1 /*
2 * Copyright (c) 2024 Ambiq Micro Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT ambiq_adc
8
9 #include <zephyr/drivers/adc.h>
10 #include <zephyr/drivers/pinctrl.h>
11 #include <zephyr/pm/device.h>
12 #include <zephyr/pm/device_runtime.h>
13 #include <zephyr/kernel.h>
14
15 #define ADC_CONTEXT_USES_KERNEL_TIMER
16 #include "adc_context.h"
17
18 /* ambiq-sdk includes */
19 #include <am_mcu_apollo.h>
20
21 #include <zephyr/logging/log.h>
22 LOG_MODULE_REGISTER(adc_ambiq, CONFIG_ADC_LOG_LEVEL);
23
24 typedef int (*ambiq_adc_pwr_func_t)(void);
25 #define PWRCTRL_MAX_WAIT_US 5
26 /* Number of slots available. */
27 #define AMBIQ_ADC_SLOT_NUMBER AM_HAL_ADC_MAX_SLOTS
28
29 struct adc_ambiq_config {
30 uint32_t base;
31 int size;
32 uint8_t num_channels;
33 void (*irq_config_func)(void);
34 const struct pinctrl_dev_config *pin_cfg;
35 ambiq_adc_pwr_func_t pwr_func;
36 };
37
38 struct adc_ambiq_data {
39 struct adc_context ctx;
40 void *adcHandle;
41 uint16_t *buffer;
42 uint16_t *repeat_buffer;
43 uint8_t active_channels;
44 };
45
adc_ambiq_set_resolution(am_hal_adc_slot_prec_e * prec,uint8_t adc_resolution)46 static int adc_ambiq_set_resolution(am_hal_adc_slot_prec_e *prec, uint8_t adc_resolution)
47 {
48 switch (adc_resolution) {
49 case 8:
50 *prec = AM_HAL_ADC_SLOT_8BIT;
51 break;
52 case 10:
53 *prec = AM_HAL_ADC_SLOT_10BIT;
54 break;
55 case 12:
56 *prec = AM_HAL_ADC_SLOT_12BIT;
57 break;
58 #if !defined(CONFIG_SOC_SERIES_APOLLO4X)
59 case 14:
60 *prec = AM_HAL_ADC_SLOT_14BIT;
61 break;
62 #endif
63 default:
64 return -ENOTSUP;
65 }
66
67 return 0;
68 }
69
adc_ambiq_slot_config(const struct device * dev,const struct adc_sequence * sequence,am_hal_adc_slot_chan_e channel,uint32_t ui32SlotNumber)70 static int adc_ambiq_slot_config(const struct device *dev, const struct adc_sequence *sequence,
71 am_hal_adc_slot_chan_e channel, uint32_t ui32SlotNumber)
72 {
73 struct adc_ambiq_data *data = dev->data;
74 am_hal_adc_slot_config_t ADCSlotConfig;
75
76 if (adc_ambiq_set_resolution(&ADCSlotConfig.ePrecisionMode, sequence->resolution) != 0) {
77 LOG_ERR("unsupported resolution %d", sequence->resolution);
78 return -ENOTSUP;
79 }
80
81 /* Set up an ADC slot */
82 ADCSlotConfig.eMeasToAvg = AM_HAL_ADC_SLOT_AVG_1;
83 ADCSlotConfig.eChannel = channel;
84 ADCSlotConfig.bWindowCompare = false;
85 ADCSlotConfig.bEnabled = true;
86 #if defined(CONFIG_SOC_SERIES_APOLLO4X)
87 ADCSlotConfig.ui32TrkCyc = AM_HAL_ADC_MIN_TRKCYC;
88 #endif
89 if (AM_HAL_STATUS_SUCCESS !=
90 am_hal_adc_configure_slot(data->adcHandle, ui32SlotNumber, &ADCSlotConfig)) {
91 LOG_ERR("configuring ADC Slot 0 failed.\n");
92 return -ENODEV;
93 }
94
95 return 0;
96 }
97
adc_ambiq_isr(const struct device * dev)98 static void adc_ambiq_isr(const struct device *dev)
99 {
100 struct adc_ambiq_data *data = dev->data;
101 uint32_t ui32IntMask;
102 uint32_t ui32NumSamples;
103 am_hal_adc_sample_t Sample;
104
105 /* Read the interrupt status. */
106 am_hal_adc_interrupt_status(data->adcHandle, &ui32IntMask, true);
107 /* Clear the ADC interrupt.*/
108 am_hal_adc_interrupt_clear(data->adcHandle, ui32IntMask);
109
110 /*
111 * If we got a conversion completion interrupt (which should be our only
112 * ADC interrupt), go ahead and read the data.
