1 /*
2  * Copyright (c) 2022, Basalte bv
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #define DT_DRV_COMPAT atmel_sam_adc
8 
9 #include <soc.h>
10 #include <zephyr/drivers/adc.h>
11 #include <zephyr/drivers/pinctrl.h>
12 #include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
13 
14 #define ADC_CONTEXT_USES_KERNEL_TIMER
15 #include "adc_context.h"
16 
17 #include <zephyr/logging/log.h>
18 #include <zephyr/irq.h>
19 LOG_MODULE_REGISTER(adc_sam, CONFIG_ADC_LOG_LEVEL);
20 
21 #define SAM_ADC_NUM_CHANNELS 16
22 #define SAM_ADC_TEMP_CHANNEL 15
23 
24 struct adc_sam_config {
25 	Adc *regs;
26 	const struct atmel_sam_pmc_config clock_cfg;
27 
28 	uint8_t prescaler;
29 	uint8_t startup_time;
30 	uint8_t settling_time;
31 	uint8_t tracking_time;
32 
33 	const struct pinctrl_dev_config *pcfg;
34 	void (*config_func)(const struct device *dev);
35 };
36 
37 struct adc_sam_data {
38 	struct adc_context ctx;
39 	const struct device *dev;
40 
41 	/* Pointer to the buffer in the sequence. */
42 	uint16_t *buffer;
43 
44 	/* Pointer to the beginning of a sample. Consider the number of
45 	 * channels in the sequence: this buffer changes by that amount
46 	 * so all the channels would get repeated.
47 	 */
48 	uint16_t *repeat_buffer;
49 
50 	/* Number of active channels to fill buffer */
51 	uint8_t num_active_channels;
52 };
53 
count_bits(uint32_t val)54 static uint8_t count_bits(uint32_t val)
55 {
56 	uint8_t res = 0;
57 
58 	while (val) {
59 		res += val & 1U;
60 		val >>= 1;
61 	}
62 
63 	return res;
64 }
65 
adc_sam_channel_setup(const struct device * dev,const struct adc_channel_cfg * channel_cfg)66 static int adc_sam_channel_setup(const struct device *dev,
67 				 const struct adc_channel_cfg *channel_cfg)
68 {
69 	const struct adc_sam_config *const cfg = dev->config;
70 	Adc *const adc = cfg->regs;
71 
72 	uint8_t channel_id = channel_cfg->channel_id;
73 
74 	if (channel_cfg->differential) {
75 		if (channel_id != (channel_cfg->input_positive / 2U)
76 		    || channel_id != (channel_cfg->input_negative / 2U)) {
77 			LOG_ERR("Invalid ADC differential input for channel %u", channel_id);
78 			return -EINVAL;
79 		}
80 	} else {
81 		if (channel_id != channel_cfg->input_positive) {
82 			LOG_ERR("Invalid ADC single-ended input for channel %u", channel_id);
83 			return -EINVAL;
84 		}
85 	}
86 
87 	if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
88 		LOG_ERR("Invalid ADC channel acquisition time");
89 		return -EINVAL;
90 	}
91 
92 	if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
93 		LOG_ERR("Invalid ADC channel reference (%d)", channel_cfg->reference);
94 		return -EINVAL;
95 	}
96 
97 	/* Enable internal temperature sensor (channel 15 / single-ended) */
98 	if (channel_cfg->channel_id == SAM_ADC_TEMP_CHANNEL) {
99 		adc->ADC_ACR |= ADC_ACR_TSON;
100 	}
101 
102 	/* Set channel mode, always on both inputs */
103 	if (channel_cfg->differential) {
104 		adc->ADC_COR |= (ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U);
105 	} else {
106 		adc->ADC_COR &= ~((ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U));
107 	}
108 
109 	/* Reset current gain */
