1 /*
2  * Copyright (c) 2022 Intel Corporation
3  * SPDX-License-Identifier: Apache-2.0
4  */
5 #include <zephyr/kernel.h>
6 #include <zephyr/cache.h>
7 #include <zephyr/arch/xtensa/arch.h>
8 #include <zephyr/arch/xtensa/xtensa_mmu.h>
9 #include <zephyr/linker/linker-defs.h>
10 #include <zephyr/logging/log.h>
11 #include <zephyr/kernel/mm.h>
12 #include <zephyr/toolchain.h>
13 #include <xtensa/corebits.h>
14 #include <xtensa_mmu_priv.h>
15 
16 #include <kernel_arch_func.h>
17 #include <mmu.h>
18 
19 /* Skip TLB IPI when updating page tables.
20  * This allows us to send IPI only after the last
21  * changes of a series.
22  */
23 #define OPTION_NO_TLB_IPI BIT(0)
24 
25 /* Level 1 contains page table entries
26  * necessary to map the page table itself.
27  */
28 #define XTENSA_L1_PAGE_TABLE_ENTRIES 1024U
29 
30 /* Size of level 1 page table.
31  */
32 #define XTENSA_L1_PAGE_TABLE_SIZE (XTENSA_L1_PAGE_TABLE_ENTRIES * sizeof(uint32_t))
33 
34 /* Level 2 contains page table entries
35  * necessary to map the page table itself.
36  */
37 #define XTENSA_L2_PAGE_TABLE_ENTRIES 1024U
38 
39 /* Size of level 2 page table.
40  */
41 #define XTENSA_L2_PAGE_TABLE_SIZE (XTENSA_L2_PAGE_TABLE_ENTRIES * sizeof(uint32_t))
42 
43 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
44 
45 BUILD_ASSERT(CONFIG_MMU_PAGE_SIZE == 0x1000,
46 	     "MMU_PAGE_SIZE value is invalid, only 4 kB pages are supported\n");
47 
48 /*
49  * Level 1 page table has to be 4Kb to fit into one of the wired entries.
50  * All entries are initialized as INVALID, so an attempt to read an unmapped
51  * area will cause a double exception.
52  *
53  * Each memory domain contains its own l1 page table. The kernel l1 page table is
54  * located at the index 0.
55  */
56 static uint32_t l1_page_table[CONFIG_XTENSA_MMU_NUM_L1_TABLES][XTENSA_L1_PAGE_TABLE_ENTRIES]
57 				__aligned(KB(4));
58 
59 
60 /*
61  * That is an alias for the page tables set used by the kernel.
62  */
63 uint32_t *xtensa_kernel_ptables = (uint32_t *)l1_page_table[0];
64 
65 /*
66  * Each table in the level 2 maps a 4Mb memory range. It consists of 1024 entries each one
67  * covering a 4Kb page.
68  */
69 static uint32_t l2_page_tables[CONFIG_XTENSA_MMU_NUM_L2_TABLES][XTENSA_L2_PAGE_TABLE_ENTRIES]
70 				__aligned(KB(4));
71 
72 /*
73  * This additional variable tracks which l1 tables are in use. This is kept separated from
74  * the tables to keep alignment easier.
75  *
76  * @note: The first bit is set because it is used for the kernel page tables.
77  */
78 static ATOMIC_DEFINE(l1_page_table_track, CONFIG_XTENSA_MMU_NUM_L1_TABLES);
79 
80 /*
81  * This additional variable tracks which l2 tables are in use. This is kept separated from
82  * the tables to keep alignment easier.
83  */
84 static ATOMIC_DEFINE(l2_page_tables_track, CONFIG_XTENSA_MMU_NUM_L2_TABLES);
85 
86 /*
87  * Protects xtensa_domain_list and serializes access to page tables.
88  */
89 static struct k_spinlock xtensa_mmu_lock;
90 
91 #ifdef CONFIG_USERSPACE
92 
93 /*
94  * Each domain has its own ASID. ASID can go through 1 (kernel) to 255.
95  * When a TLB entry matches, the hw will check the ASID in the entry and finds
96  * the correspondent position in the RASID register. This position will then be
97  * compared with the current ring (CRING) to check the permission.
98  */
99 static uint8_t asid_count = 3;
100 
101 /*
102  * List with all active and initialized memory domains.
103  */
104 static sys_slist_t xtensa_domain_list;
105 #endif /* CONFIG_USERSPACE */
106 
107 extern char _heap_end[];
108 extern char _heap_start[];
109 /*
110  * Static definition of all code & data memory regions of the
111  * current Zephyr image. This information must be available &
112  * processed upon MMU initialization.
113  */
114 
115 static const struct xtensa_mmu_range mmu_zephyr_ranges[] = {
116 	/*
117 	 * Mark the zephyr execution regions (data, bss, noinit, etc.)
118 	 * cacheable, read / write and non-executable
119 	 */
120 	{
121 		/* This includes .data, .bss and various kobject sections. */
122 		.start = (uint32_t)_image_ram_start,
123 		.end   = (uint32_t)_image_ram_end,
124 #ifdef CONFIG_XTENSA_RPO_CACHE
125 		.attrs = XTENSA_MMU_PERM_W,
126 #else
127 		.attrs = XTENSA_MMU_PERM_W | XTENSA_MMU_CACHED_WB,
128 #endif
129 		.name = "data",
130 	},
131 #if K_HEAP_MEM_POOL_SIZE > 0
132 	/* System heap memory */
133 	{
134 		.start = (uint32_t)_heap_start,
135 		.end   = (uint32_t)_heap_end,
136 #ifdef CONFIG_XTENSA_RPO_CACHE
137 		.attrs = XTENSA_MMU_PERM_W,
138 #else
139 		.attrs = XTENSA_MMU_PERM_W | XTENSA_MMU_CACHED_WB,
140 #endif
141 		.name = "heap",
142 	},
143 #endif
144 	/* Mark text segment cacheable, read only and executable */
145 	{
146 		.start = (uint32_t)__text_region_start,
147 		.end   = (uint32_t)__text_region_end,
148 		.attrs = XTENSA_MMU_PERM_X | XTENSA_MMU_CACHED_WB | XTENSA_MMU_MAP_SHARED,
149 		.name = "text",
150 	},
151 	/* Mark rodata segment cacheable, read only and non-executable */
152 	{
153 		.start = (uint32_t)__rodata_region_start,
154 		.end   = (uint32_t)__rodata_region_end,
155 		.attrs = XTENSA_MMU_CACHED_WB | XTENSA_MMU_MAP_SHARED,
156 		.name = "rodata",
157 	},
158 };
159 
thread_page_tables_get(const struct k_thread * thread)160 static inline uint32_t *thread_page_tables_get(const struct k_thread *thread)
161 {
162 #ifdef CONFIG_USERSPACE
163 	if ((thread->base.user_options & K_USER) != 0U) {
164 		return thread->arch.ptables;
165 	}
166 #endif
167 
168 	return xtensa_kernel_ptables;
169 }
170 
171 /**
172  * @brief Check if the page table entry is illegal.
