1 /*
2 * Copyright (c) 2021 Microchip Technology Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT microchip_xec_pcr
8
9 #include <soc.h>
10 #include <zephyr/arch/cpu.h>
11 #include <cmsis_core.h>
12 #include <zephyr/drivers/clock_control.h>
13 #include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
14 #include <zephyr/drivers/pinctrl.h>
15 #include <zephyr/dt-bindings/clock/mchp_xec_pcr.h>
16 #include <zephyr/irq.h>
17 #include <zephyr/logging/log.h>
18 #include <zephyr/sys/barrier.h>
19 LOG_MODULE_REGISTER(clock_control_xec, LOG_LEVEL_ERR);
20
21 #define CLK32K_SIL_OSC_DELAY 256
22 #define CLK32K_PLL_LOCK_WAIT (16 * 1024)
23 #define CLK32K_PIN_WAIT 4096
24 #define CLK32K_XTAL_WAIT (16 * 1024)
25 #define CLK32K_XTAL_MON_WAIT (64 * 1024)
26 #define XEC_CC_DFLT_PLL_LOCK_WAIT_MS 30
27
28 /*
29 * Counter checks:
30 * 32KHz period counter minimum for pass/fail: 16-bit
31 * 32KHz period counter maximum for pass/fail: 16-bit
32 * 32KHz duty cycle variation max for pass/fail: 16-bit
33 * 32KHz valid count minimum: 8-bit
34 *
35 * 32768 Hz period is 30.518 us
36 * HW count resolution is 48 MHz.
37 * One 32KHz clock pulse = 1464.84 48 MHz counts.
38 */
39 #define CNT32K_TMIN 1435
40 #define CNT32K_TMAX 1495
41 #define CNT32K_DUTY_MAX 132
42 #define CNT32K_VAL_MIN 4
43
44 #define DEST_PLL 0
45 #define DEST_PERIPH 1
46
47 #define CLK32K_FLAG_CRYSTAL_SE BIT(0)
48 #define CLK32K_FLAG_PIN_FB_CRYSTAL BIT(1)
49
50 #define PCR_PERIPH_RESET_SPIN 8u
51
52 #define XEC_CC_XTAL_EN_DELAY_MS_DFLT 300u
53 #define HIBTIMER_MS_TO_CNT(x) ((uint32_t)(x) * 33U)
54
55 #define HIBTIMER_10_MS 328u
56 #define HIBTIMER_300_MS 9830u
57
58 enum pll_clk32k_src {
59 PLL_CLK32K_SRC_SO = MCHP_XEC_PLL_CLK32K_SRC_SIL_OSC,
60 PLL_CLK32K_SRC_XTAL = MCHP_XEC_PLL_CLK32K_SRC_XTAL,
61 PLL_CLK32K_SRC_PIN = MCHP_XEC_PLL_CLK32K_SRC_PIN,
62 PLL_CLK32K_SRC_MAX,
63 };
64
65 enum periph_clk32k_src {
66 PERIPH_CLK32K_SRC_SO_SO = MCHP_XEC_PERIPH_CLK32K_SRC_SO_SO,
67 PERIPH_CLK32K_SRC_XTAL_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_XTAL_XTAL,
68 PERIPH_CLK32K_SRC_PIN_SO = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_SO,
69 PERIPH_CLK32K_SRC_PIN_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_XTAL,
70 PERIPH_CLK32K_SRC_MAX
71 };
72
73 enum clk32k_dest { CLK32K_DEST_PLL = 0, CLK32K_DEST_PERIPH, CLK32K_DEST_MAX };
74
75 /* PCR hardware registers for MEC15xx and MEC172x */
76 #define XEC_CC_PCR_MAX_SCR 5
77
78 struct pcr_hw_regs {
79 volatile uint32_t SYS_SLP_CTRL;
80 volatile uint32_t PROC_CLK_CTRL;
81 volatile uint32_t SLOW_CLK_CTRL;
82 volatile uint32_t OSC_ID;
83 volatile uint32_t PWR_RST_STS;
84 volatile uint32_t PWR_RST_CTRL;
85 volatile uint32_t SYS_RST;
86 volatile uint32_t TURBO_CLK; /* MEC172x only */
87 volatile uint32_t TEST20;
88 uint32_t RSVD1[3];
89 volatile uint32_t SLP_EN[XEC_CC_PCR_MAX_SCR];
90 uint32_t RSVD2[3];
91 volatile uint32_t CLK_REQ[XEC_CC_PCR_MAX_SCR];
92 uint32_t RSVD3[3];
93 volatile uint32_t RST_EN[5];
94 volatile uint32_t RST_EN_LOCK;
95 /* all registers below are MEC172x only */
96 volatile uint32_t VBAT_SRST;
97 volatile uint32_t CLK32K_SRC_VTR;
98 volatile uint32_t TEST90;
99 uint32_t RSVD4[(0x00c0 - 0x0094) / 4];
100 volatile uint32_t CNT32K_PER;
101 volatile uint32_t CNT32K_PULSE_HI;
102 volatile uint32_t CNT32K_PER_MIN;
103 volatile uint32_t CNT32K_PER_MAX;
104 volatile uint32_t CNT32K_DV;
105 volatile uint32_t CNT32K_DV_MAX;
106 volatile uint32_t CNT32K_VALID;
107 volatile uint32_t CNT32K_VALID_MIN;
108 volatile uint32_t CNT32K_CTRL;
109 volatile uint32_t CLK32K_MON_ISTS;
110 volatile uint32_t CLK32K_MON_IEN;
111 };
112
113 #define XEC_CC_PCR_RST_EN_UNLOCK 0xa6382d4cu
114 #define XEC_CC_PCR_RST_EN_LOCK 0xa6382d4du
115
116 #define XEC_CC_PCR_OSC_ID_PLL_LOCK BIT(8)
117 #define XEC_CC_PCR_TURBO_CLK_96M BIT(2)
118
119 #define XEC_CC_PCR_CLK32K_SRC_MSK 0x3u
120 #define XEC_CC_PCR_CLK32K_SRC_SIL 0u
121 #define XEC_CC_PCR_CLK32K_SRC_XTAL 1
122 #define XEC_CC_PCR_CLK32K_SRC_PIN 2
123 #define XEC_CC_PCR_CLK32K_SRC_OFF 3
