1 /* uart_h5.c - UART based Bluetooth driver */
2
3 /*
4 * Copyright (c) 2015-2016 Intel Corporation
5 *
6 * SPDX-License-Identifier: Apache-2.0
7 */
8
9 #include <errno.h>
10 #include <stddef.h>
11
12 #include <zephyr/kernel.h>
13
14 #include <zephyr/init.h>
15 #include <zephyr/drivers/uart.h>
16 #include <zephyr/sys/util.h>
17 #include <zephyr/sys/byteorder.h>
18 #include <zephyr/debug/stack.h>
19 #include <zephyr/sys/printk.h>
20 #include <stdint.h>
21 #include <stdbool.h>
22 #include <string.h>
23
24 #include <zephyr/bluetooth/bluetooth.h>
25 #include <zephyr/bluetooth/hci.h>
26 #include <zephyr/drivers/bluetooth.h>
27
28 #include "../util.h"
29
30 #define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
31 #include <zephyr/logging/log.h>
32 LOG_MODULE_REGISTER(bt_driver);
33
34 #define DT_DRV_COMPAT zephyr_bt_hci_3wire_uart
35
36 #define HCI_3WIRE_ACK_PKT 0x00
37 #define HCI_COMMAND_PKT 0x01
38 #define HCI_ACLDATA_PKT 0x02
39 #define HCI_SCODATA_PKT 0x03
40 #define HCI_EVENT_PKT 0x04
41 #define HCI_ISODATA_PKT 0x05
42 #define HCI_3WIRE_LINK_PKT 0x0f
43 #define HCI_VENDOR_PKT 0xff
44
reliable_packet(uint8_t type)45 static bool reliable_packet(uint8_t type)
46 {
47 switch (type) {
48 case HCI_COMMAND_PKT:
49 case HCI_ACLDATA_PKT:
50 case HCI_EVENT_PKT:
51 case HCI_ISODATA_PKT:
52 return true;
53 default:
54 return false;
55 }
56 }
57
58 /* FIXME: Correct timeout */
59 #define H5_RX_ACK_TIMEOUT K_MSEC(250)
60 #define H5_TX_ACK_TIMEOUT K_MSEC(250)
61
62 #define SLIP_DELIMITER 0xc0
63 #define SLIP_ESC 0xdb
64 #define SLIP_ESC_DELIM 0xdc
65 #define SLIP_ESC_ESC 0xdd
66
67 #define H5_RX_ESC 1
68 #define H5_TX_ACK_PEND 2
69
70 #define H5_HDR_SEQ(hdr) ((hdr)[0] & 0x07)
71 #define H5_HDR_ACK(hdr) (((hdr)[0] >> 3) & 0x07)
72 #define H5_HDR_CRC(hdr) (((hdr)[0] >> 6) & 0x01)
73 #define H5_HDR_RELIABLE(hdr) (((hdr)[0] >> 7) & 0x01)
74 #define H5_HDR_PKT_TYPE(hdr) ((hdr)[1] & 0x0f)
75 #define H5_HDR_LEN(hdr) ((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
76
77 #define H5_SET_SEQ(hdr, seq) ((hdr)[0] |= (seq))
78 #define H5_SET_ACK(hdr, ack) ((hdr)[0] |= (ack) << 3)
79 #define H5_SET_RELIABLE(hdr) ((hdr)[0] |= 1 << 7)
80 #define H5_SET_TYPE(hdr, type) ((hdr)[1] |= type)
81 #define H5_SET_LEN(hdr, len) (((hdr)[1] |= ((len) & 0x0f) << 4), \
82 ((hdr)[2] |= (len) >> 4))
83
84 struct h5_data {
85 /* Needed for delayed work callbacks */
86 const struct device *dev;
87
88 bt_hci_recv_t recv;
89
90 struct net_buf *rx_buf;
91
92 struct k_fifo tx_queue;
93 struct k_fifo rx_queue;
94 struct k_fifo unack_queue;
95
96 struct k_work_delayable ack_work;
97 struct k_work_delayable retx_work;
98
99 uint8_t tx_win;
100 uint8_t tx_ack;
101 uint8_t tx_seq;
102
103 uint8_t rx_ack;
104
105 enum {
106 UNINIT,
107 INIT,
108 ACTIVE,
109 } link_state;
110
111 enum {
112 START,
113 HEADER,
114 PAYLOAD,
115 END,
116 } rx_state;
117
118 uint8_t unack_queue_len;
119 };
120
121 struct h5_config {
122 const struct device *uart;
123
124 k_thread_stack_t *rx_stack;
125 size_t rx_stack_size;