173  *
174  * @param[in] Page table entry.
175  */
is_pte_illegal(uint32_t pte)176 static inline bool is_pte_illegal(uint32_t pte)
177 {
178 	uint32_t attr = pte & XTENSA_MMU_PTE_ATTR_MASK;
179 
180 	/*
181 	 * The ISA manual states only 12 and 14 are illegal values.
182 	 * 13 and 15 are not. So we need to be specific than simply
183 	 * testing if bits 2 and 3 are set.
184 	 */
185 	return (attr == 12) || (attr == 14);
186 }
187 
188 /*
189  * @brief Initialize all page table entries to be illegal.
190  *
191  * @param[in] Pointer to page table.
192  * @param[in] Number of page table entries in the page table.
193  */
init_page_table(uint32_t * ptable,size_t num_entries)194 static void init_page_table(uint32_t *ptable, size_t num_entries)
195 {
196 	int i;
197 
198 	for (i = 0; i < num_entries; i++) {
199 		ptable[i] = XTENSA_MMU_PTE_ILLEGAL;
200 	}
201 }
202 
alloc_l2_table(void)203 static inline uint32_t *alloc_l2_table(void)
204 {
205 	uint16_t idx;
206 
207 	for (idx = 0; idx < CONFIG_XTENSA_MMU_NUM_L2_TABLES; idx++) {
208 		if (!atomic_test_and_set_bit(l2_page_tables_track, idx)) {
209 			return (uint32_t *)&l2_page_tables[idx];
210 		}
211 	}
212 
213 	return NULL;
214 }
215 
map_memory_range(const uint32_t start,const uint32_t end,const uint32_t attrs)216 static void map_memory_range(const uint32_t start, const uint32_t end,
217 			     const uint32_t attrs)
218 {
219 	uint32_t page, *table;
220 	bool shared = !!(attrs & XTENSA_MMU_MAP_SHARED);
221 	uint32_t sw_attrs = (attrs & XTENSA_MMU_PTE_ATTR_ORIGINAL) == XTENSA_MMU_PTE_ATTR_ORIGINAL ?
222 		attrs : 0;
223 
224 	for (page = start; page < end; page += CONFIG_MMU_PAGE_SIZE) {
225 		uint32_t pte = XTENSA_MMU_PTE(page,
226 					      shared ? XTENSA_MMU_SHARED_RING :
227 						       XTENSA_MMU_KERNEL_RING,
228 					      sw_attrs, attrs);
229 		uint32_t l2_pos = XTENSA_MMU_L2_POS(page);
230 		uint32_t l1_pos = XTENSA_MMU_L1_POS(page);
231 
232 		if (is_pte_illegal(xtensa_kernel_ptables[l1_pos])) {
233 			table  = alloc_l2_table();
234 
235 			__ASSERT(table != NULL, "There is no l2 page table available to "
236 				"map 0x%08x\n", page);
237 
238 			init_page_table(table, XTENSA_L2_PAGE_TABLE_ENTRIES);
239 
240 			xtensa_kernel_ptables[l1_pos] =
241 				XTENSA_MMU_PTE((uint32_t)table, XTENSA_MMU_KERNEL_RING,
242 					       sw_attrs, XTENSA_MMU_PAGE_TABLE_ATTR);
243 		}
244 
245 		table = (uint32_t *)(xtensa_kernel_ptables[l1_pos] & XTENSA_MMU_PTE_PPN_MASK);
246 		table[l2_pos] = pte;
247 	}
248 }
249 
map_memory(const uint32_t start,const uint32_t end,const uint32_t attrs)250 static void map_memory(const uint32_t start, const uint32_t end,
251 		       const uint32_t attrs)
252 {
253 	map_memory_range(start, end, attrs);
254 
255 #ifdef CONFIG_XTENSA_MMU_DOUBLE_MAP
256 	if (sys_cache_is_ptr_uncached((void *)start)) {
257 		map_memory_range(POINTER_TO_UINT(sys_cache_cached_ptr_get((void *)start)),
258 			POINTER_TO_UINT(sys_cache_cached_ptr_get((void *)end)),
259 			attrs | XTENSA_MMU_CACHED_WB);
260 	} else if (sys_cache_is_ptr_cached((void *)start)) {
261 		map_memory_range(POINTER_TO_UINT(sys_cache_uncached_ptr_get((void *)start)),
262 			POINTER_TO_UINT(sys_cache_uncached_ptr_get((void *)end)), attrs);
263 	}
264 #endif
265 }
266 
xtensa_init_page_tables(void)267 static void xtensa_init_page_tables(void)
268 {
269 	volatile uint8_t entry;
270 	static bool already_inited;
271 
272 	if (already_inited) {
273 		return;
274 	}
275 	already_inited = true;
276 
277 	init_page_table(xtensa_kernel_ptables, XTENSA_L1_PAGE_TABLE_ENTRIES);
278 	atomic_set_bit(l1_page_table_track, 0);
279 
280 	for (entry = 0; entry < ARRAY_SIZE(mmu_zephyr_ranges); entry++) {
281 		const struct xtensa_mmu_range *range = &mmu_zephyr_ranges[entry];
282 
283 		map_memory(range->start, range->end, range->attrs | XTENSA_MMU_PTE_ATTR_ORIGINAL);
284 	}
285 
286 	for (entry = 0; entry < xtensa_soc_mmu_ranges_num; entry++) {
287 		const struct xtensa_mmu_range *range = &xtensa_soc_mmu_ranges[entry];
288 
289 		map_memory(range->start, range->end, range->attrs | XTENSA_MMU_PTE_ATTR_ORIGINAL);
290 	}
291 
292 	/* Finally, the direct-mapped pages used in the page tables
293 	 * must be fixed up to use the same cache attribute (but these
294 	 * must be writable, obviously).  They shouldn't be left at
295 	 * the default.
