1 /*
2  * Copyright (c) 2016-2019 Nordic Semiconductor ASA
3  * Copyright (c) 2018 Intel Corporation
4  *
5  * SPDX-License-Identifier: Apache-2.0
6  */
7 
8 #include <soc.h>
9 #include <zephyr/init.h>
10 #include <zephyr/drivers/clock_control.h>
11 #include <zephyr/drivers/clock_control/nrf_clock_control.h>
12 #include <zephyr/drivers/timer/system_timer.h>
13 #include <zephyr/sys_clock.h>
14 #include <hal/nrf_timer.h>
15 #include <zephyr/spinlock.h>
16 #include <zephyr/irq.h>
17 
18 #define TIMER NRF_TIMER0
19 
20 #define COUNTER_MAX 0xFFFFFFFFUL
21 #define COUNTER_HALF_SPAN 0x80000000UL
22 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec()	\
23 		      / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
24 #define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
25 #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
26 
27 static struct k_spinlock lock;
28 
29 static uint32_t last_count;
30 
counter_sub(uint32_t a,uint32_t b)31 static uint32_t counter_sub(uint32_t a, uint32_t b)
32 {
33 	return (a - b) & COUNTER_MAX;
34 }
35 
set_comparator(uint32_t cyc)36 static void set_comparator(uint32_t cyc)
37 {
38 	nrf_timer_cc_set(TIMER, NRF_TIMER_CC_CHANNEL0, cyc & COUNTER_MAX);
39 }
40 
get_comparator(void)41 static uint32_t get_comparator(void)
42 {
43 	return nrf_timer_cc_get(TIMER, NRF_TIMER_CC_CHANNEL0);
44 }
45 
event_clear(void)46 static void event_clear(void)
47 {
48 	nrf_timer_event_clear(TIMER, NRF_TIMER_EVENT_COMPARE0);
49 }
50 
int_disable(void)51 static void int_disable(void)
52 {
53 	nrf_timer_int_disable(TIMER, NRF_TIMER_INT_COMPARE0_MASK);
54 }
55 
int_enable(void)56 static void int_enable(void)
57 {
58 	nrf_timer_int_enable(TIMER, NRF_TIMER_INT_COMPARE0_MASK);
59 }
60 
counter(void)61 static uint32_t counter(void)
62 {
63 	nrf_timer_task_trigger(TIMER,
64 		nrf_timer_capture_task_get(NRF_TIMER_CC_CHANNEL1));
65 
66 	return nrf_timer_cc_get(TIMER, NRF_TIMER_CC_CHANNEL1);
67 }
68 
69 /* Function ensures that previous CC value will not set event */
prevent_false_prev_evt(void)70 static void prevent_false_prev_evt(void)
71 {
72 	uint32_t now = counter();
73 	uint32_t prev_val;
74 
75 	/* First take care of a risk of an event coming from CC being set to
76 	 * next tick. Reconfigure CC to future (now tick is the furthest
77 	 * future). If CC was set to next tick we need to wait for up to 0.5us
78 	 * (half of 1M tick) and clean potential event. After that time there
79 	 * is no risk of unwanted event.
80 	 */
81 	prev_val = get_comparator();
82 	event_clear();
83 	set_comparator(now);
84 
85 	if (counter_sub(prev_val, now) == 1) {
86 		k_busy_wait(1);
87 		event_clear();
88 	}
89 
90 	/* Clear interrupt that may have fired as we were setting the
91 	 * comparator.
92 	 */
93 	NVIC_ClearPendingIRQ(TIMER0_IRQn);
94 }
95 
96 /* If settings is next tick from now, function attempts to set next tick. If
97  * counter progresses during that time it means that 1 tick elapsed and
98  * interrupt is set pending.
99  */
handle_next_tick_case(uint32_t t)100 static void handle_next_tick_case(uint32_t t)
101 {
102 	set_comparator(t + 2U);
103 	while (t != counter()) {
104 		/* already expired, tick elapsed but event might not be
105 		 * generated. Trigger interrupt.
106 		 */
107 		t = counter();
108 		set_comparator(t + 2U);
109 	}
110 }
111 
112 /* Function safely sets absolute alarm. It assumes that provided value is
113  * less than MAX_TICKS from now. It detects late setting and also handles
114  * +1 tick case.
115  */
set_absolute_ticks(uint32_t abs_val)116 static void set_absolute_ticks(uint32_t abs_val)
117 {
118 	uint32_t diff;
119 	uint32_t t = counter();
120 
121 	diff = counter_sub(abs_val, t);
122 	if (diff == 1U) {
123 		handle_next_tick_case(t);
124 		return;
125 	}
126 
127 	set_comparator(abs_val);
128 }
129 
130 /* Sets relative ticks alarm from any context. Function is lockless. It only
131  * blocks TIMER interrupt.
