if (available < len) {
468 len = available;
469 }
470
471 /*
472 * Move alloc index forward to signal, that part of the buffer is
473 * now reserved for this call.
474 */
475 rngp->first_alloc = (first + len) & mask;
476 irq_unlock(key);
477
478 while (likely(len--)) {
479 *dst++ = rngp->buffer[first];
480 first = (first + 1) & mask;
481 }
482
483 /*
484 * If this call is the last one accessing the pool, move read index
485 * to signal that all allocated regions are now read and could be
486 * overwritten.
487 */
488 if (likely(!other_read_in_progress)) {
489 key = irq_lock();
490 rngp->first_read = rngp->first_alloc;
491 irq_unlock(key);
492 }
493
494 len = dst - buf;
495 available = available - len;
496 if (available <= rngp->threshold) {
497 /*
498 * Avoid starting pool filling from ISR as it might require
499 * blocking if RNG is not available and a race condition could
500 * also occur if this ISR has interrupted the RNG ISR.
501 */
502 if (k_is_in_isr()) {
503 k_work_submit(&entropy_stm32_rng_data.filling_work);
504 } else {
505 start_pool_filling(true);
506 }
507 }
508
509 return len;
510 }
511
rng_pool_put(struct rng_pool * rngp,uint8_t byte)512 static int rng_pool_put(struct rng_pool *rngp, uint8_t byte)
513 {
514 uint8_t first = rngp->first_read;
515 uint8_t last = rngp->last;
516 uint8_t mask = rngp->mask;
517
518 /* Signal error if the pool is full. */
519 if (((last - first) & mask) == mask) {
520 return -ENOBUFS;
521 }
522
523 rngp->buffer[last] = byte;
524 rngp->last = (last + 1) & mask;
525
526 return 0;
527 }
528
rng_pool_init(struct rng_pool * rngp,uint16_t size,uint8_t threshold)529 static void rng_pool_init(struct rng_pool *rngp, uint16_t size,
530 uint8_t threshold)
531 {
532 rngp->first_alloc = 0U;
533 rngp->first_read = 0U;
534 rngp->last = 0U;
535 rngp->mask = size - 1;
536 rngp->threshold = threshold;
537 }
538
stm32_rng_isr(const void * arg)539 static void stm32_rng_isr(const void *arg)
540 {
541 int byte, ret;
542
543 ARG_UNUSED(arg);
544
545 byte = random_byte_get();
546 if (byte < 0) {
547 return;
548 }
549
550 ret = rng_pool_put((struct rng_pool *)(entropy_stm32_rng_data.isr),
551 byte);
552 if (ret < 0) {
553 ret = rng_pool_put(
554 (struct rng_pool *)(entropy_stm32_rng_data.thr),
555 byte);
556 if (ret < 0) {
557 irq_disable(IRQN);
558 release_rng();
559 pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
560 if (IS_ENABLED(CONFIG_PM_S2RAM)) {
561 pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
562 }
563 entropy_stm32_rng_data.filling_pools = false;
564 }
565
566 k_sem_give(&entropy_stm32_rng_data.sem_sync);
567 }
568 }
569
entropy_stm32_rng_get_entropy(const struct device * dev,uint8_t * buf,uint16_t len)570 static int entropy_stm32_rng_get_entropy(const struct device *dev,
571 uint8_t *buf,
572 uint16_t len)
573 {
574 /* Check if this API is called on correct driver instance. */
575 __ASSERT_NO_MSG(&entropy_stm32_rng_data == dev->data);
576
577 while (len) {
578 uint16_t bytes;
579
580 k_sem_take(&entropy_stm32_rng_data.sem_lock, K_FOREVER);
581 bytes = rng_pool_get(
582 (struct rng_pool *)(entropy_stm32_rng_data.thr),
583 buf, len);
584
585 if (bytes == 0U) {
586 /* Pool is empty: Sleep until next interrupt. */
587 k_sem_take(&entropy_stm32_rng_data.sem_sync, K_FOREVER);
588 }
589
590 k_sem_give(&entropy_stm32_rng_data.sem_lock);
591
592 len -= bytes;
593 buf += bytes;
594 }
595
596 return 0;
597 }
598
entropy_stm32_rng_get_entropy_isr(const struct device * dev,uint8_t * buf,uint16_t len,uint32_t flags)599 static int entropy_stm32_rng_get_entropy_isr(const struct device *dev,
600 uint8_t *buf,
601 uint16_t len,
602 uint32_t flags)
603 {
604 uint16_t cnt = len;
605
606 /* Check if this API is called on correct driver instance. */
607 __ASSERT_NO_MSG(&entropy_stm32_rng_data == dev->data);
608
609 if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) {
610 return rng_pool_get(
611 (struct rng_pool *)(entropy_stm32_rng_data.isr),
612 buf, len);
613 }
614
615 if (len) {
616 unsigned int key;
617 int irq_enabled;
618 bool rng_already_acquired;
619
620 key = irq_lock();
621 irq_enabled = irq_is_enabled(IRQN);
622 irq_disable(IRQN);
623 irq_unlock(key);
624
625 /* Do not release if IRQ is enabled. RNG will be released in ISR
626 * when the pools are full.