124
125 #ifdef CONFIG_SOC_SERIES_MEC15XX
126 #define XEC_CC_PCR3_CRYPTO_MASK (BIT(26) | BIT(27) | BIT(28))
127 #else
128 #define XEC_CC_PCR3_CRYPTO_MASK BIT(26)
129 #endif
130
131 /* VBAT powered hardware registers related to clock configuration */
132 struct vbatr_hw_regs {
133 volatile uint32_t PFRS;
134 uint32_t RSVD1[1];
135 volatile uint32_t CLK32_SRC;
136 uint32_t RSVD2[2];
137 volatile uint32_t CLK32_TRIM;
138 uint32_t RSVD3[1];
139 volatile uint32_t CLK32_TRIM_CTRL;
140 };
141
142 /* MEC152x VBAT CLK32_SRC register defines */
143 #define XEC_CC15_VBATR_USE_SIL_OSC 0u
144 #define XEC_CC15_VBATR_USE_32KIN_PIN BIT(1)
145 #define XEC_CC15_VBATR_USE_PAR_CRYSTAL BIT(2)
146 #define XEC_CC15_VBATR_USE_SE_CRYSTAL (BIT(2) | BIT(3))
147
148 /* MEC150x special requirements */
149 #define XEC_CC15_GCFG_DID_DEV_ID_MEC150x 0x0020U
150 #define XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR 0x06U
151
152
153 /* MEC172x VBAT CLK32_SRC register defines */
154 #define XEC_CC_VBATR_CS_SO_EN BIT(0) /* enable and start silicon OSC */
155 #define XEC_CC_VBATR_CS_XTAL_EN BIT(8) /* enable & start external crystal */
156 #define XEC_CC_VBATR_CS_XTAL_SE BIT(9) /* crystal XTAL2 used as 32KHz input */
157 #define XEC_CC_VBATR_CS_XTAL_DHC BIT(10) /* disable high XTAL startup current */
158 #define XEC_CC_VBATR_CS_XTAL_CNTR_MSK 0x1800u /* XTAL amplifier gain control */
159 #define XEC_CC_VBATR_CS_XTAL_CNTR_DG 0x0800u
160 #define XEC_CC_VBATR_CS_XTAL_CNTR_RG 0x1000u
161 #define XEC_CC_VBATR_CS_XTAL_CNTR_MG 0x1800u
162 /* MEC172x Select source of peripheral 32KHz clock */
163 #define XEC_CC_VBATR_CS_PCS_POS 16
164 #define XEC_CC_VBATR_CS_PCS_MSK0 0x3u
165 #define XEC_CC_VBATR_CS_PCS_MSK 0x30000u
166 #define XEC_CC_VBATR_CS_PCS_VTR_VBAT_SO 0u /* VTR & VBAT use silicon OSC */
167 #define XEC_CC_VBATR_CS_PCS_VTR_VBAT_XTAL 0x10000u /* VTR & VBAT use crystal */
168 #define XEC_CC_VBATR_CS_PCS_VTR_PIN_SO 0x20000u /* VTR 32KHZ_IN, VBAT silicon OSC */
169 #define XEC_CC_VBATR_CS_PCS_VTR_PIN_XTAL 0x30000u /* VTR 32KHZ_IN, VBAT XTAL */
170 #define XEC_CC_VBATR_CS_DI32_VTR_OFF BIT(18) /* disable silicon OSC when VTR off */
171
172 enum vbr_clk32k_src {
173 VBR_CLK32K_SRC_SO_SO = 0,
174 VBR_CLK32K_SRC_XTAL_XTAL,
175 VBR_CLK32K_SRC_PIN_SO,
176 VBR_CLK32K_SRC_PIN_XTAL,
177 VBR_CLK32K_SRC_MAX,
178 };
179
180 /* GIRQ23 hardware registers */
181 #define XEC_CC_HTMR_0_GIRQ23_POS 16
182
183 /* Driver config */
184 struct xec_pcr_config {
185 uintptr_t pcr_base;
186 uintptr_t vbr_base;
187 const struct pinctrl_dev_config *pcfg;
188 uint16_t xtal_enable_delay_ms;
189 uint16_t pll_lock_timeout_ms;
190 uint16_t period_min; /* mix and max 32KHz period range */
191 uint16_t period_max; /* monitor values in units of 48MHz (20.8 ns) */
192 uint8_t core_clk_div; /* Cortex-M4 clock divider (CPU and NVIC) */
193 uint8_t xtal_se; /* External 32KHz square wave on XTAL2 pin */
194 uint8_t max_dc_va; /* 32KHz monitor maximum duty cycle variation */
195 uint8_t min_valid; /* minimum number of valid consecutive 32KHz pulses */
196 enum pll_clk32k_src pll_src;
197 enum periph_clk32k_src periph_src;
198 uint8_t clkmon_bypass;
199 uint8_t dis_internal_osc;
200 };
201
202 /*
203 * Make sure PCR sleep enables are clear except for crypto
204 * which do not have internal clock gating.
205 */
pcr_slp_init(struct pcr_hw_regs * pcr)206 static void pcr_slp_init(struct pcr_hw_regs *pcr)
207 {
208 pcr->SYS_SLP_CTRL = 0U;
209 SCB->SCR &= ~BIT(2);
210
211 for (int i = 0; i < XEC_CC_PCR_MAX_SCR; i++) {
212 pcr->SLP_EN[i] = 0U;
213 }
214
215 pcr->SLP_EN[3] = XEC_CC_PCR3_CRYPTO_MASK;
216 }
217
218 /* MEC172x:
219 * Check if PLL is locked with timeout provided by a peripheral clock domain
220 * timer. We assume peripheral domain is still using internal silicon OSC as
221 * its reference clock. Available peripheral timers using 32KHz are:
222 * RTOS timer, hibernation timers, RTC, and week timer. We will use hibernation
223 * timer 0 in 30.5 us tick mode. Maximum internal is 2 seconds.