110 	adc->ADC_CGR &= ~(ADC_CGR_GAIN0_Msk << (channel_id * 2U));
111 
112 	switch (channel_cfg->gain) {
113 	case ADC_GAIN_1_2:
114 		if (!channel_cfg->differential) {
115 			LOG_ERR("ADC 1/2x gain only allowed for differential channel");
116 			return -EINVAL;
117 		}
118 		/* NOP */
119 		break;
120 	case ADC_GAIN_1:
121 		adc->ADC_CGR |= ADC_CGR_GAIN0(1) << (channel_id * 2U);
122 		break;
123 	case ADC_GAIN_2:
124 		adc->ADC_CGR |= ADC_CGR_GAIN0(2) << (channel_id * 2U);
125 		break;
126 	case ADC_GAIN_4:
127 		if (channel_cfg->differential) {
128 			LOG_ERR("ADC 4x gain only allowed for single-ended channel");
129 			return -EINVAL;
130 		}
131 		adc->ADC_CGR |= ADC_CGR_GAIN0(3) << (channel_id * 2U);
132 		break;
133 	default:
134 		LOG_ERR("Invalid ADC channel gain (%d)", channel_cfg->gain);
135 		return -EINVAL;
136 	}
137 
138 	return 0;
139 }
140 
adc_sam_start_conversion(const struct device * dev)141 static void adc_sam_start_conversion(const struct device *dev)
142 {
143 	const struct adc_sam_config *const cfg = dev->config;
144 	Adc *const adc = cfg->regs;
145 
146 	adc->ADC_CR = ADC_CR_START;
147 }
148 
149 /**
150  * This is only called once at the beginning of all the conversions,
151  * all channels as a group.
152  */
adc_context_start_sampling(struct adc_context * ctx)153 static void adc_context_start_sampling(struct adc_context *ctx)
154 {
155 	struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
156 	const struct adc_sam_config *const cfg = data->dev->config;
157 	Adc *const adc = cfg->regs;
158 
159 	data->num_active_channels = count_bits(ctx->sequence.channels);
160 
161 	/* Disable all */
162 	adc->ADC_CHDR = 0xffff;
163 
164 	/* Enable selected */
165 	adc->ADC_CHER = ctx->sequence.channels;
166 
167 	LOG_DBG("Starting conversion for %u channels", data->num_active_channels);
168 
169 	adc_sam_start_conversion(data->dev);
170 }
171 
adc_context_update_buffer_pointer(struct adc_context * ctx,bool repeat)172 static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
173 {
174 	struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
175 
176 	if (repeat) {
177 		data->buffer = data->repeat_buffer;
178 	}
179 }
180 
check_buffer_size(const struct adc_sequence * sequence,uint8_t active_channels)181 static int check_buffer_size(const struct adc_sequence *sequence,
182 			     uint8_t active_channels)
183 {
184 	size_t needed_buffer_size = active_channels * sizeof(uint16_t);
185 
186 	if (sequence->options) {
187 		needed_buffer_size *= (1 + sequence->options->extra_samplings);
188 	}
189 
190 	if (sequence->buffer_size < needed_buffer_size) {
191 		LOG_ERR("Provided buffer is too small (%u/%u)",
192 				sequence->buffer_size, needed_buffer_size);
193 		return -ENOMEM;
194 	}
195 
196 	return 0;
197 }
198 
start_read(const struct device * dev,const struct adc_sequence * sequence)199 static int start_read(const struct device *dev,
200 		      const struct adc_sequence *sequence)
201 {
202 	struct adc_sam_data *data = dev->data;
203 	uint32_t channels = sequence->channels;
204 	int error;
205 
206 	/* Signal an error if the channel selection is invalid (no channels or
207 	 * a non-existing one is selected).