627 */
628 rng_already_acquired = z_stm32_hsem_is_owned(CFG_HW_RNG_SEMID) ||
629 irq_enabled;
630 acquire_rng();
631
632 cnt = generate_from_isr(buf, len);
633
634 /* Restore the state of the RNG lock and IRQ */
635 if (!rng_already_acquired) {
636 release_rng();
637 }
638
639 if (irq_enabled) {
640 irq_enable(IRQN);
641 }
642 }
643
644 return cnt;
645 }
646
entropy_stm32_rng_init(const struct device * dev)647 static int entropy_stm32_rng_init(const struct device *dev)
648 {
649 struct entropy_stm32_rng_dev_data *dev_data;
650 const struct entropy_stm32_rng_dev_cfg *dev_cfg;
651 int res;
652
653 __ASSERT_NO_MSG(dev != NULL);
654
655 dev_data = dev->data;
656 dev_cfg = dev->config;
657
658 __ASSERT_NO_MSG(dev_data != NULL);
659 __ASSERT_NO_MSG(dev_cfg != NULL);
660
661 dev_data->clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
662
663 if (!device_is_ready(dev_data->clock)) {
664 return -ENODEV;
665 }
666
667 res = clock_control_on(dev_data->clock,
668 (clock_control_subsys_t)&dev_cfg->pclken[0]);
669 __ASSERT_NO_MSG(res == 0);
670
671 /* Configure domain clock if any */
672 if (DT_INST_NUM_CLOCKS(0) > 1) {
673 res = clock_control_configure(dev_data->clock,
674 (clock_control_subsys_t)&dev_cfg->pclken[1],
675 NULL);
676 __ASSERT(res == 0, "Could not select RNG domain clock");
677 }
678
679 /* Locking semaphore initialized to 1 (unlocked) */
680 k_sem_init(&dev_data->sem_lock, 1, 1);
681
682 /* Synching semaphore */
683 k_sem_init(&dev_data->sem_sync, 0, 1);
684
685 k_work_init(&dev_data->filling_work, pool_filling_work_handler);
686
687 rng_pool_init((struct rng_pool *)(dev_data->thr),
688 CONFIG_ENTROPY_STM32_THR_POOL_SIZE,
689 CONFIG_ENTROPY_STM32_THR_THRESHOLD);
690 rng_pool_init((struct rng_pool *)(dev_data->isr),
691 CONFIG_ENTROPY_STM32_ISR_POOL_SIZE,
692 CONFIG_ENTROPY_STM32_ISR_THRESHOLD);
693
694 IRQ_CONNECT(IRQN, IRQ_PRIO, stm32_rng_isr, &entropy_stm32_rng_data, 0);
695
696 #if !defined(CONFIG_SOC_SERIES_STM32WBX) && !defined(CONFIG_STM32H7_DUAL_CORE)
697 /* For multi-core MCUs, RNG configuration is automatically performed
698 * after acquiring the RNG in start_pool_filling()
699 */
700 configure_rng();
701 #endif /* !CONFIG_SOC_SERIES_STM32WBX && !CONFIG_STM32H7_DUAL_CORE */
702
703 start_pool_filling(true);
704
705 return 0;
706 }
707
708 #ifdef CONFIG_PM_DEVICE
entropy_stm32_rng_pm_action(const struct device * dev,enum pm_device_action action)709 static int entropy_stm32_rng_pm_action(const struct device *dev,
710 enum pm_device_action action)
711 {
712 struct entropy_stm32_rng_dev_data *dev_data = dev->data;
713
714 int res = 0;
715
716 /* Remove warning on some platforms */
717 ARG_UNUSED(dev_data);
718
719 switch (action) {
720 case PM_DEVICE_ACTION_SUSPEND:
721 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
722 /* Lock to Prevent concurrent access with PM */
723 z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
724 /* Call release_rng instead of entropy_stm32_suspend to avoid double hsem_unlock */
725 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
726 release_rng();
727 break;
728 case PM_DEVICE_ACTION_RESUME:
729 if (IS_ENABLED(CONFIG_PM_S2RAM)) {
730 #if DT_INST_NODE_HAS_PROP(0, health_test_config)
731 entropy_stm32_resume();
732 #if DT_INST_NODE_HAS_PROP(0, health_test_magic)
733 LL_RNG_SetHealthConfig(dev_data->rng, DT_INST_PROP(0, health_test_magic));
734 #endif /* health_test_magic */
735 if (LL_RNG_GetHealthConfig(dev_data->rng) !=
736 DT_INST_PROP_OR(0, health_test_config, 0U)) {
737 entropy_stm32_rng_init(dev);
738 } else if (!entropy_stm32_rng_data.filling_pools) {
739 /* Resume RNG only if it was suspended during filling pool */
740 #if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
741 /* Lock to Prevent concurrent access with PM */
742 z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
743 /*
744 * Call release_rng instead of entropy_stm32_suspend
745 * to avoid double hsem_unlock
746 */
747 #endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
748 release_rng();
749 }
750 #endif /* health_test_config */
751 } else {
752 /* Resume RNG only if it was suspended during filling pool */
753 if (entropy_stm32_rng_data.filling_pools) {
754 res = entropy_stm32_resume();
755 }
756 }
757 break;
758 default:
759 return -ENOTSUP;
760 }
761
762 return res;
763 }
764 #endif /* CONFIG_PM_DEVICE */
765
766 static DEVICE_API(entropy, entropy_stm32_rng_api) = {
767 .get_entropy = entropy_stm32_rng_get_entropy,
768 .get_entropy_isr = entropy_stm32_rng_get_entropy_isr
769 };
770
771 PM_DEVICE_DT_INST_DEFINE(0, entropy_stm32_rng_pm_action);
772
773 DEVICE_DT_INST_DEFINE(0,
774 entropy_stm32_rng_init,
775 PM_DEVICE_DT_INST_GET(0),
776 &entropy_stm32_rng_data, &entropy_stm32_rng_config,
777 PRE_KERNEL_1, CONFIG_ENTROPY_INIT_PRIORITY,
778 &entropy_stm32_rng_api);
779