126 struct k_thread *rx_thread;
127
128 k_thread_stack_t *tx_stack;
129 size_t tx_stack_size;
130 struct k_thread *tx_thread;
131 };
132
133 static const uint8_t sync_req[] = { 0x01, 0x7e };
134 static const uint8_t sync_rsp[] = { 0x02, 0x7d };
135 /* Third byte may change */
136 static uint8_t conf_req[3] = { 0x03, 0xfc };
137 static const uint8_t conf_rsp[] = { 0x04, 0x7b };
138
139 /* H5 signal buffers pool */
140 #define MAX_SIG_LEN 3
141 #define SIGNAL_COUNT (2 * DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT))
142 #define SIG_BUF_SIZE (BT_BUF_RESERVE + MAX_SIG_LEN)
143 NET_BUF_POOL_DEFINE(h5_pool, SIGNAL_COUNT, SIG_BUF_SIZE, 0, NULL);
144
h5_reset_rx(struct h5_data * h5)145 static void h5_reset_rx(struct h5_data *h5)
146 {
147 if (h5->rx_buf) {
148 net_buf_unref(h5->rx_buf);
149 h5->rx_buf = NULL;
150 }
151
152 h5->rx_state = START;
153 }
154
h5_unslip_byte(const struct device * uart,uint8_t * byte)155 static int h5_unslip_byte(const struct device *uart, uint8_t *byte)
156 {
157 int count;
158
159 if (*byte != SLIP_ESC) {
160 return 0;
161 }
162
163 do {
164 count = uart_fifo_read(uart, byte, sizeof(*byte));
165 } while (!count);
166
167 switch (*byte) {
168 case SLIP_ESC_DELIM:
169 *byte = SLIP_DELIMITER;
170 break;
171 case SLIP_ESC_ESC:
172 *byte = SLIP_ESC;
173 break;
174 default:
175 LOG_ERR("Invalid escape byte %x\n", *byte);
176 return -EIO;
177 }
178
179 return 0;
180 }
181
process_unack(struct h5_data * h5)182 static void process_unack(struct h5_data *h5)
183 {
184 uint8_t next_seq = h5->tx_seq;
185 uint8_t number_removed = h5->unack_queue_len;
186
187 if (!h5->unack_queue_len) {
188 return;
189 }
190
191 LOG_DBG("rx_ack %u tx_ack %u tx_seq %u unack_queue_len %u", h5->rx_ack, h5->tx_ack,
192 h5->tx_seq, h5->unack_queue_len);
193
194 while (h5->unack_queue_len > 0) {
195 if (next_seq == h5->rx_ack) {
196 /* Next sequence number is the same as last received
197 * ack number
198 */
199 break;
200 }
201
202 number_removed--;
203 /* Similar to (n - 1) % 8 with unsigned conversion */
204 next_seq = (next_seq - 1) & 0x07;
205 }
206
207 if (next_seq != h5->rx_ack) {
208 LOG_ERR("Wrong sequence: rx_ack %u tx_seq %u next_seq %u", h5->rx_ack,
209 h5->tx_seq, next_seq);
210 }
211
212 LOG_DBG("Need to remove %u packet from the queue", number_removed);
213
214 while (number_removed) {
215 struct net_buf *buf = k_fifo_get(&h5->unack_queue, K_NO_WAIT);
216
217 if (!buf) {
218 LOG_ERR("Unack queue is empty");
219 break;
220 }
221
222 /* TODO: print or do something with packet */
223 LOG_DBG("Remove buf from the unack_queue");
224
225 net_buf_unref(buf);
226 h5->unack_queue_len--;
227 number_removed--;
228 }
229 }
230
h5_print_header(const uint8_t * hdr,const char * str)231 static void h5_print_header(const uint8_t *hdr, const char *str)
232 {
233 if (H5_HDR_RELIABLE(hdr)) {
234 LOG_DBG("%s REL: seq %u ack %u crc %u type %u len %u", str, H5_HDR_SEQ(hdr),
235 H5_HDR_ACK(hdr), H5_HDR_CRC(hdr), H5_HDR_PKT_TYPE(hdr), H5_HDR_LEN(hdr));
236 } else {