296 	 */
297 	map_memory_range((uint32_t) &l1_page_table[0],
298 			 (uint32_t) &l1_page_table[CONFIG_XTENSA_MMU_NUM_L1_TABLES],
299 			 XTENSA_MMU_PAGE_TABLE_ATTR | XTENSA_MMU_PERM_W);
300 	map_memory_range((uint32_t) &l2_page_tables[0],
301 			 (uint32_t) &l2_page_tables[CONFIG_XTENSA_MMU_NUM_L2_TABLES],
302 			 XTENSA_MMU_PAGE_TABLE_ATTR | XTENSA_MMU_PERM_W);
303 
304 	sys_cache_data_flush_all();
305 }
306 
arch_xtensa_mmu_post_init(bool is_core0)307 __weak void arch_xtensa_mmu_post_init(bool is_core0)
308 {
309 	ARG_UNUSED(is_core0);
310 }
311 
xtensa_mmu_init(void)312 void xtensa_mmu_init(void)
313 {
314 	xtensa_init_page_tables();
315 
316 	xtensa_init_paging(xtensa_kernel_ptables);
317 
318 	/*
319 	 * This is used to determine whether we are faulting inside double
320 	 * exception if this is not zero. Sometimes SoC starts with this not
321 	 * being set to zero. So clear it during boot.
322 	 */
323 	XTENSA_WSR(ZSR_DEPC_SAVE_STR, 0);
324 
325 	arch_xtensa_mmu_post_init(_current_cpu->id == 0);
326 }
327 
xtensa_mmu_reinit(void)328 void xtensa_mmu_reinit(void)
329 {
330 	/* First initialize the hardware */
331 	xtensa_init_paging(xtensa_kernel_ptables);
332 
333 #ifdef CONFIG_USERSPACE
334 	struct k_thread *thread = _current_cpu->current;
335 	struct arch_mem_domain *domain =
336 			&(thread->mem_domain_info.mem_domain->arch);
337 
338 
339 	/* Set the page table for current context */
340 	xtensa_set_paging(domain->asid, domain->ptables);
341 #endif /* CONFIG_USERSPACE */
342 
343 	arch_xtensa_mmu_post_init(_current_cpu->id == 0);
344 }
345 
346 #ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
347 /* Zephyr's linker scripts for Xtensa usually puts
348  * something before z_mapped_start (aka .text),
349  * i.e. vecbase, so that we need to reserve those
350  * space or else k_mem_map() would be mapping those,
351  * resulting in faults.
352  */
arch_reserved_pages_update(void)353 __weak void arch_reserved_pages_update(void)
354 {
355 	uintptr_t page;
356 	int idx;
357 
358 	for (page = CONFIG_SRAM_BASE_ADDRESS, idx = 0;
359 	     page < (uintptr_t)z_mapped_start;
360 	     page += CONFIG_MMU_PAGE_SIZE, idx++) {
361 		k_mem_page_frame_set(&k_mem_page_frames[idx], K_MEM_PAGE_FRAME_RESERVED);
362 	}
363 }
364 #endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */
365 
l2_page_table_map(uint32_t * l1_table,void * vaddr,uintptr_t phys,uint32_t flags,bool is_user)366 static bool l2_page_table_map(uint32_t *l1_table, void *vaddr, uintptr_t phys,
367 			      uint32_t flags, bool is_user)
368 {
369 	uint32_t l1_pos = XTENSA_MMU_L1_POS((uint32_t)vaddr);
370 	uint32_t l2_pos = XTENSA_MMU_L2_POS((uint32_t)vaddr);
371 	uint32_t *table;
372 
373 	sys_cache_data_invd_range((void *)&l1_table[l1_pos], sizeof(l1_table[0]));
374 
375 	if (is_pte_illegal(l1_table[l1_pos])) {
376 		table  = alloc_l2_table();
377 
378 		if (table == NULL) {
379 			return false;
380 		}
381 
382 		init_page_table(table, XTENSA_L2_PAGE_TABLE_ENTRIES);
383 
384 		l1_table[l1_pos] = XTENSA_MMU_PTE((uint32_t)table, XTENSA_MMU_KERNEL_RING,
385 						  0, XTENSA_MMU_PAGE_TABLE_ATTR);
386 
387 		sys_cache_data_flush_range((void *)&l1_table[l1_pos], sizeof(l1_table[0]));
388 	}
389 
390 	table = (uint32_t *)(l1_table[l1_pos] & XTENSA_MMU_PTE_PPN_MASK);
391 	table[l2_pos] = XTENSA_MMU_PTE(phys, is_user ? XTENSA_MMU_USER_RING :
392 						       XTENSA_MMU_KERNEL_RING,
393 				       0, flags);
394 
395 	sys_cache_data_flush_range((void *)&table[l2_pos], sizeof(table[0]));
396 	xtensa_tlb_autorefill_invalidate();
397 
398 	return true;
399 }
400 
__arch_mem_map(void * va,uintptr_t pa,uint32_t xtensa_flags,bool is_user)401 static inline void __arch_mem_map(void *va, uintptr_t pa, uint32_t xtensa_flags, bool is_user)
402 {
403 	bool ret;
404 	void *vaddr, *vaddr_uc;
405 	uintptr_t paddr, paddr_uc;
406 	uint32_t flags, flags_uc;
407 
408 	if (IS_ENABLED(CONFIG_XTENSA_MMU_DOUBLE_MAP)) {
409 		if (sys_cache_is_ptr_cached(va)) {
410 			vaddr = va;
411 			vaddr_uc = sys_cache_uncached_ptr_get(va);
412 		} else {