224 * A timer count value of 0 is interpreted as no timeout.
225 * We use the hibernation timer GIRQ interrupt status bit instead of reading
226 * the timer's count register due to race condition of HW taking at least
227 * one 32KHz cycle to move pre-load into count register.
228 * MEC15xx:
229 * Hibernation timer is using the chosen 32KHz source. If the external 32KHz source
230 * has a ramp up time, we make not get an accurate delay. This may only occur for
231 * the parallel crystal.
232 */
pll_wait_lock_periph(struct pcr_hw_regs * const pcr,uint16_t ms)233 static int pll_wait_lock_periph(struct pcr_hw_regs *const pcr, uint16_t ms)
234 {
235 struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0));
236 struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23));
237 uint32_t hcount = HIBTIMER_MS_TO_CNT(ms);
238 int rc = 0;
239
240 htmr0->PRLD = 0; /* disable */
241 htmr0->CTRL = 0; /* 30.5 us units */
242 girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
243 htmr0->PRLD = hcount;
244 while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) {
245 if (hcount) {
246 if (girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) {
247 rc = -ETIMEDOUT;
248 }
249 }
250 }
251
252 return rc;
253 }
254
periph_clk_src_using_pin(enum periph_clk32k_src src)255 static int periph_clk_src_using_pin(enum periph_clk32k_src src)
256 {
257 switch (src) {
258 case PERIPH_CLK32K_SRC_PIN_SO:
259 case PERIPH_CLK32K_SRC_PIN_XTAL:
260 return 1;
261 default:
262 return 0;
263 }
264 }
265
266 #ifdef CONFIG_SOC_SERIES_MEC15XX
267 /* MEC15xx uses the same 32KHz source for both PLL and Peripheral 32K clock domains.
268 * We ignore the peripheral clock source.
269 * If XTAL is selected (parallel) or single-ended the external 32KHz MUST stay on
270 * even when VTR goes off.
271 * If PIN(32KHZ_IN pin) as the external source, hardware can auto-switch to internal
272 * silicon OSC if the signal on the 32KHZ_PIN goes away.
273 * We ignore th
274 */
soc_clk32_init(const struct device * dev,enum pll_clk32k_src pll_clk_src,enum periph_clk32k_src periph_clk_src,uint32_t flags)275 static int soc_clk32_init(const struct device *dev,
276 enum pll_clk32k_src pll_clk_src,
277 enum periph_clk32k_src periph_clk_src,
278 uint32_t flags)
279 {
280 const struct xec_pcr_config * const devcfg = dev->config;
281 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
282 struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
283 uint32_t cken = 0U;
284 int rc = 0;
285
286 if (MCHP_DEVICE_ID() == XEC_CC15_GCFG_DID_DEV_ID_MEC150x) {
287 if (MCHP_REVISION_ID() == MCHP_GCFG_REV_B0) {
288 vbr->CLK32_TRIM_CTRL = XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR;
289 }
290 }
291
292 switch (pll_clk_src) {
293 case PLL_CLK32K_SRC_SO:
294 cken = XEC_CC15_VBATR_USE_SIL_OSC;
295 break;
296 case PLL_CLK32K_SRC_XTAL:
297 if (flags & CLK32K_FLAG_CRYSTAL_SE) {
298 cken = XEC_CC15_VBATR_USE_SE_CRYSTAL;
299 } else {
300 cken = XEC_CC15_VBATR_USE_PAR_CRYSTAL;
301 }
302 break;
303 case PLL_CLK32K_SRC_PIN: /* 32KHZ_IN pin falls back to Silicon OSC */
304 cken = XEC_CC15_VBATR_USE_32KIN_PIN;
305 break;
306 default: /* do not touch HW */
307 return -EINVAL;
308 }
309
310 if ((vbr->CLK32_SRC & 0xffU) != cken) {
311 vbr->CLK32_SRC = cken;
312 }
313
314 rc = pll_wait_lock_periph(pcr, devcfg->xtal_enable_delay_ms);
315
316 return rc;
317 }
318 #else
319
periph_clk_src_using_si(enum periph_clk32k_src src)320 static int periph_clk_src_using_si(enum periph_clk32k_src src)
321 {
322 switch (src) {
323 case PERIPH_CLK32K_SRC_SO_SO:
324 case PERIPH_CLK32K_SRC_PIN_SO:
325 return 1;
326 default:
327 return 0;
328 }
329 }
330
periph_clk_src_using_xtal(enum periph_clk32k_src src)331 static int periph_clk_src_using_xtal(enum periph_clk32k_src src)
332 {
333 switch (src) {
334 case PERIPH_CLK32K_SRC_XTAL_XTAL:
335 case PERIPH_CLK32K_SRC_PIN_XTAL:
336 return 1;
337 default:
338 return 0;
339 }
340 }
341
is_sil_osc_enabled(struct vbatr_hw_regs * vbr)342 static bool is_sil_osc_enabled(struct vbatr_hw_regs *vbr)
343 {
344 if (vbr->CLK32_SRC & XEC_CC_VBATR_CS_SO_EN) {
345 return true;
346 }
347
348 return false;
349 }
350
enable_sil_osc(struct vbatr_hw_regs * vbr)351 static void enable_sil_osc(struct vbatr_hw_regs *vbr)
352 {
353 vbr->CLK32_SRC |= XEC_CC_VBATR_CS_SO_EN;
354 }
355
356 /* In early Zephyr initialization we don't have timer services. Also, the SoC
357 * may be running on its ring oscillator (+/- 50% accuracy). Configuring the
358 * SoC's clock subsystem requires wait/delays. We implement a simple delay
359 * by writing to a read-only hardware register in the PCR block.
360 */
spin_delay(struct pcr_hw_regs * pcr,uint32_t cnt)361 static uint32_t spin_delay(struct pcr_hw_regs *pcr, uint32_t cnt)
362 {
363 uint32_t n;
364
365 for (n = 0U; n < cnt; n++) {
366 pcr->OSC_ID = n;
367 }
368
369 return n;
370 }
371
372 /*
373 * This routine checks if the PLL is locked to its input source. Minimum lock
374 * time is 3.3 ms. Lock time can be larger when the source is an external
375 * crystal. Crystal cold start times may vary greatly based on many factors.