237 LOG_DBG("%s UNREL: ack %u crc %u type %u len %u", str, H5_HDR_ACK(hdr),
238 H5_HDR_CRC(hdr), H5_HDR_PKT_TYPE(hdr), H5_HDR_LEN(hdr));
239 }
240 }
241
242 #if defined(CONFIG_BT_HCI_DRIVER_LOG_LEVEL_DBG)
hexdump(const char * str,const uint8_t * packet,size_t length)243 static void hexdump(const char *str, const uint8_t *packet, size_t length)
244 {
245 int n = 0;
246
247 if (!length) {
248 printk("%s zero-length signal packet\n", str);
249 return;
250 }
251
252 while (length--) {
253 if (n % 16 == 0) {
254 printk("%s %08X ", str, n);
255 }
256
257 printk("%02X ", *packet++);
258
259 n++;
260 if (n % 8 == 0) {
261 if (n % 16 == 0) {
262 printk("\n");
263 } else {
264 printk(" ");
265 }
266 }
267 }
268
269 if (n % 16) {
270 printk("\n");
271 }
272 }
273 #else
274 #define hexdump(str, packet, length)
275 #endif
276
h5_slip_byte(const struct device * uart,uint8_t byte)277 static uint8_t h5_slip_byte(const struct device *uart, uint8_t byte)
278 {
279 switch (byte) {
280 case SLIP_DELIMITER:
281 uart_poll_out(uart, SLIP_ESC);
282 uart_poll_out(uart, SLIP_ESC_DELIM);
283 return 2;
284 case SLIP_ESC:
285 uart_poll_out(uart, SLIP_ESC);
286 uart_poll_out(uart, SLIP_ESC_ESC);
287 return 2;
288 default:
289 uart_poll_out(uart, byte);
290 return 1;
291 }
292 }
293
h5_send(const struct device * dev,const uint8_t * payload,uint8_t type,int len)294 static void h5_send(const struct device *dev, const uint8_t *payload, uint8_t type, int len)
295 {
296 const struct h5_config *cfg = dev->config;
297 struct h5_data *h5 = dev->data;
298 uint8_t hdr[4];
299 int i;
300
301 hexdump("<= ", payload, len);
302
303 (void)memset(hdr, 0, sizeof(hdr));
304
305 /* Set ACK for outgoing packet and stop delayed work */
306 H5_SET_ACK(hdr, h5->tx_ack);
307 /* If cancel fails we may ack the same seq number twice, this is OK. */
308 (void)k_work_cancel_delayable(&h5->ack_work);
309
310 if (reliable_packet(type)) {
311 H5_SET_RELIABLE(hdr);
312 H5_SET_SEQ(hdr, h5->tx_seq);
313 h5->tx_seq = (h5->tx_seq + 1) % 8;
314 }
315
316 H5_SET_TYPE(hdr, type);
317 H5_SET_LEN(hdr, len);
318
319 /* Calculate CRC */
320 hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
321
322 h5_print_header(hdr, "TX: <");
323
324 uart_poll_out(cfg->uart, SLIP_DELIMITER);
325
326 for (i = 0; i < 4; i++) {
327 h5_slip_byte(cfg->uart, hdr[i]);
328 }
329
330 for (i = 0; i < len; i++) {
331 h5_slip_byte(cfg->uart, payload[i]);
332 }
333
334 uart_poll_out(cfg->uart, SLIP_DELIMITER);
335 }
336
337 /* Delayed work taking care about retransmitting packets */
retx_timeout(struct k_work * work)338 static void retx_timeout(struct k_work *work)
339 {
340 struct k_work_delayable *delayable = k_work_delayable_from_work(work);
341 struct h5_data *h5 = CONTAINER_OF(delayable, struct h5_data, retx_work);
342
343 LOG_DBG("unack_queue_len %u", h5->unack_queue_len);
344
345 if (h5->unack_queue_len) {
346 struct k_fifo tmp_queue;
347 struct net_buf *buf;
348
349 k_fifo_init(&tmp_queue);
350
351 /* Queue to temporary queue */
352 while ((buf = k_fifo_get(&h5->tx_queue, K_NO_WAIT))) {