132  */
set_protected_absolute_ticks(uint32_t ticks)133 static void set_protected_absolute_ticks(uint32_t ticks)
134 {
135 	int_disable();
136 
137 	prevent_false_prev_evt();
138 
139 	set_absolute_ticks(ticks);
140 
141 	int_enable();
142 }
143 
timer0_nrf_isr(void * arg)144 void timer0_nrf_isr(void *arg)
145 {
146 	ARG_UNUSED(arg);
147 	event_clear();
148 
149 
150 	uint32_t t = get_comparator();
151 	uint32_t dticks = counter_sub(t, last_count) / CYC_PER_TICK;
152 
153 	last_count += dticks * CYC_PER_TICK;
154 
155 	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
156 		/* protection is not needed because we are in the TIMER interrupt
157 		 * so it won't get preempted by the interrupt.
158 		 */
159 		set_absolute_ticks(last_count + CYC_PER_TICK);
160 	}
161 
162 	sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : (dticks > 0));
163 }
164 
sys_clock_set_timeout(int32_t ticks,bool idle)165 void sys_clock_set_timeout(int32_t ticks, bool idle)
166 {
167 	ARG_UNUSED(idle);
168 	uint32_t cyc;
169 
170 	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
171 		return;
172 	}
173 
174 	ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
175 	ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
176 
177 	uint32_t unannounced = counter_sub(counter(), last_count);
178 
179 	/* If we haven't announced for more than half the 24-bit wrap
180 	 * duration, then force an announce to avoid loss of a wrap
181 	 * event.  This can happen if new timeouts keep being set
182 	 * before the existing one triggers the interrupt.
183 	 */
184 	if (unannounced >= COUNTER_HALF_SPAN) {
185 		ticks = 0;
186 	}
187 
188 
189 	/* Get the cycles from last_count to the tick boundary after
190 	 * the requested ticks have passed starting now.
191 	 */
192 	cyc = ticks * CYC_PER_TICK + 1 + unannounced;
193 	cyc += (CYC_PER_TICK - 1);
194 	cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
195 
196 	/* Due to elapsed time the calculation above might produce a
197 	 * duration that laps the counter.  Don't let it.
198 	 */
199 	if (cyc > MAX_CYCLES) {
200 		cyc = MAX_CYCLES;
201 	}
202 
203 	cyc += last_count;
204 	set_protected_absolute_ticks(cyc);
205 
206 	/* FIXME - QEMU requires clearing the events when setting the comparator,
207 	 * but the TIMER peripheral HW does not need this. Remove when fixed in
208 	 * QEMU.
209 	 */
210 	event_clear();
211 	NVIC_ClearPendingIRQ(TIMER0_IRQn);
212 }
213 
sys_clock_elapsed(void)214 uint32_t sys_clock_elapsed(void)
215 {
216 	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
217 		return 0;
218 	}
219 
220 	k_spinlock_key_t key = k_spin_lock(&lock);
221 	uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK;
222 
223 	k_spin_unlock(&lock, key);
224 	return ret;
225 }
226 
sys_clock_cycle_get_32(void)227 uint32_t sys_clock_cycle_get_32(void)
228 {
229 	k_spinlock_key_t key = k_spin_lock(&lock);
230 	uint32_t ret = counter_sub(counter(), last_count) + last_count;
231 
232 	k_spin_unlock(&lock, key);
233 	return ret;
234 }
235 
sys_clock_driver_init(void)236 static int sys_clock_driver_init(void)
237 {
238 	nrf_timer_prescaler_set(TIMER, NRF_TIMER_FREQ_1MHz);
239 	nrf_timer_bit_width_set(TIMER, NRF_TIMER_BIT_WIDTH_32);
240 
241 	IRQ_CONNECT(TIMER0_IRQn, 1, timer0_nrf_isr, 0, 0);
242 	irq_enable(TIMER0_IRQn);
243 
244 	nrf_timer_task_trigger(TIMER, NRF_TIMER_TASK_CLEAR);
245 	nrf_timer_task_trigger(TIMER, NRF_TIMER_TASK_START);
246 
247 	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
248 		set_comparator(counter() + CYC_PER_TICK);
249 	}
250 
251 	event_clear();
252 	NVIC_ClearPendingIRQ(TIMER0_IRQn);
253 	int_enable();
254 
255 	return 0;
256 }
257 
258 SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
259 	 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
260