376 * Crystals do not like being power cycled.
377 */
pll_wait_lock(struct pcr_hw_regs * const pcr,uint32_t wait_cnt)378 static int pll_wait_lock(struct pcr_hw_regs *const pcr, uint32_t wait_cnt)
379 {
380 while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) {
381 if (wait_cnt == 0) {
382 return -ETIMEDOUT;
383 }
384 --wait_cnt;
385 }
386
387 return 0;
388 }
389
390 /* caller has enabled internal silicon 32 KHz oscillator */
hib_timer_delay(uint32_t hib_timer_count)391 static void hib_timer_delay(uint32_t hib_timer_count)
392 {
393 struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0));
394 struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23));
395 uint32_t hcnt;
396
397 while (hib_timer_count) {
398
399 hcnt = hib_timer_count;
400 if (hcnt > UINT16_MAX) {
401 hcnt -= UINT16_MAX;
402 }
403
404 htmr0->PRLD = 0; /* disable */
405 while (htmr0->PRLD != 0) {
406 ;
407 }
408 htmr0->CTRL = 0; /* 32k time base */
409 /* clear hibernation timer 0 status */
410 girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
411 htmr0->PRLD = hib_timer_count;
412 if (hib_timer_count == 0) {
413 return;
414 }
415
416 while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) {
417 ;
418 }
419
420 htmr0->PRLD = 0; /* disable */
421 while (htmr0->PRLD != 0) {
422 ;
423 }
424 girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
425
426 hib_timer_count -= hcnt;
427 }
428 }
429
430 /* Turn off crystal when we are not using it */
disable_32k_crystal(const struct device * dev)431 static int disable_32k_crystal(const struct device *dev)
432 {
433 const struct xec_pcr_config * const devcfg = dev->config;
434 struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
435 uint32_t vbcs = vbr->CLK32_SRC;
436
437 vbcs &= ~(XEC_CC_VBATR_CS_XTAL_EN | XEC_CC_VBATR_CS_XTAL_SE | XEC_CC_VBATR_CS_XTAL_DHC);
438 vbr->CLK32_SRC = vbcs;
439
440 return 0;
441 }
442
443 /*
444 * Start external 32 KHz crystal.
445 * Assumes peripheral clocks source is Silicon OSC.
446 * If current configuration matches desired crystal configuration do nothing.
447 * NOTE: Crystal requires ~300 ms to stabilize.
448 */
enable_32k_crystal(const struct device * dev,uint32_t flags)449 static int enable_32k_crystal(const struct device *dev, uint32_t flags)
450 {
451 const struct xec_pcr_config * const devcfg = dev->config;
452 struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
453 uint32_t vbcs = vbr->CLK32_SRC;
454 uint32_t cfg = MCHP_VBATR_CS_XTAL_EN;
455
456 if (flags & CLK32K_FLAG_CRYSTAL_SE) {
457 cfg |= MCHP_VBATR_CS_XTAL_SE;
458 }
459
460 if ((vbcs & cfg) == cfg) {
461 return 0;
462 }
463
464 /* Configure crystal connection before enabling the crystal. */
465 vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_SE | MCHP_VBATR_CS_XTAL_DHC |
466 MCHP_VBATR_CS_XTAL_CNTR_MSK);
467 if (flags & CLK32K_FLAG_CRYSTAL_SE) {
468 vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_SE;
469 }
470
471 /* Set crystal gain */
472 vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_CNTR_DG;
473
474 /* enable crystal */
475 vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_EN;
476 /* wait for crystal stabilization */
477 hib_timer_delay(HIBTIMER_MS_TO_CNT(devcfg->xtal_enable_delay_ms));
478 /* turn off crystal high startup current */
479 vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_DHC;
480
481 return 0;
482 }
483
484 /*
485 * Use PCR clock monitor hardware to test crystal output.
486 * Requires crystal to have stabilized after enable.
487 * When enabled the clock monitor hardware measures high/low, edges, and
488 * duty cycle and compares to programmed limits.
489 */
check_32k_crystal(const struct device * dev)490 static int check_32k_crystal(const struct device *dev)
491 {
492 const struct xec_pcr_config * const devcfg = dev->config;
493 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
494 struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0));
495 struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23));
496 uint32_t status = 0;
497 int rc = 0;
498
499 htmr0->PRLD = 0;
500 htmr0->CTRL = 0;
501 girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
502
503 pcr->CNT32K_CTRL = 0U;
504 pcr->CLK32K_MON_IEN = 0U;
505 pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK;
506
507 pcr->CNT32K_PER_MIN = devcfg->period_min;
508 pcr->CNT32K_PER_MAX = devcfg->period_max;
509 pcr->CNT32K_DV_MAX = devcfg->max_dc_va;
510 pcr->CNT32K_VALID_MIN = devcfg->min_valid;
511
512 pcr->CNT32K_CTRL =
513 MCHP_PCR_CLK32M_CTRL_PER_EN | MCHP_PCR_CLK32M_CTRL_DC_EN |
514 MCHP_PCR_CLK32M_CTRL_VAL_EN | MCHP_PCR_CLK32M_CTRL_CLR_CNT;
515
516 rc = -ETIMEDOUT;
517 htmr0->PRLD = HIBTIMER_10_MS;
518 status = pcr->CLK32K_MON_ISTS;
519
520 while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) {
521 if (status == (MCHP_PCR_CLK32M_ISTS_PULSE_RDY |
522 MCHP_PCR_CLK32M_ISTS_PASS_PER |
523 MCHP_PCR_CLK32M_ISTS_PASS_DC |
524 MCHP_PCR_CLK32M_ISTS_VALID)) {
525 rc = 0;
526 break;
527 }
528
529 if (status & (MCHP_PCR_CLK32M_ISTS_FAIL |
530 MCHP_PCR_CLK32M_ISTS_STALL)) {
531 rc = -EBUSY;
532 break;
533 }
534
535 status = pcr->CLK32K_MON_ISTS;
536 }
537
538 pcr->CNT32K_CTRL = 0u;
539 htmr0->PRLD = 0;
540 girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
541
542 return rc;
543 }
544
545 /*
546 * Set the clock source for either PLL or Peripheral-32K clock domain.