113 */
114 if (ui32IntMask & AM_HAL_ADC_INT_CNVCMP) {
115 for (uint32_t i = 0; i < data->active_channels; i++) {
116 /* Read the value from the FIFO. */
117 ui32NumSamples = 1;
118 am_hal_adc_samples_read(data->adcHandle, false, NULL, &ui32NumSamples,
119 &Sample);
120 *data->buffer++ = Sample.ui32Sample;
121 }
122 am_hal_adc_disable(data->adcHandle);
123 adc_context_on_sampling_done(&data->ctx, dev);
124 }
125 }
126
adc_ambiq_check_buffer_size(const struct adc_sequence * sequence,uint8_t active_channels)127 static int adc_ambiq_check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channels)
128 {
129 size_t needed_buffer_size;
130
131 needed_buffer_size = active_channels * sizeof(uint16_t);
132
133 if (sequence->options) {
134 needed_buffer_size *= (1 + sequence->options->extra_samplings);
135 }
136
137 if (sequence->buffer_size < needed_buffer_size) {
138 LOG_DBG("Provided buffer is too small (%u/%u)", sequence->buffer_size,
139 needed_buffer_size);
140 return -ENOMEM;
141 }
142
143 return 0;
144 }
145
adc_ambiq_start_read(const struct device * dev,const struct adc_sequence * sequence)146 static int adc_ambiq_start_read(const struct device *dev, const struct adc_sequence *sequence)
147 {
148 struct adc_ambiq_data *data = dev->data;
149 const struct adc_ambiq_config *cfg = dev->config;
150 uint8_t channel_id = 0;
151 uint32_t channels = 0;
152 uint8_t active_channels = 0;
153 uint8_t slot_index;
154
155 int error = 0;
156
157 if (sequence->channels & ~BIT_MASK(cfg->num_channels)) {
158 LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels);
159 return -EINVAL;
160 }
161
162 if (sequence->channels == 0UL) {
163 LOG_ERR("No channel selected");
164 return -EINVAL;
165 }
166
167 error = adc_ambiq_check_buffer_size(sequence, active_channels);
168 if (error < 0) {
169 return error;
170 }
171
172 active_channels = POPCOUNT(sequence->channels);
173 if (active_channels > AMBIQ_ADC_SLOT_NUMBER) {
174 LOG_ERR("Too many channels for sequencer. Max: %d", AMBIQ_ADC_SLOT_NUMBER);
175 return -ENOTSUP;
176 }
177
178 channels = sequence->channels;
179 for (slot_index = 0; slot_index < active_channels; slot_index++) {
180 channel_id = find_lsb_set(channels) - 1;
181 error = adc_ambiq_slot_config(dev, sequence, channel_id, slot_index);
182 if (error < 0) {
183 return error;
184 }
185 channels &= ~BIT(channel_id);
186 }
187 __ASSERT_NO_MSG(channels == 0);
188
189 data->active_channels = active_channels;
190 data->buffer = sequence->buffer;
191 /* Start ADC conversion */
192 adc_context_start_read(&data->ctx, sequence);
193 error = adc_context_wait_for_completion(&data->ctx);
194
195 return error;
196 }
197
adc_ambiq_read(const struct device * dev,const struct adc_sequence * sequence)198 static int adc_ambiq_read(const struct device *dev, const struct adc_sequence *sequence)
199 {
200 struct adc_ambiq_data *data = dev->data;
201 int error = 0;
202
203 error = pm_device_runtime_get(dev);
204 if (error < 0) {
205 LOG_ERR("pm_device_runtime_get failed: %d", error);
206 }
207
208 adc_context_lock(&data->ctx, false, NULL);
209 error = adc_ambiq_start_read(dev, sequence);
210 adc_context_release(&data->ctx, error);
211
212 int ret = error;
213
214 error = pm_device_runtime_put(dev);
215 if (error < 0) {
216 LOG_ERR("pm_device_runtime_put failed: %d", error);
217 }
218
219 error = ret;
220
221 return error;
222 }
223
adc_ambiq_channel_setup(const struct device * dev,const struct adc_channel_cfg * chan_cfg)224 static int adc_ambiq_channel_setup(const struct device *dev, const struct adc_channel_cfg *chan_cfg)