413 			vaddr = sys_cache_cached_ptr_get(va);
414 			vaddr_uc = va;
415 		}
416 
417 		if (sys_cache_is_ptr_cached((void *)pa)) {
418 			paddr = pa;
419 			paddr_uc = (uintptr_t)sys_cache_uncached_ptr_get((void *)pa);
420 		} else {
421 			paddr = (uintptr_t)sys_cache_cached_ptr_get((void *)pa);
422 			paddr_uc = pa;
423 		}
424 
425 		flags_uc = (xtensa_flags & ~XTENSA_MMU_PTE_ATTR_CACHED_MASK);
426 		flags = flags_uc | XTENSA_MMU_CACHED_WB;
427 	} else {
428 		vaddr = va;
429 		paddr = pa;
430 		flags = xtensa_flags;
431 	}
432 
433 	ret = l2_page_table_map(xtensa_kernel_ptables, (void *)vaddr, paddr,
434 				flags, is_user);
435 	__ASSERT(ret, "Virtual address (%p) already mapped", va);
436 
437 	if (IS_ENABLED(CONFIG_XTENSA_MMU_DOUBLE_MAP) && ret) {
438 		ret = l2_page_table_map(xtensa_kernel_ptables, (void *)vaddr_uc, paddr_uc,
439 					flags_uc, is_user);
440 		__ASSERT(ret, "Virtual address (%p) already mapped", vaddr_uc);
441 	}
442 
443 #ifndef CONFIG_USERSPACE
444 	ARG_UNUSED(ret);
445 #else
446 	if (ret) {
447 		sys_snode_t *node;
448 		struct arch_mem_domain *domain;
449 		k_spinlock_key_t key;
450 
451 		key = k_spin_lock(&z_mem_domain_lock);
452 		SYS_SLIST_FOR_EACH_NODE(&xtensa_domain_list, node) {
453 			domain = CONTAINER_OF(node, struct arch_mem_domain, node);
454 
455 			ret = l2_page_table_map(domain->ptables, (void *)vaddr, paddr,
456 						flags, is_user);
457 			__ASSERT(ret, "Virtual address (%p) already mapped for domain %p",
458 				 vaddr, domain);
459 
460 			if (IS_ENABLED(CONFIG_XTENSA_MMU_DOUBLE_MAP) && ret) {
461 				ret = l2_page_table_map(domain->ptables,
462 							(void *)vaddr_uc, paddr_uc,
463 							flags_uc, is_user);
464 				__ASSERT(ret, "Virtual address (%p) already mapped for domain %p",
465 					 vaddr_uc, domain);
466 			}
467 		}
468 		k_spin_unlock(&z_mem_domain_lock, key);
469 	}
470 #endif /* CONFIG_USERSPACE */
471 }
472 
arch_mem_map(void * virt,uintptr_t phys,size_t size,uint32_t flags)473 void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags)
474 {
475 	uint32_t va = (uint32_t)virt;
476 	uint32_t pa = (uint32_t)phys;
477 	uint32_t rem_size = (uint32_t)size;
478 	uint32_t xtensa_flags = 0;
479 	k_spinlock_key_t key;
480 	bool is_user;
481 
482 	if (size == 0) {
483 		LOG_ERR("Cannot map physical memory at 0x%08X: invalid "
484 			"zero size", (uint32_t)phys);
485 		k_panic();
486 	}
487 
488 	switch (flags & K_MEM_CACHE_MASK) {
489 
490 	case K_MEM_CACHE_WB:
491 		xtensa_flags |= XTENSA_MMU_CACHED_WB;
492 		break;
493 	case K_MEM_CACHE_WT:
494 		xtensa_flags |= XTENSA_MMU_CACHED_WT;
495 		break;
496 	case K_MEM_CACHE_NONE:
497 		__fallthrough;
498 	default:
499 		break;
500 	}
501 
502 	if ((flags & K_MEM_PERM_RW) == K_MEM_PERM_RW) {
503 		xtensa_flags |= XTENSA_MMU_PERM_W;
504 	}
505 	if ((flags & K_MEM_PERM_EXEC) == K_MEM_PERM_EXEC) {
506 		xtensa_flags |= XTENSA_MMU_PERM_X;
507 	}
508 
509 	is_user = (flags & K_MEM_PERM_USER) == K_MEM_PERM_USER;
510 
511 	key = k_spin_lock(&xtensa_mmu_lock);
512 
513 	while (rem_size > 0) {
514 		__arch_mem_map((void *)va, pa, xtensa_flags, is_user);
515 
516 		rem_size -= (rem_size >= KB(4)) ? KB(4) : rem_size;
517 		va += KB(4);
518 		pa += KB(4);
519 	}
520 
521 #if CONFIG_MP_MAX_NUM_CPUS > 1
522 	xtensa_mmu_tlb_ipi();
523 #endif
524 
525 	sys_cache_data_flush_and_invd_all();
526 	k_spin_unlock(&xtensa_mmu_lock, key);
527 }
528 
529 /**
530  * @return True if page is executable (thus need to invalidate ITLB),
531  *         false if not.
532  */
l2_page_table_unmap(uint32_t * l1_table,void * vaddr)533 static bool l2_page_table_unmap(uint32_t *l1_table, void *vaddr)
534 {
535 	uint32_t l1_pos = XTENSA_MMU_L1_POS((uint32_t)vaddr);
536 	uint32_t l2_pos = XTENSA_MMU_L2_POS((uint32_t)vaddr);
537 	uint32_t *l2_table;
538 	uint32_t table_pos;
539 	bool exec;
540 
541 	sys_cache_data_invd_range((void *)&l1_table[l1_pos], sizeof(l1_table[0]));
542 
543 	if (is_pte_illegal(l1_table[l1_pos])) {
544 		/* We shouldn't be unmapping an illegal entry.
545 		 * Return true so that we can invalidate ITLB too.