353 k_fifo_put(&tmp_queue, buf);
354 }
355
356 /* Queue unack packets to the beginning of the queue */
357 while ((buf = k_fifo_get(&h5->unack_queue, K_NO_WAIT))) {
358 /* include also packet type */
359 net_buf_push(buf, sizeof(uint8_t));
360 k_fifo_put(&h5->tx_queue, buf);
361 h5->tx_seq = (h5->tx_seq - 1) & 0x07;
362 h5->unack_queue_len--;
363 }
364
365 /* Queue saved packets from temp queue */
366 while ((buf = k_fifo_get(&tmp_queue, K_NO_WAIT))) {
367 k_fifo_put(&h5->tx_queue, buf);
368 }
369 }
370 }
371
ack_timeout(struct k_work * work)372 static void ack_timeout(struct k_work *work)
373 {
374 struct k_work_delayable *delayable = k_work_delayable_from_work(work);
375 struct h5_data *h5 = CONTAINER_OF(delayable, struct h5_data, ack_work);
376
377 LOG_DBG("");
378
379 h5_send(h5->dev, NULL, HCI_3WIRE_ACK_PKT, 0);
380 }
381
h5_process_complete_packet(const struct device * dev,uint8_t * hdr)382 static void h5_process_complete_packet(const struct device *dev, uint8_t *hdr)
383 {
384 struct h5_data *h5 = dev->data;
385 struct net_buf *buf;
386
387 LOG_DBG("");
388
389 /* rx_ack should be in every packet */
390 h5->rx_ack = H5_HDR_ACK(hdr);
391
392 if (reliable_packet(H5_HDR_PKT_TYPE(hdr))) {
393 /* For reliable packet increment next transmit ack number */
394 h5->tx_ack = (h5->tx_ack + 1) % 8;
395 /* Submit delayed work to ack the packet */
396 k_work_reschedule(&h5->ack_work, H5_RX_ACK_TIMEOUT);
397 }
398
399 h5_print_header(hdr, "RX: >");
400
401 process_unack(h5);
402
403 buf = h5->rx_buf;
404 h5->rx_buf = NULL;
405
406 switch (H5_HDR_PKT_TYPE(hdr)) {
407 case HCI_3WIRE_ACK_PKT:
408 net_buf_unref(buf);
409 break;
410 case HCI_3WIRE_LINK_PKT:
411 k_fifo_put(&h5->rx_queue, buf);
412 break;
413 case HCI_EVENT_PKT:
414 case HCI_ACLDATA_PKT:
415 case HCI_ISODATA_PKT:
416 hexdump("=> ", buf->data, buf->len);
417 h5->recv(dev, buf);
418 break;
419 }
420 }
421
get_evt_buf(uint8_t evt)422 static inline struct net_buf *get_evt_buf(uint8_t evt)
423 {
424 return bt_buf_get_evt(evt, false, K_NO_WAIT);
425 }
426
bt_uart_isr(const struct device * uart,void * user_data)427 static void bt_uart_isr(const struct device *uart, void *user_data)
428 {
429 const struct device *dev = user_data;
430 struct h5_data *h5 = dev->data;
431 static int remaining;
432 uint8_t byte;
433 int ret;
434 static uint8_t hdr[4];
435 size_t buf_tailroom;
436
437 while (uart_irq_update(uart) &&
438 uart_irq_is_pending(uart)) {
439
440 if (!uart_irq_rx_ready(uart)) {
441 if (uart_irq_tx_ready(uart)) {
442 LOG_DBG("transmit ready");
443 } else {
444 LOG_DBG("spurious interrupt");
445 }
446 /* Only the UART RX path is interrupt-enabled */
447 break;
448 }
449
450 ret = uart_fifo_read(uart, &byte, sizeof(byte));
451 if (!ret) {
452 continue;
453 }
454
455 switch (h5->rx_state) {
456 case START:
457 if (byte == SLIP_DELIMITER) {
458 h5->rx_state = HEADER;
459 remaining = sizeof(hdr);
460 }
461 break;
462 case HEADER:
463 /* In a case we confuse ending slip delimiter
464 * with starting one.