225 {
226 const struct adc_ambiq_config *cfg = dev->config;
227
228 if (chan_cfg->channel_id >= cfg->num_channels) {
229 LOG_ERR("unsupported channel id '%d'", chan_cfg->channel_id);
230 return -ENOTSUP;
231 }
232
233 if (chan_cfg->gain != ADC_GAIN_1) {
234 LOG_ERR("Gain is not valid");
235 return -ENOTSUP;
236 }
237
238 if (chan_cfg->reference != ADC_REF_INTERNAL) {
239 LOG_ERR("Reference is not valid");
240 return -ENOTSUP;
241 }
242
243 if (chan_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
244 LOG_ERR("unsupported acquisition_time '%d'", chan_cfg->acquisition_time);
245 return -ENOTSUP;
246 }
247
248 if (chan_cfg->differential) {
249 LOG_ERR("Differential sampling not supported");
250 return -ENOTSUP;
251 }
252
253 return 0;
254 }
255
adc_context_update_buffer_pointer(struct adc_context * ctx,bool repeat_sampling)256 static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
257 {
258 struct adc_ambiq_data *data = CONTAINER_OF(ctx, struct adc_ambiq_data, ctx);
259
260 if (repeat_sampling) {
261 data->buffer = data->repeat_buffer;
262 }
263 }
264
adc_context_start_sampling(struct adc_context * ctx)265 static void adc_context_start_sampling(struct adc_context *ctx)
266 {
267 struct adc_ambiq_data *data = CONTAINER_OF(ctx, struct adc_ambiq_data, ctx);
268
269 data->repeat_buffer = data->buffer;
270 /* Enable the ADC. */
271 am_hal_adc_enable(data->adcHandle);
272 /*Trigger the ADC*/
273 am_hal_adc_sw_trigger(data->adcHandle);
274 }
275
adc_ambiq_init(const struct device * dev)276 static int adc_ambiq_init(const struct device *dev)
277 {
278 struct adc_ambiq_data *data = dev->data;
279 const struct adc_ambiq_config *cfg = dev->config;
280 am_hal_adc_config_t ADCConfig;
281
282 int ret;
283
284 /* Initialize the ADC and get the handle*/
285 if (AM_HAL_STATUS_SUCCESS !=
286 am_hal_adc_initialize((cfg->base - ADC_BASE) / (cfg->size * 4), &data->adcHandle)) {
287 ret = -ENODEV;
288 LOG_ERR("Faile to initialize ADC, code:%d", ret);
289 return ret;
290 }
291
292 /* power on ADC*/
293 ret = cfg->pwr_func();
294
295 /* Set up the ADC configuration parameters. These settings are reasonable
296 * for accurate measurements at a low sample rate.
297 */
298 #if !defined(CONFIG_SOC_SERIES_APOLLO4X)
299 ADCConfig.eClock = AM_HAL_ADC_CLKSEL_HFRC;
300 ADCConfig.eReference = AM_HAL_ADC_REFSEL_INT_1P5;
301 #else
302 ADCConfig.eClock = AM_HAL_ADC_CLKSEL_HFRC_24MHZ;
303 ADCConfig.eRepeatTrigger = AM_HAL_ADC_RPTTRIGSEL_TMR,
304 #endif
305 ADCConfig.ePolarity = AM_HAL_ADC_TRIGPOL_RISING;
306 ADCConfig.eTrigger = AM_HAL_ADC_TRIGSEL_SOFTWARE;
307 ADCConfig.eClockMode = AM_HAL_ADC_CLKMODE_LOW_POWER;
308 ADCConfig.ePowerMode = AM_HAL_ADC_LPMODE0;
309 ADCConfig.eRepeat = AM_HAL_ADC_SINGLE_SCAN;
310 if (AM_HAL_STATUS_SUCCESS != am_hal_adc_configure(data->adcHandle, &ADCConfig)) {
311 ret = -ENODEV;
312 LOG_ERR("Configuring ADC failed, code:%d", ret);
313 return ret;
314 }
315
316 ret = pinctrl_apply_state(cfg->pin_cfg, PINCTRL_STATE_DEFAULT);
317 if (ret < 0) {
318 return ret;
319 }
320
321 /* Enable the ADC interrupts in the ADC. */
322 cfg->irq_config_func();
323 am_hal_adc_interrupt_enable(data->adcHandle, AM_HAL_ADC_INT_CNVCMP);
324
325 adc_context_unlock_unconditionally(&data->ctx);
326
327 return 0;
328 }
329
330 #ifdef CONFIG_ADC_ASYNC
adc_ambiq_read_async(const struct device * dev,const struct adc_sequence * sequence,struct k_poll_signal * async)331 static int adc_ambiq_read_async(const struct device *dev, const struct adc_sequence *sequence,