546 		 */
547 		return true;
548 	}
549 
550 	exec = l1_table[l1_pos] & XTENSA_MMU_PERM_X;
551 
552 	l2_table = (uint32_t *)(l1_table[l1_pos] & XTENSA_MMU_PTE_PPN_MASK);
553 
554 	sys_cache_data_invd_range((void *)&l2_table[l2_pos], sizeof(l2_table[0]));
555 
556 	l2_table[l2_pos] = XTENSA_MMU_PTE_ILLEGAL;
557 
558 	sys_cache_data_flush_range((void *)&l2_table[l2_pos], sizeof(l2_table[0]));
559 
560 	for (l2_pos = 0; l2_pos < XTENSA_L2_PAGE_TABLE_ENTRIES; l2_pos++) {
561 		if (!is_pte_illegal(l2_table[l2_pos])) {
562 			goto end;
563 		}
564 	}
565 
566 	l1_table[l1_pos] = XTENSA_MMU_PTE_ILLEGAL;
567 	sys_cache_data_flush_range((void *)&l1_table[l1_pos], sizeof(l1_table[0]));
568 
569 	table_pos = (l2_table - (uint32_t *)l2_page_tables) / (XTENSA_L2_PAGE_TABLE_ENTRIES);
570 	atomic_clear_bit(l2_page_tables_track, table_pos);
571 
572 end:
573 	/* Need to invalidate L2 page table as it is no longer valid. */
574 	xtensa_tlb_autorefill_invalidate();
575 	return exec;
576 }
577 
__arch_mem_unmap(void * va)578 static inline void __arch_mem_unmap(void *va)
579 {
580 	bool is_exec;
581 	void *vaddr, *vaddr_uc;
582 
583 	if (IS_ENABLED(CONFIG_XTENSA_MMU_DOUBLE_MAP)) {
584 		if (sys_cache_is_ptr_cached(va)) {
585 			vaddr = va;
586 			vaddr_uc = sys_cache_uncached_ptr_get(va);
587 		} else {
588 			vaddr = sys_cache_cached_ptr_get(va);
589 			vaddr_uc = va;
590 		}
591 	} else {
592 		vaddr = va;
593 	}
594 
595 	is_exec = l2_page_table_unmap(xtensa_kernel_ptables, (void *)vaddr);
596 
597 	if (IS_ENABLED(CONFIG_XTENSA_MMU_DOUBLE_MAP)) {
598 		(void)l2_page_table_unmap(xtensa_kernel_ptables, (void *)vaddr_uc);
599 	}
600 
601 #ifdef CONFIG_USERSPACE
602 	sys_snode_t *node;
603 	struct arch_mem_domain *domain;
604 	k_spinlock_key_t key;
605 
606 	key = k_spin_lock(&z_mem_domain_lock);
607 	SYS_SLIST_FOR_EACH_NODE(&xtensa_domain_list, node) {
608 		domain = CONTAINER_OF(node, struct arch_mem_domain, node);
609 
610 		(void)l2_page_table_unmap(domain->ptables, (void *)vaddr);
611 
612 		if (IS_ENABLED(CONFIG_XTENSA_MMU_DOUBLE_MAP)) {
613 			(void)l2_page_table_unmap(domain->ptables, (void *)vaddr_uc);
614 		}
615 	}
616 	k_spin_unlock(&z_mem_domain_lock, key);
617 #endif /* CONFIG_USERSPACE */
618 }
619 
arch_mem_unmap(void * addr,size_t size)620 void arch_mem_unmap(void *addr, size_t size)
621 {
622 	uint32_t va = (uint32_t)addr;
623 	uint32_t rem_size = (uint32_t)size;
624 	k_spinlock_key_t key;
625 
626 	if (addr == NULL) {
627 		LOG_ERR("Cannot unmap NULL pointer");
628 		return;
629 	}
630 
631 	if (size == 0) {
632 		LOG_ERR("Cannot unmap virtual memory with zero size");
633 		return;
634 	}
635 
636 	key = k_spin_lock(&xtensa_mmu_lock);
637 
638 	while (rem_size > 0) {
639 		__arch_mem_unmap((void *)va);
640 
641 		rem_size -= (rem_size >= KB(4)) ? KB(4) : rem_size;
642 		va += KB(4);
643 	}
644 
645 #if CONFIG_MP_MAX_NUM_CPUS > 1
646 	xtensa_mmu_tlb_ipi();
647 #endif
648 
649 	sys_cache_data_flush_and_invd_all();
650 	k_spin_unlock(&xtensa_mmu_lock, key);
651 }
652 
653 /* This should be implemented in the SoC layer.
654  * This weak version is here to avoid build errors.
655  */
xtensa_mmu_tlb_ipi(void)656 void __weak xtensa_mmu_tlb_ipi(void)
657 {
658 }
659 
xtensa_mmu_tlb_shootdown(void)660 void xtensa_mmu_tlb_shootdown(void)
661 {
662 	unsigned int key;
663 
664 	/* Need to lock interrupts to prevent any context
665 	 * switching until all the page tables are updated.
666 	 * Or else we would be switching to another thread
667 	 * and running that with incorrect page tables
668 	 * which would result in permission issues.
669 	 */
670 	key = arch_irq_lock();
671 
672 	K_SPINLOCK(&xtensa_mmu_lock) {
673 		/* We don't have information on which page tables have changed,
674 		 * so we just invalidate the cache for all L1 page tables.
675 		 */
676 		sys_cache_data_invd_range((void *)l1_page_table, sizeof(l1_page_table));
677 		sys_cache_data_invd_range((void *)l2_page_tables, sizeof(l2_page_tables));
678 	}
679 
680 #ifdef CONFIG_USERSPACE
681 	struct k_thread *thread = _current_cpu->current;
682 
683 	/* If current thread is a user thread, we need to see if it has
684 	 * been migrated to another memory domain as the L1 page table
685 	 * is different from the currently used one.
686 	 */
687 	if ((thread->base.user_options & K_USER) == K_USER) {
688 		uint32_t ptevaddr_entry, ptevaddr,
689 			thread_ptables, current_ptables;
690 
691 		/* Need to read the currently used L1 page table.
692 		 * We know that L1 page table is always mapped at way
693 		 * MMU_PTE_WAY, so we can skip the probing step by
694 		 * generating the query entry directly.
695 		 */
696 		ptevaddr = (uint32_t)xtensa_ptevaddr_get();
697 		ptevaddr_entry = XTENSA_MMU_PTE_ENTRY_VADDR(ptevaddr, ptevaddr)
698 				 | XTENSA_MMU_PTE_WAY;
699 		current_ptables = xtensa_dtlb_paddr_read(ptevaddr_entry);
700 		thread_ptables = (uint32_t)thread->arch.ptables;
701 
702 		if (thread_ptables != current_ptables) {
703 			/* Need to remap the thread page tables if the ones
704 			 * indicated by the current thread are different
705 			 * than the current mapped page table.