547 * The source must be a stable 32 KHz input: internal silicon oscillator,
548 * external crystal dual-ended crystal, 50% duty cycle waveform on XTAL2 only,
549 * or a 50% duty cycles waveform on the 32KHZ_PIN.
550 * NOTE: 32KHZ_PIN is an alternate function of a chip specific GPIO.
551 * Signal on 32KHZ_PIN may go off when VTR rail go down. MEC172x can automatically
552 * switch to silicon OSC or XTAL. At this time we do not support fall back to XTAL
553 * when using 32KHZ_PIN.
554 * !!! IMPORTANT !!! Fall back from 32KHZ_PIN to SO/XTAL is only for the Peripheral
555 * Clock domain. If the PLL is configured to use 32KHZ_PIN as its source then the
556 * PLL will shutdown and the PLL clock domain should switch to the ring oscillator.
557 * This means the PLL clock domain clock will not longer be accurate and may cause
558 * FW malfunction(s).
559 */
560
connect_pll_32k(const struct device * dev,enum pll_clk32k_src src,uint32_t flags)561 static void connect_pll_32k(const struct device *dev, enum pll_clk32k_src src, uint32_t flags)
562 {
563 const struct xec_pcr_config * const devcfg = dev->config;
564 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
565 uint32_t pcr_clk_sel;
566
567 switch (src) {
568 case PLL_CLK32K_SRC_XTAL:
569 pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_XTAL;
570 break;
571 case PLL_CLK32K_SRC_PIN:
572 pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_PIN;
573 break;
574 default: /* default to silicon OSC */
575 pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_SILOSC;
576 break;
577 }
578
579 pcr->CLK32K_SRC_VTR = pcr_clk_sel;
580 }
581
connect_periph_32k(const struct device * dev,enum periph_clk32k_src src,uint32_t flags)582 static void connect_periph_32k(const struct device *dev, enum periph_clk32k_src src, uint32_t flags)
583 {
584 const struct xec_pcr_config * const devcfg = dev->config;
585 struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
586 uint32_t vbr_clk_sel = vbr->CLK32_SRC & ~(MCHP_VBATR_CS_PCS_MSK);
587
588 switch (src) {
589 case PERIPH_CLK32K_SRC_XTAL_XTAL:
590 vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_XTAL;
591 break;
592 case PERIPH_CLK32K_SRC_PIN_SO:
593 vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_SO;
594 break;
595 case PERIPH_CLK32K_SRC_PIN_XTAL:
596 vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_XTAL;
597 break;
598 default: /* default to silicon OSC for VTR/VBAT */
599 vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_SO;
600 break;
601 }
602
603 vbr->CLK32_SRC = vbr_clk_sel;
604 }
605
606 /* two bit field in PCR VTR 32KHz source register */
get_pll_32k_source(const struct device * dev)607 enum pll_clk32k_src get_pll_32k_source(const struct device *dev)
608 {
609 const struct xec_pcr_config * const devcfg = dev->config;
610 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
611 enum pll_clk32k_src src = PLL_CLK32K_SRC_MAX;
612
613 switch (pcr->CLK32K_SRC_VTR & XEC_CC_PCR_CLK32K_SRC_MSK) {
614 case XEC_CC_PCR_CLK32K_SRC_SIL:
615 src = PLL_CLK32K_SRC_SO;
616 break;
617 case XEC_CC_PCR_CLK32K_SRC_XTAL:
618 src = PLL_CLK32K_SRC_XTAL;
619 break;
620 case XEC_CC_PCR_CLK32K_SRC_PIN:
621 src = PLL_CLK32K_SRC_PIN;
622 break;
623 default:
624 src = PLL_CLK32K_SRC_MAX;
625 break;
626 }
627
628 return src;
629 }
630
631 /* two bit field in VBAT source 32KHz register */
get_periph_32k_source(const struct device * dev)632 enum periph_clk32k_src get_periph_32k_source(const struct device *dev)
633 {
634 const struct xec_pcr_config * const devcfg = dev->config;
635 struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
636 enum periph_clk32k_src src = PERIPH_CLK32K_SRC_MAX;
637 uint32_t temp;
638
639 temp = (vbr->CLK32_SRC & XEC_CC_VBATR_CS_PCS_MSK) >> XEC_CC_VBATR_CS_PCS_POS;
640 if (temp == VBR_CLK32K_SRC_SO_SO) {
641 src = PERIPH_CLK32K_SRC_SO_SO;
642 } else if (temp == VBR_CLK32K_SRC_XTAL_XTAL) {
643 src = PERIPH_CLK32K_SRC_XTAL_XTAL;
644 } else if (temp == VBR_CLK32K_SRC_PIN_SO) {
645 src = PERIPH_CLK32K_SRC_PIN_SO;
646 } else {
647 src = PERIPH_CLK32K_SRC_PIN_XTAL;
648 }
649
650 return src;
651 }
652
653 /*
654 * MEC172x has two 32 KHz clock domains
655 * PLL domain: 32 KHz clock input for PLL to produce 96 MHz and 48 MHz clocks
656 * Peripheral domain: 32 KHz clock for subset of peripherals.
657 * Each domain 32 KHz clock input can be from one of the following sources:
658 * Internal Silicon oscillator: +/- 2%
659 * External Crystal connected as parallel or single ended
660 * External 32KHZ_PIN 50% duty cycle waveform with fall back to either
661 * Silicon OSC or crystal when 32KHZ_PIN signal goes away or VTR power rail
662 * goes off.
663 * At chip reset the PLL is held in reset and the +/- 50% ring oscillator is
664 * the main clock.
665 * If no VBAT reset occurs the VBAT 32 KHz source register maintains its state.