465 */
466 if (byte == SLIP_DELIMITER) {
467 remaining = sizeof(hdr);
468 continue;
469 }
470
471 if (h5_unslip_byte(uart, &byte) < 0) {
472 h5_reset_rx(h5);
473 continue;
474 }
475
476 memcpy(&hdr[sizeof(hdr) - remaining], &byte, 1);
477 remaining--;
478
479 if (remaining) {
480 break;
481 }
482
483 remaining = H5_HDR_LEN(hdr);
484
485 switch (H5_HDR_PKT_TYPE(hdr)) {
486 case HCI_EVENT_PKT:
487 /* The buffer is allocated only once we know
488 * the exact event type.
489 */
490 h5->rx_state = PAYLOAD;
491 break;
492 case HCI_ACLDATA_PKT:
493 h5->rx_buf = bt_buf_get_rx(BT_BUF_ACL_IN,
494 K_NO_WAIT);
495 if (!h5->rx_buf) {
496 LOG_WRN("No available data buffers");
497 h5_reset_rx(h5);
498 continue;
499 }
500
501 h5->rx_state = PAYLOAD;
502 break;
503 case HCI_ISODATA_PKT:
504 h5->rx_buf = bt_buf_get_rx(BT_BUF_ISO_IN, K_NO_WAIT);
505 if (!h5->rx_buf) {
506 LOG_WRN("No available data buffers");
507 h5_reset_rx(h5);
508 continue;
509 }
510
511 h5->rx_state = PAYLOAD;
512 break;
513 case HCI_3WIRE_LINK_PKT:
514 case HCI_3WIRE_ACK_PKT:
515 h5->rx_buf = net_buf_alloc(&h5_pool, K_NO_WAIT);
516 if (!h5->rx_buf) {
517 LOG_WRN("No available signal buffers");
518 h5_reset_rx(h5);
519 continue;
520 }
521
522 h5->rx_state = PAYLOAD;
523 break;
524 default:
525 LOG_ERR("Wrong packet type %u", H5_HDR_PKT_TYPE(hdr));
526 h5->rx_state = END;
527 break;
528 }
529 if (!remaining) {
530 h5->rx_state = END;
531 }
532 break;
533 case PAYLOAD:
534 if (h5_unslip_byte(uart, &byte) < 0) {
535 h5_reset_rx(h5);
536 continue;
537 }
538
539 /* Allocate HCI event buffer now that we know the
540 * exact event type.
541 */
542 if (!h5->rx_buf) {
543 h5->rx_buf = get_evt_buf(byte);
544 if (!h5->rx_buf) {
545 LOG_WRN("No available event buffers");
546 h5_reset_rx(h5);
547 continue;
548 }
549 }
550
551 buf_tailroom = net_buf_tailroom(h5->rx_buf);
552 if (buf_tailroom < sizeof(byte)) {
553 LOG_ERR("Not enough space in buffer %zu/%zu", sizeof(byte),
554 buf_tailroom);
555 h5_reset_rx(h5);
556 break;
557 }
558
559 net_buf_add_mem(h5->rx_buf, &byte, sizeof(byte));
560 remaining--;
561 if (!remaining) {
562 h5->rx_state = END;
563 }
564 break;
565 case END:
566 if (byte != SLIP_DELIMITER) {
567 LOG_ERR("Missing ending SLIP_DELIMITER");
568 h5_reset_rx(h5);
569 break;
570 }
571
572 LOG_DBG("Received full packet: type %u", H5_HDR_PKT_TYPE(hdr));
573
574 /* Check when full packet is received, it can be done
575 * when parsing packet header but we need to receive
576 * full packet anyway to clear UART.