706 			 */
707 			struct arch_mem_domain *domain =
708 				&(thread->mem_domain_info.mem_domain->arch);
709 			xtensa_set_paging(domain->asid, (uint32_t *)thread_ptables);
710 		}
711 
712 	}
713 #endif /* CONFIG_USERSPACE */
714 
715 	/* L2 are done via autofill, so invalidate autofill TLBs
716 	 * would refresh the L2 page tables.
717 	 *
718 	 * L1 will be refreshed during context switch so no need
719 	 * to do anything here.
720 	 */
721 	xtensa_tlb_autorefill_invalidate();
722 
723 	arch_irq_unlock(key);
724 }
725 
726 #ifdef CONFIG_USERSPACE
727 
alloc_l1_table(void)728 static inline uint32_t *alloc_l1_table(void)
729 {
730 	uint16_t idx;
731 
732 	for (idx = 0; idx < CONFIG_XTENSA_MMU_NUM_L1_TABLES; idx++) {
733 		if (!atomic_test_and_set_bit(l1_page_table_track, idx)) {
734 			return (uint32_t *)&l1_page_table[idx];
735 		}
736 	}
737 
738 	return NULL;
739 }
740 
dup_table(void)741 static uint32_t *dup_table(void)
742 {
743 	uint16_t i, j;
744 	uint32_t *dst_table = alloc_l1_table();
745 
746 	if (!dst_table) {
747 		return NULL;
748 	}
749 
750 	for (i = 0; i < XTENSA_L1_PAGE_TABLE_ENTRIES; i++) {
751 		uint32_t *l2_table, *src_l2_table;
752 
753 		if (is_pte_illegal(xtensa_kernel_ptables[i]) ||
754 			(i == XTENSA_MMU_L1_POS(XTENSA_MMU_PTEVADDR))) {
755 			dst_table[i] = XTENSA_MMU_PTE_ILLEGAL;
756 			continue;
757 		}
758 
759 		src_l2_table = (uint32_t *)(xtensa_kernel_ptables[i] & XTENSA_MMU_PTE_PPN_MASK);
760 		l2_table = alloc_l2_table();
761 		if (l2_table == NULL) {
762 			goto err;
763 		}
764 
765 		for (j = 0; j < XTENSA_L2_PAGE_TABLE_ENTRIES; j++) {
766 			uint32_t original_attr =  XTENSA_MMU_PTE_SW_GET(src_l2_table[j]);
767 
768 			l2_table[j] =  src_l2_table[j];
769 			if (original_attr != 0x0) {
770 				uint8_t ring;
771 
772 				ring = XTENSA_MMU_PTE_RING_GET(l2_table[j]);
773 				l2_table[j] =  XTENSA_MMU_PTE_ATTR_SET(l2_table[j], original_attr);
774 				l2_table[j] =  XTENSA_MMU_PTE_RING_SET(l2_table[j],
775 						ring == XTENSA_MMU_SHARED_RING ?
776 						XTENSA_MMU_SHARED_RING : XTENSA_MMU_KERNEL_RING);
777 			}
778 		}
779 
780 		/* The page table is using kernel ASID because we don't
781 		 * user thread manipulate it.
782 		 */
783 		dst_table[i] = XTENSA_MMU_PTE((uint32_t)l2_table, XTENSA_MMU_KERNEL_RING,
784 					      0, XTENSA_MMU_PAGE_TABLE_ATTR);
785 
786 		sys_cache_data_flush_range((void *)l2_table, XTENSA_L2_PAGE_TABLE_SIZE);
787 	}
788 
789 	sys_cache_data_flush_range((void *)dst_table, XTENSA_L1_PAGE_TABLE_SIZE);
790 
791 	return dst_table;
792 
793 err:
794 	/* TODO: Cleanup failed allocation*/
795 	return NULL;
796 }
797 
arch_mem_domain_init(struct k_mem_domain * domain)798 int arch_mem_domain_init(struct k_mem_domain *domain)
799 {
800 	uint32_t *ptables;
801 	k_spinlock_key_t key;
802 	int ret;
803 
804 	/*
805 	 * For now, lets just assert if we have reached the maximum number
806 	 * of asid we assert.
807 	 */
808 	__ASSERT(asid_count < (XTENSA_MMU_SHARED_ASID), "Reached maximum of ASID available");
809 
810 	key = k_spin_lock(&xtensa_mmu_lock);
811 	/* If this is the default domain, we don't need
812 	 * to create a new set of page tables. We can just
813 	 * use the kernel page tables and save memory.