666 */
soc_clk32_init(const struct device * dev,enum pll_clk32k_src pll_src,enum periph_clk32k_src periph_src,uint32_t flags)667 static int soc_clk32_init(const struct device *dev,
668 enum pll_clk32k_src pll_src,
669 enum periph_clk32k_src periph_src,
670 uint32_t flags)
671 {
672 const struct xec_pcr_config * const devcfg = dev->config;
673 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
674 struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
675 int rc = 0;
676
677 /* disable PCR 32K monitor and clear counters */
678 pcr->CNT32K_CTRL = MCHP_PCR_CLK32M_CTRL_CLR_CNT;
679 pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK;
680 pcr->CLK32K_MON_IEN = 0;
681
682 if (!is_sil_osc_enabled(vbr)) {
683 enable_sil_osc(vbr);
684 spin_delay(pcr, CLK32K_SIL_OSC_DELAY);
685 }
686
687 /* Default to 32KHz Silicon OSC for PLL and peripherals */
688 connect_pll_32k(dev, PLL_CLK32K_SRC_SO, 0);
689 connect_periph_32k(dev, PERIPH_CLK32K_SRC_SO_SO, 0);
690
691 rc = pll_wait_lock(pcr, CLK32K_PLL_LOCK_WAIT);
692 if (rc) {
693 LOG_ERR("XEC clock control: MEC172x lock timeout for internal 32K OSC");
694 return rc;
695 }
696
697 /* If crystal input required, enable and check. Single-ended 32KHz square wave
698 * on XTAL pin is also handled here.
699 */
700 if ((pll_src == PLL_CLK32K_SRC_XTAL) || periph_clk_src_using_xtal(periph_src)) {
701 enable_32k_crystal(dev, flags);
702 if (!devcfg->clkmon_bypass) {
703 rc = check_32k_crystal(dev);
704 if (rc) {
705 /* disable crystal */
706 vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_EN);
707 LOG_ERR("XEC clock control: MEC172x XTAL check failed: %d", rc);
708 return rc;
709 }
710 }
711 } else {
712 disable_32k_crystal(dev);
713 }
714
715 /* Do PLL first so we can use a peripheral timer still on silicon OSC */
716 if (pll_src != PLL_CLK32K_SRC_SO) {
717 connect_pll_32k(dev, pll_src, flags);
718 rc = pll_wait_lock_periph(pcr, devcfg->pll_lock_timeout_ms);
719 }
720
721 if (periph_src != PERIPH_CLK32K_SRC_SO_SO) {
722 connect_periph_32k(dev, periph_src, flags);
723 }
724
725 /* Configuration requests disabling internal silicon OSC. */
726 if (devcfg->dis_internal_osc) {
727 if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO)
728 && !periph_clk_src_using_si(get_periph_32k_source(dev))) {
729 vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN);
730 }
731 }
732
733 /* Configuration requests disabling internal silicon OSC. */
734 if (devcfg->dis_internal_osc) {
735 if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO)
736 && !periph_clk_src_using_si(get_periph_32k_source(dev))) {
737 vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN);
738 }
739 }
740
741 return rc;
742 }
743 #endif
744
745 /*
746 * MEC172x Errata document DS80000913C
747 * Programming the PCR clock divider that divides the clock input to the ARM
748 * Cortex-M4 may cause a clock glitch. The recommended work-around is to
749 * issue four NOP instruction before and after the write to the PCR processor
750 * clock control register. The final four NOP instructions are followed by
751 * data and instruction barriers to flush the Cortex-M4's pipeline.
752 * NOTE: Zephyr provides inline functions for Cortex-Mx NOP but not for
753 * data and instruction barrier instructions. Caller's should only invoke this
754 * function with interrupts locked.
755 */
xec_clock_control_core_clock_divider_set(uint8_t clkdiv)756 static void xec_clock_control_core_clock_divider_set(uint8_t clkdiv)
757 {
758 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
759
760 arch_nop();
761 arch_nop();
762 arch_nop();
763 arch_nop();
764 pcr->PROC_CLK_CTRL = (uint32_t)clkdiv;
765 arch_nop();
766 arch_nop();
767 arch_nop();
768 arch_nop();
769 barrier_dsync_fence_full();
770 barrier_isync_fence_full();
771 }
772
773 /*
774 * PCR peripheral sleep enable allows the clocks to a specific peripheral to
775 * be gated off if the peripheral is not requesting a clock.
776 * slp_idx = zero based index into 32-bit PCR sleep enable registers.
777 * slp_pos = bit position in the register
778 * slp_en if non-zero set the bit else clear the bit
779 */
z_mchp_xec_pcr_periph_sleep(uint8_t slp_idx,uint8_t slp_pos,uint8_t slp_en)780 int z_mchp_xec_pcr_periph_sleep(uint8_t slp_idx, uint8_t slp_pos,
781 uint8_t slp_en)
782 {
783 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
784
785 if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) {
786 return -EINVAL;
787 }
788
789 if (slp_en) {
790 pcr->SLP_EN[slp_idx] |= BIT(slp_pos);
791 } else {
792 pcr->SLP_EN[slp_idx] &= ~BIT(slp_pos);
793 }
794
795 return 0;
796 }
797
798 /* Most peripherals have a write only reset bit in the PCR reset enable registers.
799 * The layout of these registers is identical to the PCR sleep enable registers.
800 * Reset enables are protected by a lock register.