332 struct k_poll_signal *async)
333 {
334 struct adc_ambiq_data *data = dev->data;
335 int error = 0;
336
337 error = pm_device_runtime_get(dev);
338 if (error < 0) {
339 LOG_ERR("pm_device_runtime_get failed: %d", error);
340 }
341
342 adc_context_lock(&data->ctx, true, async);
343 error = adc_ambiq_start_read(dev, sequence);
344 adc_context_release(&data->ctx, error);
345
346 int ret = error;
347
348 error = pm_device_runtime_put(dev);
349 if (error < 0) {
350 LOG_ERR("pm_device_runtime_put failed: %d", error);
351 }
352
353 error = ret;
354
355 return error;
356 }
357 #endif
358
359 #ifdef CONFIG_PM_DEVICE
adc_ambiq_pm_action(const struct device * dev,enum pm_device_action action)360 static int adc_ambiq_pm_action(const struct device *dev, enum pm_device_action action)
361 {
362 struct adc_ambiq_data *data = dev->data;
363 uint32_t ret = 0;
364 am_hal_sysctrl_power_state_e status;
365
366 switch (action) {
367 case PM_DEVICE_ACTION_RESUME:
368 status = AM_HAL_SYSCTRL_WAKE;
369 break;
370 case PM_DEVICE_ACTION_SUSPEND:
371 status = AM_HAL_SYSCTRL_DEEPSLEEP;
372 break;
373 default:
374 return -ENOTSUP;
375 }
376
377 ret = am_hal_adc_power_control(data->adcHandle, status, true);
378
379 if (ret != AM_HAL_STATUS_SUCCESS) {
380 return -EPERM;
381 } else {
382 return 0;
383 }
384 }
385 #endif /* CONFIG_PM_DEVICE */
386
387 #ifdef CONFIG_ADC_ASYNC
388 #define ADC_AMBIQ_DRIVER_API(n) \
389 static DEVICE_API(adc, adc_ambiq_driver_api_##n) = { \
390 .channel_setup = adc_ambiq_channel_setup, \
391 .read = adc_ambiq_read, \
392 .read_async = adc_ambiq_read_async, \
393 .ref_internal = DT_INST_PROP(n, internal_vref_mv), \
394 };
395 #else
396 #define ADC_AMBIQ_DRIVER_API(n) \
397 static DEVICE_API(adc, adc_ambiq_driver_api_##n) = { \
398 .channel_setup = adc_ambiq_channel_setup, \
399 .read = adc_ambiq_read, \
400 .ref_internal = DT_INST_PROP(n, internal_vref_mv), \
401 };
402 #endif
403
404 #define ADC_AMBIQ_INIT(n) \
405 PINCTRL_DT_INST_DEFINE(n); \
406 ADC_AMBIQ_DRIVER_API(n); \
407 static int pwr_on_ambiq_adc_##n(void) \
408 { \
409 uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
410 DT_INST_PHA(n, ambiq_pwrcfg, offset); \
411 sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
412 k_busy_wait(PWRCTRL_MAX_WAIT_US); \
413 return 0; \
414 } \
415 static void adc_irq_config_func_##n(void) \
416 { \
417 IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), adc_ambiq_isr, \
418 DEVICE_DT_INST_GET(n), 0); \
419 irq_enable(DT_INST_IRQN(n)); \
420 }; \
421 static struct adc_ambiq_data adc_ambiq_data_##n = { \
422 ADC_CONTEXT_INIT_TIMER(adc_ambiq_data_##n, ctx), \
423 ADC_CONTEXT_INIT_LOCK(adc_ambiq_data_##n, ctx), \
424 ADC_CONTEXT_INIT_SYNC(adc_ambiq_data_##n, ctx), \
425 }; \
426 const static struct adc_ambiq_config adc_ambiq_config_##n = { \
427 .base = DT_INST_REG_ADDR(n), \
428 .size = DT_INST_REG_SIZE(n), \
429 .num_channels = DT_PROP(DT_DRV_INST(n), channel_count), \
430 .irq_config_func = adc_irq_config_func_##n, \
431 .pin_cfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
432 .pwr_func = pwr_on_ambiq_adc_##n, \
433 }; \
434 PM_DEVICE_DT_INST_DEFINE(n, adc_ambiq_pm_action); \
435 DEVICE_DT_INST_DEFINE(n, &adc_ambiq_init, PM_DEVICE_DT_INST_GET(n), &adc_ambiq_data_##n, \
436 &adc_ambiq_config_##n, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
437 &adc_ambiq_driver_api_##n);
438
439 DT_INST_FOREACH_STATUS_OKAY(ADC_AMBIQ_INIT)
440