814 	 */
815 
816 	if (domain == &k_mem_domain_default) {
817 		domain->arch.ptables = xtensa_kernel_ptables;
818 		domain->arch.asid = asid_count;
819 		goto end;
820 	}
821 
822 
823 	ptables = dup_table();
824 
825 	if (ptables == NULL) {
826 		ret = -ENOMEM;
827 		goto err;
828 	}
829 
830 	domain->arch.ptables = ptables;
831 	domain->arch.asid = ++asid_count;
832 
833 	sys_slist_append(&xtensa_domain_list, &domain->arch.node);
834 
835 end:
836 	ret = 0;
837 
838 err:
839 	k_spin_unlock(&xtensa_mmu_lock, key);
840 
841 	return ret;
842 }
843 
region_map_update(uint32_t * ptables,uintptr_t start,size_t size,uint32_t ring,uint32_t flags)844 static int region_map_update(uint32_t *ptables, uintptr_t start,
845 			      size_t size, uint32_t ring, uint32_t flags)
846 {
847 	int ret = 0;
848 
849 	for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
850 		uint32_t *l2_table, pte;
851 		uint32_t page = start + offset;
852 		uint32_t l1_pos = XTENSA_MMU_L1_POS(page);
853 		uint32_t l2_pos = XTENSA_MMU_L2_POS(page);
854 		/* Make sure we grab a fresh copy of L1 page table */
855 		sys_cache_data_invd_range((void *)&ptables[l1_pos], sizeof(ptables[0]));
856 
857 		l2_table = (uint32_t *)(ptables[l1_pos] & XTENSA_MMU_PTE_PPN_MASK);
858 
859 		sys_cache_data_invd_range((void *)&l2_table[l2_pos], sizeof(l2_table[0]));
860 
861 		pte = XTENSA_MMU_PTE_RING_SET(l2_table[l2_pos], ring);
862 		pte = XTENSA_MMU_PTE_ATTR_SET(pte, flags);
863 
864 		l2_table[l2_pos] = pte;
865 
866 		sys_cache_data_flush_range((void *)&l2_table[l2_pos], sizeof(l2_table[0]));
867 
868 		xtensa_dtlb_vaddr_invalidate((void *)page);
869 	}
870 
871 	return ret;
872 }
873 
update_region(uint32_t * ptables,uintptr_t start,size_t size,uint32_t ring,uint32_t flags,uint32_t option)874 static inline int update_region(uint32_t *ptables, uintptr_t start,
875 				size_t size, uint32_t ring, uint32_t flags,
876 				uint32_t option)
877 {
878 	int ret;
879 	k_spinlock_key_t key;
880 
881 	key = k_spin_lock(&xtensa_mmu_lock);
882 
883 #ifdef CONFIG_XTENSA_MMU_DOUBLE_MAP
884 	uintptr_t va, va_uc;
885 	uint32_t new_flags, new_flags_uc;
886 
887 	if (sys_cache_is_ptr_cached((void *)start)) {
888 		va = start;
889 		va_uc = (uintptr_t)sys_cache_uncached_ptr_get((void *)start);
890 	} else {
891 		va = (uintptr_t)sys_cache_cached_ptr_get((void *)start);
892 		va_uc = start;
893 	}
894 
895 	new_flags_uc = (flags & ~XTENSA_MMU_PTE_ATTR_CACHED_MASK);
896 	new_flags = new_flags_uc | XTENSA_MMU_CACHED_WB;
897 
898 	ret = region_map_update(ptables, va, size, ring, new_flags);
899 
900 	if (ret == 0) {
901 		ret = region_map_update(ptables, va_uc, size, ring, new_flags_uc);
902 	}
903 #else
904 	ret = region_map_update(ptables, start, size, ring, flags);
905 #endif /* CONFIG_XTENSA_MMU_DOUBLE_MAP */
906 
907 #if CONFIG_MP_MAX_NUM_CPUS > 1
908 	if ((option & OPTION_NO_TLB_IPI) != OPTION_NO_TLB_IPI) {
909 		xtensa_mmu_tlb_ipi();
910 	}
911 #endif
912 
913 	sys_cache_data_flush_and_invd_all();
914 	k_spin_unlock(&xtensa_mmu_lock, key);
915 
916 	return ret;
917 }
918 
reset_region(uint32_t * ptables,uintptr_t start,size_t size,uint32_t option)919 static inline int reset_region(uint32_t *ptables, uintptr_t start, size_t size, uint32_t option)
920 {
921 	return update_region(ptables, start, size,
922 			     XTENSA_MMU_KERNEL_RING, XTENSA_MMU_PERM_W, option);
923 }
924 
xtensa_user_stack_perms(struct k_thread * thread)925 void xtensa_user_stack_perms(struct k_thread *thread)
926 {
927 	(void)memset((void *)thread->stack_info.start,
928 		     (IS_ENABLED(CONFIG_INIT_STACKS)) ? 0xAA : 0x00,
929 		     thread->stack_info.size - thread->stack_info.delta);
930 
931 	update_region(thread_page_tables_get(thread),
932 		      thread->stack_info.start, thread->stack_info.size,
933 		      XTENSA_MMU_USER_RING, XTENSA_MMU_PERM_W | XTENSA_MMU_CACHED_WB, 0);
934 }
935 
arch_mem_domain_max_partitions_get(void)936 int arch_mem_domain_max_partitions_get(void)
937 {
938 	return CONFIG_MAX_DOMAIN_PARTITIONS;
939 }
940 
arch_mem_domain_partition_remove(struct k_mem_domain * domain,uint32_t partition_id)941 int arch_mem_domain_partition_remove(struct k_mem_domain *domain,
942 				uint32_t partition_id)
943 {
944 	struct k_mem_partition *partition = &domain->partitions[partition_id];
945 
946 	/* Reset the partition's region back to defaults */
947 	return reset_region(domain->arch.ptables, partition->start,
948 			    partition->size, 0);
949 }
950 
arch_mem_domain_partition_add(struct k_mem_domain * domain,uint32_t partition_id)951 int arch_mem_domain_partition_add(struct k_mem_domain *domain,
952 				uint32_t partition_id)
953 {
954 	struct k_mem_partition *partition = &domain->partitions[partition_id];
955 	uint32_t ring = K_MEM_PARTITION_IS_USER(partition->attr) ? XTENSA_MMU_USER_RING :
956 			XTENSA_MMU_KERNEL_RING;
957 
958 	return update_region(domain->arch.ptables, partition->start,
959 			     partition->size, ring, partition->attr, 0);
960 }
961 
962 /* These APIs don't need to do anything */
arch_mem_domain_thread_add(struct k_thread * thread)963 int arch_mem_domain_thread_add(struct k_thread *thread)
964 {
965 	int ret = 0;
966 	bool is_user, is_migration;
967 	uint32_t *old_ptables;
968 	struct k_mem_domain *domain;
969 
970 	old_ptables = thread->arch.ptables;
971 	domain = thread->mem_domain_info.mem_domain;
972 	thread->arch.ptables = domain->arch.ptables;
973 
974 	is_user = (thread->base.user_options & K_USER) != 0;
975 	is_migration = (old_ptables != NULL) && is_user;
976 
977 	if (is_migration) {
978 		/* Give access to the thread's stack in its new
979 		 * memory domain if it is migrating.
980 		 */
981 		update_region(thread_page_tables_get(thread),
982 			      thread->stack_info.start, thread->stack_info.size,
983 			      XTENSA_MMU_USER_RING,
984 			      XTENSA_MMU_PERM_W | XTENSA_MMU_CACHED_WB,
985 			      OPTION_NO_TLB_IPI);
986 		/* and reset thread's stack permission in
987 		 * the old page tables.
988 		 */
989 		ret = reset_region(old_ptables,
990 			thread->stack_info.start,
991 			thread->stack_info.size, 0);
992 	}
993 
994 	/* Need to switch to new page tables if this is
995 	 * the current thread running.