208 	 */
209 	if (channels == 0U ||
210 	    (channels & (~0UL << SAM_ADC_NUM_CHANNELS))) {
211 		LOG_ERR("Invalid selection of channels");
212 		return -EINVAL;
213 	}
214 
215 	if (sequence->oversampling != 0U) {
216 		LOG_ERR("Oversampling is not supported");
217 		return -EINVAL;
218 	}
219 
220 	if (sequence->resolution != 12U) {
221 		LOG_ERR("ADC resolution %d is not valid", sequence->resolution);
222 		return -EINVAL;
223 	}
224 
225 	data->num_active_channels = count_bits(channels);
226 
227 	error = check_buffer_size(sequence, data->num_active_channels);
228 	if (error) {
229 		return error;
230 	}
231 
232 	data->buffer = sequence->buffer;
233 	data->repeat_buffer = sequence->buffer;
234 
235 	/* At this point we allow the scheduler to do other things while
236 	 * we wait for the conversions to complete. This is provided by the
237 	 * adc_context functions. However, the caller of this function is
238 	 * blocked until the results are in.
239 	 */
240 	adc_context_start_read(&data->ctx, sequence);
241 
242 	return adc_context_wait_for_completion(&data->ctx);
243 }
244 
adc_sam_read(const struct device * dev,const struct adc_sequence * sequence)245 static int adc_sam_read(const struct device *dev,
246 			const struct adc_sequence *sequence)
247 {
248 	struct adc_sam_data *data = dev->data;
249 	int error;
250 
251 	adc_context_lock(&data->ctx, false, NULL);
252 	error = start_read(dev, sequence);
253 	adc_context_release(&data->ctx, error);
254 
255 	return error;
256 }
257 
adc_sam_isr(const struct device * dev)258 static void adc_sam_isr(const struct device *dev)
259 {
260 	const struct adc_sam_config *const cfg = dev->config;
261 	struct adc_sam_data *data = dev->data;
262 	Adc *const adc = cfg->regs;
263 
264 	uint16_t result;
265 
266 	if (adc->ADC_ISR & ADC_ISR_DRDY) {
267 		result = adc->ADC_LCDR & ADC_LCDR_LDATA_Msk;
268 
269 		*data->buffer++ = result;
270 		data->num_active_channels--;
271 
272 		if (data->num_active_channels == 0) {
273 			/* Called once all conversions have completed.*/
274 			adc_context_on_sampling_done(&data->ctx, dev);
275 		} else {
276 			adc_sam_start_conversion(dev);
277 		}
278 	}
279 }
280 
adc_sam_init(const struct device * dev)281 static int adc_sam_init(const struct device *dev)
282 {
283 	const struct adc_sam_config *const cfg = dev->config;
284 	struct adc_sam_data *data = dev->data;
285 	Adc *const adc = cfg->regs;
286 
287 	int ret;
288 	uint32_t frequency, conv_periods;
289 
290 	/* Get peripheral clock frequency */
291 	ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
292 				     (clock_control_subsys_t)&cfg->clock_cfg,
293 				     &frequency);
294 	if (ret < 0) {
295 		LOG_ERR("Failed to get ADC peripheral clock rate (%d)", ret);
296 		return -ENODEV;
297 	}
298 
299 	/* Calculate ADC clock frequency */
300 	frequency = frequency / 2U / (cfg->prescaler + 1U);
301 	if (frequency < 1000000U || frequency > 22000000U) {
302 		LOG_ERR("Invalid ADC clock frequency %d (1MHz < freq < 22Mhz)", frequency);
303 		return -EINVAL;
304 	}
305 
306 	/* The number of ADC pulses for conversion  */
307 	conv_periods = MAX(20U, cfg->tracking_time + 6U);
308 
309 	/* Calculate the sampling frequency */
310 	frequency /= conv_periods;
311 
312 	/* Reset ADC controller */
313 	adc->ADC_CR = ADC_CR_SWRST;
314 
315 	/* Reset Mode */
316 	adc->ADC_MR = 0U;
317 
318 	/* Reset PDC transfer */
319 	adc->ADC_PTCR = ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS;
320 	adc->ADC_RCR = 0U;
321 	adc->ADC_RNCR = 0U;
322 
323 	/* Set prescaler, timings and allow different analog settings for each channel */
324 	adc->ADC_MR = ADC_MR_PRESCAL(cfg->prescaler)
325 		    | ADC_MR_STARTUP(cfg->startup_time)
326 		    | ADC_MR_SETTLING(cfg->settling_time)
327 		    | ADC_MR_TRACKTIM(cfg->tracking_time)
328 		    | ADC_MR_TRANSFER(2U) /* Should be 2 to guarantee the optimal hold time. */
329 		    | ADC_MR_ANACH_ALLOWED;
330 
331 	/**
332 	 * Set bias current control
333 	 * IBCTL = 00 is the required value for a sampling frequency below 500 kHz,
334 	 * and IBCTL = 01 for a sampling frequency between 500 kHz and 1 MHz.