801 */
z_mchp_xec_pcr_periph_reset(uint8_t slp_idx,uint8_t slp_pos)802 int z_mchp_xec_pcr_periph_reset(uint8_t slp_idx, uint8_t slp_pos)
803 {
804 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
805
806 if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) {
807 return -EINVAL;
808 }
809
810 uint32_t lock = irq_lock();
811
812 pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_UNLOCK;
813 pcr->RST_EN[slp_idx] = BIT(slp_pos);
814 pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_LOCK;
815
816 irq_unlock(lock);
817
818 return 0;
819 }
820
821 /* clock control driver API implementation */
822
xec_cc_on(const struct device * dev,clock_control_subsys_t sub_system,bool turn_on)823 static int xec_cc_on(const struct device *dev,
824 clock_control_subsys_t sub_system,
825 bool turn_on)
826 {
827 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
828 struct mchp_xec_pcr_clk_ctrl *cc = (struct mchp_xec_pcr_clk_ctrl *)sub_system;
829 uint16_t pcr_idx = 0;
830 uint16_t bitpos = 0;
831
832 if (!cc) {
833 return -EINVAL;
834 }
835
836 switch (MCHP_XEC_CLK_SRC_GET(cc->pcr_info)) {
837 case MCHP_XEC_PCR_CLK_CORE:
838 case MCHP_XEC_PCR_CLK_BUS:
839 break;
840 case MCHP_XEC_PCR_CLK_CPU:
841 if (cc->pcr_info & MCHP_XEC_CLK_CPU_MASK) {
842 uint32_t lock = irq_lock();
843
844 xec_clock_control_core_clock_divider_set(
845 cc->pcr_info & MCHP_XEC_CLK_CPU_MASK);
846
847 irq_unlock(lock);
848 } else {
849 return -EINVAL;
850 }
851 break;
852 case MCHP_XEC_PCR_CLK_PERIPH:
853 case MCHP_XEC_PCR_CLK_PERIPH_FAST:
854 pcr_idx = MCHP_XEC_PCR_SCR_GET_IDX(cc->pcr_info);
855 bitpos = MCHP_XEC_PCR_SCR_GET_BITPOS(cc->pcr_info);
856
857 if (pcr_idx >= MCHP_MAX_PCR_SCR_REGS) {
858 return -EINVAL;
859 }
860
861 if (turn_on) {
862 pcr->SLP_EN[pcr_idx] &= ~BIT(bitpos);
863 } else {
864 pcr->SLP_EN[pcr_idx] |= BIT(bitpos);
865 }
866 break;
867 case MCHP_XEC_PCR_CLK_PERIPH_SLOW:
868 if (turn_on) {
869 pcr->SLOW_CLK_CTRL =
870 cc->pcr_info & MCHP_XEC_CLK_SLOW_MASK;
871 } else {
872 pcr->SLOW_CLK_CTRL = 0;
873 }
874 break;
875 default:
876 return -EINVAL;
877 }
878
879 return 0;
880 }
881
882 /*
883 * Turn on requested clock source.
884 * Core, CPU, and Bus clocks are always on except in deep sleep state.
885 * Peripheral clocks can be gated off if the peripheral's PCR sleep enable
886 * is set and the peripheral indicates it does not need a clock by clearing
887 * its PCR CLOCK_REQ read-only status.
888 * Peripheral slow clock my be turned on by writing a non-zero divider value
889 * to its PCR control register.
890 */
xec_clock_control_on(const struct device * dev,clock_control_subsys_t sub_system)891 static int xec_clock_control_on(const struct device *dev,
892 clock_control_subsys_t sub_system)
893 {
894 return xec_cc_on(dev, sub_system, true);
895 }
896
897 /*
898 * Turn off clock source.
899 * Core, CPU, and Bus clocks are always on except in deep sleep when PLL is
900 * turned off. Exception is 32 KHz clock.
901 * Peripheral clocks are gated off when the peripheral's sleep enable is set
902 * and the peripheral indicates is no longer needs a clock by de-asserting
903 * its read-only PCR CLOCK_REQ bit.
904 * Peripheral slow clock can be turned off by writing 0 to its control register.
905 */
xec_clock_control_off(const struct device * dev,clock_control_subsys_t sub_system)906 static inline int xec_clock_control_off(const struct device *dev,
907 clock_control_subsys_t sub_system)
908 {
909 return xec_cc_on(dev, sub_system, false);
910 }
911
912 /* MEC172x and future SoC's implement a turbo clock mode where
913 * ARM Core, QMSPI, and PK use turbo clock. All other peripherals
914 * use AHB clock or the slow clock.
915 */
get_turbo_clock(const struct device * dev)916 static uint32_t get_turbo_clock(const struct device *dev)
917 {
918 #ifdef CONFIG_SOC_SERIES_MEC15XX
919 ARG_UNUSED(dev);
920
921 return MHZ(48);
922 #else
923 const struct xec_pcr_config * const devcfg = dev->config;
924 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
925
926 if (pcr->TURBO_CLK & XEC_CC_PCR_TURBO_CLK_96M) {
927 return MHZ(96);
928 }
929
930 return MHZ(48);
931 #endif
932 }
933
934 /*
935 * MEC172x clock subsystem:
936 * Two main clock domains: PLL and Peripheral-32K. Each domain's 32 KHz source
937 * can be selected from one of three inputs:
938 * internal silicon OSC +/- 2% accuracy
939 * external crystal connected parallel or single ended
940 * external 32 KHz 50% duty cycle waveform on 32KHZ_IN pin.
941 * PLL domain supplies 96 MHz, 48 MHz, and other high speed clocks to all
942 * peripherals except those in the Peripheral-32K clock domain. The slow clock
943 * is derived from the 48 MHz produced by the PLL.
944 * ARM Cortex-M4 core input: 96MHz
945 * AHB clock input: 48 MHz
946 * Fast AHB peripherals: 96 MHz internal and 48 MHz AHB interface.