996 	 */
997 	if (thread == _current_cpu->current) {
998 		xtensa_set_paging(domain->arch.asid, thread->arch.ptables);
999 	}
1000 
1001 #if CONFIG_MP_MAX_NUM_CPUS > 1
1002 	/* Need to tell other CPUs to switch to the new page table
1003 	 * in case the thread is running on one of them.
1004 	 *
1005 	 * Note that there is no need to send TLB IPI if this is
1006 	 * migration as it was sent above during reset_region().
1007 	 */
1008 	if ((thread != _current_cpu->current) && !is_migration) {
1009 		xtensa_mmu_tlb_ipi();
1010 	}
1011 #endif
1012 
1013 	return ret;
1014 }
1015 
arch_mem_domain_thread_remove(struct k_thread * thread)1016 int arch_mem_domain_thread_remove(struct k_thread *thread)
1017 {
1018 	struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;
1019 
1020 	if ((thread->base.user_options & K_USER) == 0) {
1021 		return 0;
1022 	}
1023 
1024 	if ((thread->base.thread_state & _THREAD_DEAD) == 0) {
1025 		/* Thread is migrating to another memory domain and not
1026 		 * exiting for good; we weren't called from
1027 		 * z_thread_abort().  Resetting the stack region will
1028 		 * take place in the forthcoming thread_add() call.
1029 		 */
1030 		return 0;
1031 	}
1032 
1033 	/* Restore permissions on the thread's stack area since it is no
1034 	 * longer a member of the domain.
1035 	 *
1036 	 * Note that, since every thread must have an associated memory
1037 	 * domain, removing a thread from domain will be followed by
1038 	 * adding it back to another. So there is no need to send TLB IPI
1039 	 * at this point.
1040 	 */
1041 	return reset_region(domain->arch.ptables,
1042 			    thread->stack_info.start,
1043 			    thread->stack_info.size, OPTION_NO_TLB_IPI);
1044 }
1045 
page_validate(uint32_t * ptables,uint32_t page,uint8_t ring,bool write)1046 static bool page_validate(uint32_t *ptables, uint32_t page, uint8_t ring, bool write)
1047 {
1048 	uint8_t asid_ring;
1049 	uint32_t rasid, pte, *l2_table;
1050 	uint32_t l1_pos = XTENSA_MMU_L1_POS(page);
1051 	uint32_t l2_pos = XTENSA_MMU_L2_POS(page);
1052 
1053 	if (is_pte_illegal(ptables[l1_pos])) {
1054 		return false;
1055 	}
1056 
1057 	l2_table = (uint32_t *)(ptables[l1_pos] & XTENSA_MMU_PTE_PPN_MASK);
1058 	pte = l2_table[l2_pos];
1059 
1060 	if (is_pte_illegal(pte)) {
1061 		return false;
1062 	}
1063 
1064 	asid_ring = 0;
1065 	rasid = xtensa_rasid_get();
1066 	for (uint32_t i = 0; i < 4; i++) {
1067 		if (XTENSA_MMU_PTE_ASID_GET(pte, rasid) == XTENSA_MMU_RASID_ASID_GET(rasid, i)) {
1068 			asid_ring = i;
1069 			break;
1070 		}
1071 	}
1072 
1073 	if (ring > asid_ring) {
1074 		return false;
1075 	}
1076 
1077 	if (write) {
1078 		return (XTENSA_MMU_PTE_ATTR_GET((pte)) & XTENSA_MMU_PERM_W) != 0;
1079 	}
1080 
1081 	return true;
1082 }
1083 
mem_buffer_validate(const void * addr,size_t size,int write,int ring)1084 static int mem_buffer_validate(const void *addr, size_t size, int write, int ring)
1085 {
1086 	int ret = 0;
1087 	uint8_t *virt;
1088 	size_t aligned_size;
1089 	const struct k_thread *thread = arch_current_thread();
1090 	uint32_t *ptables = thread_page_tables_get(thread);
1091 
1092 	/* addr/size arbitrary, fix this up into an aligned region */
1093 	k_mem_region_align((uintptr_t *)&virt, &aligned_size,
1094 			   (uintptr_t)addr, size, CONFIG_MMU_PAGE_SIZE);
1095 
1096 	for (size_t offset = 0; offset < aligned_size;
1097 	     offset += CONFIG_MMU_PAGE_SIZE) {
1098 		if (!page_validate(ptables, (uint32_t)(virt + offset), ring, write)) {
1099 			ret = -1;
1100 			break;
1101 		}
1102 	}
1103 
1104 	return ret;
1105 }
1106 
xtensa_mem_kernel_has_access(void * addr,size_t size,int write)1107 bool xtensa_mem_kernel_has_access(void *addr, size_t size, int write)
1108 {
1109 	return mem_buffer_validate(addr, size, write, XTENSA_MMU_KERNEL_RING) == 0;
1110 }
1111 
arch_buffer_validate(const void * addr,size_t size,int write)1112 int arch_buffer_validate(const void *addr, size_t size, int write)
1113 {
1114 	return mem_buffer_validate(addr, size, write, XTENSA_MMU_USER_RING);
1115 }
1116 
xtensa_swap_update_page_tables(struct k_thread * incoming)1117 void xtensa_swap_update_page_tables(struct k_thread *incoming)
1118 {
1119 	uint32_t *ptables = incoming->arch.ptables;
1120 	struct arch_mem_domain *domain =
1121 		&(incoming->mem_domain_info.mem_domain->arch);
1122 
1123 	xtensa_set_paging(domain->asid, ptables);
1124 
1125 #ifdef CONFIG_XTENSA_INVALIDATE_MEM_DOMAIN_TLB_ON_SWAP
1126 	struct k_mem_domain *mem_domain = incoming->mem_domain_info.mem_domain;
1127 
1128 	for (int idx = 0; idx < mem_domain->num_partitions; idx++) {
1129 		struct k_mem_partition *part = &mem_domain->partitions[idx];
1130 		uintptr_t end = part->start + part->size;
1131 
1132 		for (uintptr_t addr = part->start; addr < end; addr += CONFIG_MMU_PAGE_SIZE) {
1133 			xtensa_dtlb_vaddr_invalidate((void *)addr);
1134 		}
1135 	}
1136 #endif
1137 }
1138 
1139 #endif /* CONFIG_USERSPACE */
1140