577 */
578 if (H5_HDR_RELIABLE(hdr) &&
579 H5_HDR_SEQ(hdr) != h5->tx_ack) {
580 LOG_ERR("Seq expected %u got %u. Drop packet", h5->tx_ack,
581 H5_HDR_SEQ(hdr));
582 h5_reset_rx(h5);
583 break;
584 }
585
586 h5_process_complete_packet(dev, hdr);
587 h5->rx_state = START;
588 break;
589 }
590 }
591 }
592
h5_get_type(struct net_buf * buf)593 static uint8_t h5_get_type(struct net_buf *buf)
594 {
595 return net_buf_pull_u8(buf);
596 }
597
h5_queue(const struct device * dev,struct net_buf * buf)598 static int h5_queue(const struct device *dev, struct net_buf *buf)
599 {
600 struct h5_data *h5 = dev->data;
601 uint8_t type;
602
603 LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);
604
605 switch (bt_buf_get_type(buf)) {
606 case BT_BUF_CMD:
607 type = HCI_COMMAND_PKT;
608 break;
609 case BT_BUF_ACL_OUT:
610 type = HCI_ACLDATA_PKT;
611 break;
612 case BT_BUF_ISO_OUT:
613 type = HCI_ISODATA_PKT;
614 break;
615 default:
616 LOG_ERR("Unknown packet type %u", bt_buf_get_type(buf));
617 return -1;
618 }
619
620 memcpy(net_buf_push(buf, sizeof(type)), &type, sizeof(type));
621
622 k_fifo_put(&h5->tx_queue, buf);
623
624 return 0;
625 }
626
tx_thread(void * p1,void * p2,void * p3)627 static void tx_thread(void *p1, void *p2, void *p3)
628 {
629 const struct device *dev = p1;
630 struct h5_data *h5 = dev->data;
631
632 ARG_UNUSED(p2);
633 ARG_UNUSED(p3);
634
635 LOG_DBG("");
636
637 /* FIXME: make periodic sending */
638 h5_send(dev, sync_req, HCI_3WIRE_LINK_PKT, sizeof(sync_req));
639
640 while (true) {
641 struct net_buf *buf;
642 uint8_t type;
643
644 LOG_DBG("link_state %u", h5->link_state);
645
646 switch (h5->link_state) {
647 case UNINIT:
648 /* FIXME: send sync */
649 k_sleep(K_MSEC(100));
650 break;
651 case INIT:
652 /* FIXME: send conf */
653 k_sleep(K_MSEC(100));
654 break;
655 case ACTIVE:
656 buf = k_fifo_get(&h5->tx_queue, K_FOREVER);
657 type = h5_get_type(buf);
658
659 h5_send(dev, buf->data, type, buf->len);
660
661 /* buf is dequeued from tx_queue and queued to unack
662 * queue.
663 */
664 k_fifo_put(&h5->unack_queue, buf);
665 h5->unack_queue_len++;
666
667 k_work_reschedule(&h5->retx_work, H5_TX_ACK_TIMEOUT);
668
669 break;
670 }
671 }
672 }
673
h5_set_txwin(struct h5_data * h5,uint8_t * conf)674 static void h5_set_txwin(struct h5_data *h5, uint8_t *conf)
675 {
676 conf[2] = h5->tx_win & 0x07;
677 }
678
rx_thread(void * p1,void * p2,void * p3)679 static void rx_thread(void *p1, void *p2, void *p3)
680 {
681 const struct device *dev = p1;
682 struct h5_data *h5 = dev->data;
683
684 ARG_UNUSED(p2);
685 ARG_UNUSED(p3);
686
687 LOG_DBG("");
688
689 while (true) {
690 struct net_buf *buf;
691
692 buf = k_fifo_get(&h5->rx_queue, K_FOREVER);
693
694 hexdump("=> ", buf->data, buf->len);
695
696 if (!memcmp(buf->data, sync_req, sizeof(sync_req))) {
697 if (h5->link_state == ACTIVE) {
698 /* TODO Reset H5 */
699 }
700
701 h5_send(dev, sync_rsp, HCI_3WIRE_LINK_PKT, sizeof(sync_rsp));
702 } else if (!memcmp(buf->data, sync_rsp, sizeof(sync_rsp))) {
703 if (h5->link_state == ACTIVE) {
704 /* TODO Reset H5 */
705 }
706
707 h5->link_state = INIT;
708 h5_set_txwin(h5, conf_req);
709 h5_send(dev, conf_req, HCI_3WIRE_LINK_PKT, sizeof(conf_req));
710 } else if (!memcmp(buf->data, conf_req, 2)) {
711 /*
712 * The Host sends Config Response messages without a
713 * Configuration Field.
714 */
715 h5_send(dev, conf_rsp, HCI_3WIRE_LINK_PKT, sizeof(conf_rsp));
716
717 /* Then send Config Request with Configuration Field */
718 h5_set_txwin(h5, conf_req);
719 h5_send(dev, conf_req, HCI_3WIRE_LINK_PKT, sizeof(conf_req));
720 } else if (!memcmp(buf->data, conf_rsp, 2)) {
721 h5->link_state = ACTIVE;
722 if (buf->len > 2) {
723 /* Configuration field present */
724 h5->tx_win = (buf->data[2] & 0x07);
725 }
726
727 LOG_DBG("Finished H5 configuration, tx_win %u", h5->tx_win);
728 } else {
729 LOG_ERR("Not handled yet %x %x", buf->data[0], buf->data[1]);
730 }
731
732 net_buf_unref(buf);
733
734 /* Make sure we don't hog the CPU if the rx_queue never
735 * gets empty.