335 	 */
336 	adc->ADC_ACR = ADC_ACR_IBCTL(frequency < 500000U ? 0U : 1U);
337 
338 	/* Enable ADC clock in PMC */
339 	ret = clock_control_on(SAM_DT_PMC_CONTROLLER,
340 			       (clock_control_subsys_t)&cfg->clock_cfg);
341 	if (ret < 0) {
342 		LOG_ERR("Failed to enable ADC clock (%d)", ret);
343 		return -ENODEV;
344 	}
345 
346 	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
347 	if (ret < 0) {
348 		return ret;
349 	}
350 
351 	cfg->config_func(dev);
352 
353 	/* Enable data ready interrupt */
354 	adc->ADC_IER = ADC_IER_DRDY;
355 
356 	data->dev = dev;
357 
358 	adc_context_unlock_unconditionally(&data->ctx);
359 
360 	return 0;
361 }
362 
363 #ifdef CONFIG_ADC_ASYNC
adc_sam_read_async(const struct device * dev,const struct adc_sequence * sequence,struct k_poll_signal * async)364 static int adc_sam_read_async(const struct device *dev,
365 			      const struct adc_sequence *sequence,
366 			      struct k_poll_signal *async)
367 {
368 	struct adc_sam_data *data = dev->data;
369 	int error;
370 
371 	adc_context_lock(&data->ctx, true, async);
372 	error = start_read(dev, sequence);
373 	adc_context_release(&data->ctx, error);
374 
375 	return error;
376 }
377 #endif
378 
379 static DEVICE_API(adc, adc_sam_api) = {
380 	.channel_setup = adc_sam_channel_setup,
381 	.read = adc_sam_read,
382 #ifdef CONFIG_ADC_ASYNC
383 	.read_async = adc_sam_read_async,
384 #endif
385 };
386 
387 #define ADC_SAM_DEVICE(n)						\
388 	PINCTRL_DT_INST_DEFINE(n);					\
389 	static void adc_sam_irq_config_##n(const struct device *dev)	\
390 	{								\
391 		IRQ_CONNECT(DT_INST_IRQN(n),				\
392 			    DT_INST_IRQ(n, priority),			\
393 			    adc_sam_isr,				\
394 			    DEVICE_DT_INST_GET(n), 0);			\
395 		irq_enable(DT_INST_IRQN(n));				\
396 	}								\
397 	static const struct adc_sam_config adc_sam_config_##n = {	\
398 		.regs = (Adc *)DT_INST_REG_ADDR(n),			\
399 		.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n),		\
400 		.prescaler = DT_INST_PROP(n, prescaler),		\
401 		.startup_time = DT_INST_ENUM_IDX(n, startup_time),	\
402 		.settling_time = DT_INST_ENUM_IDX(n, settling_time),	\
403 		.tracking_time = DT_INST_ENUM_IDX(n, tracking_time),	\
404 		.config_func = &adc_sam_irq_config_##n,			\
405 		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),		\
406 	};								\
407 	static struct adc_sam_data adc_sam_data_##n = {			\
408 		ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx),		\
409 		ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx),		\
410 		ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx),		\
411 		.dev = DEVICE_DT_INST_GET(n),				\
412 	};								\
413 	DEVICE_DT_INST_DEFINE(n, adc_sam_init, NULL,			\
414 			      &adc_sam_data_##n,			\
415 			      &adc_sam_config_##n, POST_KERNEL,		\
416 			      CONFIG_ADC_INIT_PRIORITY,			\
417 			      &adc_sam_api);
418 
419 DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_DEVICE)
420