947 * Slow clock peripherals: PWM, TACH, PROCHOT
948 * Peripheral-32K domain peripherals:
949 * WDT, RTC, RTOS timer, hibernation timers, week timer
950 *
951 * Peripherals using both PLL and 32K clock domains:
952 * BBLED, RPMFAN
953 */
xec_clock_control_get_subsys_rate(const struct device * dev,clock_control_subsys_t sub_system,uint32_t * rate)954 static int xec_clock_control_get_subsys_rate(const struct device *dev,
955 clock_control_subsys_t sub_system,
956 uint32_t *rate)
957 {
958 const struct xec_pcr_config * const devcfg = dev->config;
959 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
960 uint32_t bus = (uint32_t)sub_system;
961 uint32_t temp = 0;
962 uint32_t ahb_clock = MHZ(48);
963 uint32_t turbo_clock = get_turbo_clock(dev);
964
965 switch (bus) {
966 case MCHP_XEC_PCR_CLK_CORE:
967 case MCHP_XEC_PCR_CLK_PERIPH_FAST:
968 *rate = turbo_clock;
969 break;
970 case MCHP_XEC_PCR_CLK_CPU:
971 /* if PCR PROC_CLK_CTRL is 0 the chip is not running */
972 *rate = turbo_clock / pcr->PROC_CLK_CTRL;
973 break;
974 case MCHP_XEC_PCR_CLK_BUS:
975 case MCHP_XEC_PCR_CLK_PERIPH:
976 *rate = ahb_clock;
977 break;
978 case MCHP_XEC_PCR_CLK_PERIPH_SLOW:
979 temp = pcr->SLOW_CLK_CTRL;
980 if (temp) {
981 *rate = ahb_clock / temp;
982 } else {
983 *rate = 0; /* slow clock off */
984 }
985 break;
986 default:
987 *rate = 0;
988 return -EINVAL;
989 }
990
991 return 0;
992 }
993
994 #if defined(CONFIG_PM)
mchp_xec_clk_ctrl_sys_sleep_enable(bool is_deep)995 void mchp_xec_clk_ctrl_sys_sleep_enable(bool is_deep)
996 {
997 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
998 uint32_t sys_sleep_mode = MCHP_PCR_SYS_SLP_CTRL_SLP_ALL;
999
1000 if (is_deep) {
1001 sys_sleep_mode |= MCHP_PCR_SYS_SLP_CTRL_SLP_HEAVY;
1002 }
1003
1004 SCB->SCR |= BIT(2);
1005 pcr->SYS_SLP_CTRL = sys_sleep_mode;
1006 }
1007
mchp_xec_clk_ctrl_sys_sleep_disable(void)1008 void mchp_xec_clk_ctrl_sys_sleep_disable(void)
1009 {
1010 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
1011 pcr->SYS_SLP_CTRL = 0;
1012 SCB->SCR &= ~BIT(2);
1013 }
1014 #endif
1015
1016 /* Clock controller driver registration */
1017 static DEVICE_API(clock_control, xec_clock_control_api) = {
1018 .on = xec_clock_control_on,
1019 .off = xec_clock_control_off,
1020 .get_rate = xec_clock_control_get_subsys_rate,
1021 };
1022
xec_clock_control_init(const struct device * dev)1023 static int xec_clock_control_init(const struct device *dev)
1024 {
1025 const struct xec_pcr_config * const devcfg = dev->config;
1026 struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
1027 enum pll_clk32k_src pll_clk_src = devcfg->pll_src;
1028 enum periph_clk32k_src periph_clk_src = devcfg->periph_src;
1029 uint32_t clk_flags = 0U;
1030 int rc = 0;
1031
1032 if (devcfg->xtal_se) {
1033 clk_flags |= CLK32K_FLAG_CRYSTAL_SE;
1034 }
1035
1036 pcr_slp_init(pcr);
1037
1038 rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
1039 if ((pll_clk_src == PLL_CLK32K_SRC_PIN) || periph_clk_src_using_pin(periph_clk_src)) {
1040 if (rc) {
1041 LOG_ERR("XEC clock control: PINCTRL apply error %d", rc);
1042 pll_clk_src = PLL_CLK32K_SRC_SO;
1043 periph_clk_src = PERIPH_CLK32K_SRC_SO_SO;
1044 clk_flags = 0U;
1045 }
1046 }
1047
1048 /* sleep used as debug */
1049 rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
1050 if ((rc != 0) && (rc != -ENOENT)) {
1051 LOG_ERR("XEC clock control: PINCTRL debug apply error %d", rc);
1052 }
1053
1054 rc = soc_clk32_init(dev, pll_clk_src, periph_clk_src, clk_flags);
1055 if (rc) {
1056 LOG_ERR("XEC clock control: init error %d", rc);
1057 }
1058
1059 xec_clock_control_core_clock_divider_set(devcfg->core_clk_div);
1060
1061 return rc;
1062 }
1063
1064 #define XEC_PLL_32K_SRC(i) \
1065 (enum pll_clk32k_src)DT_INST_PROP_OR(i, pll_32k_src, PLL_CLK32K_SRC_SO)
1066
1067 #define XEC_PERIPH_32K_SRC(i) \
1068 (enum periph_clk32k_src)DT_INST_PROP_OR(0, periph_32k_src, PERIPH_CLK32K_SRC_SO_SO)
1069
1070 PINCTRL_DT_INST_DEFINE(0);
1071
1072 const struct xec_pcr_config pcr_xec_config = {
1073 .pcr_base = DT_INST_REG_ADDR_BY_IDX(0, 0),
1074 .vbr_base = DT_INST_REG_ADDR_BY_IDX(0, 1),
1075 .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
1076 .xtal_enable_delay_ms =
1077 (uint16_t)DT_INST_PROP_OR(0, xtal_enable_delay_ms, XEC_CC_XTAL_EN_DELAY_MS_DFLT),
1078 .pll_lock_timeout_ms =
1079 (uint16_t)DT_INST_PROP_OR(0, pll_lock_timeout_ms, XEC_CC_DFLT_PLL_LOCK_WAIT_MS),
1080 .period_min = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_min, CNT32K_TMIN),
1081 .period_max = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_max, CNT32K_TMAX),
1082 .core_clk_div = (uint8_t)DT_INST_PROP_OR(0, core_clk_div, CONFIG_SOC_MEC_PROC_CLK_DIV),
1083 .xtal_se = (uint8_t)DT_INST_PROP_OR(0, xtal_single_ended, 0),
1084 .max_dc_va = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_duty_cycle_var_max, CNT32K_DUTY_MAX),
1085 .min_valid = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_valid_min, CNT32K_VAL_MIN),
1086 .pll_src = XEC_PLL_32K_SRC(0),
1087 .periph_src = XEC_PERIPH_32K_SRC(0),
1088 .clkmon_bypass = (uint8_t)DT_INST_PROP_OR(0, clkmon_bypass, 0),
1089 .dis_internal_osc = (uint8_t)DT_INST_PROP_OR(0, internal_osc_disable, 0),
1090 };
1091
1092 DEVICE_DT_INST_DEFINE(0,
1093 xec_clock_control_init,
1094 NULL,
1095 NULL, &pcr_xec_config,
1096 PRE_KERNEL_1,
1097 CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
1098 &xec_clock_control_api);
1099