736 */
737 k_yield();
738 }
739 }
740
h5_init(const struct device * dev)741 static void h5_init(const struct device *dev)
742 {
743 const struct h5_config *cfg = dev->config;
744 struct h5_data *h5 = dev->data;
745 k_tid_t tid;
746
747 LOG_DBG("");
748
749 h5->link_state = UNINIT;
750 h5->rx_state = START;
751 h5->tx_win = 4U;
752
753 /* TX thread */
754 k_fifo_init(&h5->tx_queue);
755 tid = k_thread_create(cfg->tx_thread, cfg->tx_stack, cfg->tx_stack_size,
756 tx_thread, (void *)dev, NULL, NULL,
757 K_PRIO_COOP(CONFIG_BT_HCI_TX_PRIO),
758 0, K_NO_WAIT);
759 k_thread_name_set(tid, "tx_thread");
760
761 k_fifo_init(&h5->rx_queue);
762 tid = k_thread_create(cfg->rx_thread, cfg->rx_stack, cfg->rx_stack_size,
763 rx_thread, (void *)dev, NULL, NULL,
764 K_PRIO_COOP(CONFIG_BT_RX_PRIO),
765 0, K_NO_WAIT);
766 k_thread_name_set(tid, "rx_thread");
767
768 /* Unack queue */
769 k_fifo_init(&h5->unack_queue);
770
771 /* Init delayed work */
772 k_work_init_delayable(&h5->ack_work, ack_timeout);
773 k_work_init_delayable(&h5->retx_work, retx_timeout);
774 }
775
h5_open(const struct device * dev,bt_hci_recv_t recv)776 static int h5_open(const struct device *dev, bt_hci_recv_t recv)
777 {
778 const struct h5_config *cfg = dev->config;
779 struct h5_data *h5 = dev->data;
780
781 LOG_DBG("");
782
783 /* This is needed so that we can access the device struct from within the
784 * delayed work callbacks.
785 */
786 h5->dev = dev;
787
788 h5->recv = recv;
789
790 uart_irq_rx_disable(cfg->uart);
791 uart_irq_tx_disable(cfg->uart);
792
793 bt_uart_drain(cfg->uart);
794
795 uart_irq_callback_user_data_set(cfg->uart, bt_uart_isr, (void *)dev);
796
797 h5_init(dev);
798
799 uart_irq_rx_enable(cfg->uart);
800
801 return 0;
802 }
803
804 static DEVICE_API(bt_hci, h5_driver_api) = {
805 .open = h5_open,
806 .send = h5_queue,
807 };
808
809 #define BT_UART_DEVICE_INIT(inst) \
810 static K_KERNEL_STACK_DEFINE(rx_thread_stack_##inst, CONFIG_BT_DRV_RX_STACK_SIZE); \
811 static struct k_thread rx_thread_##inst; \
812 static K_KERNEL_STACK_DEFINE(tx_thread_stack_##inst, CONFIG_BT_DRV_TX_STACK_SIZE); \
813 static struct k_thread tx_thread_##inst; \
814 static const struct h5_config h5_config_##inst = { \
815 .uart = DEVICE_DT_GET(DT_INST_PARENT(inst)), \
816 .rx_stack = rx_thread_stack_##inst, \
817 .rx_stack_size = K_KERNEL_STACK_SIZEOF(rx_thread_stack_##inst), \
818 .rx_thread = &rx_thread_##inst, \
819 .tx_stack = tx_thread_stack_##inst, \
820 .tx_stack_size = K_KERNEL_STACK_SIZEOF(tx_thread_stack_##inst), \
821 .tx_thread = &tx_thread_##inst, \
822 }; \
823 static struct h5_data h5_##inst; \
824 DEVICE_DT_INST_DEFINE(inst, NULL, NULL, &h5_##inst, &h5_config_##inst, \
825 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &h5_driver_api)
826
827
828 DT_INST_FOREACH_STATUS_OKAY(BT_UART_DEVICE_INIT)
829