1 /*
2 * Copyright (c) 2017 Linaro Limited.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/device.h>
8 #include <zephyr/init.h>
9 #include <zephyr/kernel.h>
10 #include <soc.h>
11 #include "arm_core_mpu_dev.h"
12 #include <zephyr/sys/__assert.h>
13 #include <zephyr/sys/math_extras.h>
14 #include <zephyr/sys/barrier.h>
15 #include <zephyr/linker/linker-defs.h>
16 #include <zephyr/mem_mgmt/mem_attr.h>
17 #include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
18
19 #define LOG_LEVEL CONFIG_MPU_LOG_LEVEL
20 #include <zephyr/logging/log.h>
21 LOG_MODULE_DECLARE(mpu);
22
23 #define NODE_HAS_PROP_AND_OR(node_id, prop) \
24 DT_NODE_HAS_PROP(node_id, prop) ||
25
26 BUILD_ASSERT((DT_FOREACH_STATUS_OKAY_NODE_VARGS(
27 NODE_HAS_PROP_AND_OR, zephyr_memory_region_mpu) false) == false,
28 "`zephyr,memory-region-mpu` was deprecated in favor of `zephyr,memory-attr`");
29
30 /*
31 * Global status variable holding the number of HW MPU region indices, which
32 * have been reserved by the MPU driver to program the static (fixed) memory
33 * regions.
34 */
35 static uint8_t static_regions_num;
36
37 /* Global MPU configuration at system initialization. */
mpu_init(void)38 static void mpu_init(void)
39 {
40 #if defined(CONFIG_SOC_FAMILY_KINETIS)
41 /* Enable clock for the Memory Protection Unit (MPU). */
42 CLOCK_EnableClock(kCLOCK_Sysmpu0);
43 #endif
44 }
45
46 /**
47 * Get the number of supported MPU regions.
48 */
get_num_regions(void)49 static inline uint8_t get_num_regions(void)
50 {
51 return FSL_FEATURE_SYSMPU_DESCRIPTOR_COUNT;
52 }
53
54 /* @brief Partition sanity check
55 *
56 * This internal function performs run-time sanity check for
57 * MPU region start address and size.
58 *
59 * @param part Pointer to the data structure holding the partition
60 * information (must be valid).
61 */
mpu_partition_is_valid(const struct z_arm_mpu_partition * part)62 static int mpu_partition_is_valid(const struct z_arm_mpu_partition *part)
63 {
64 /* Partition size must be a multiple of the minimum MPU region
65 * size. Start address of the partition must align with the
66 * minimum MPU region size.
67 */
68 int partition_is_valid =
69 (part->size != 0U)
70 &&
71 ((part->size &
72 (~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)))
73 == part->size)
74 &&
75 ((part->start &
76 (CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)) == 0U);
77
78 return partition_is_valid;
79 }
80
81 /* This internal function performs MPU region initialization.
82 *
83 * Note:
84 * The caller must provide a valid region index.
85 */
region_init(const uint32_t index,const struct nxp_mpu_region * region_conf)86 static void region_init(const uint32_t index,
87 const struct nxp_mpu_region *region_conf)
88 {
89 uint32_t region_base = region_conf->base;
90 uint32_t region_end = region_conf->end;
91 uint32_t region_attr = region_conf->attr.attr;
92
93 if (index == 0U) {
94 /* The MPU does not allow writes from the core to affect the
95 * RGD0 start or end addresses nor the permissions associated
96 * with the debugger; it can only write the permission fields
97 * associated with the other masters. These protections
98 * guarantee that the debugger always has access to the entire
99 * address space.
100 */
101 __ASSERT(region_base == SYSMPU->WORD[index][0],
102 "Region %d base address got 0x%08x expected 0x%08x",
103 index, region_base, (uint32_t)SYSMPU->WORD[index][0]);
104
105 __ASSERT(region_end == SYSMPU->WORD[index][1],
106 "Region %d end address got 0x%08x expected 0x%08x",
107 index, region_end, (uint32_t)SYSMPU->WORD[index][1]);
108
109 /* Changes to the RGD0_WORD2 alterable fields should be done
110 * via a write to RGDAAC0.
111 */
112 SYSMPU->RGDAAC[index] = region_attr;
113
114 } else {
115 SYSMPU->WORD[index][0] = region_base;
116 SYSMPU->WORD[index][1] = region_end;
117 SYSMPU->WORD[index][2] = region_attr;
118 SYSMPU->WORD[index][3] = SYSMPU_WORD_VLD_MASK;
119 }
120
121 LOG_DBG("[%02d] 0x%08x 0x%08x 0x%08x 0x%08x", index,
122 (uint32_t)SYSMPU->WORD[index][0],
123 (uint32_t)SYSMPU->WORD[index][1],
124 (uint32_t)SYSMPU->WORD[index][2],
125 (uint32_t)SYSMPU->WORD[index][3]);
126
127 }
128
region_allocate_and_init(const uint8_t index,const struct nxp_mpu_region * region_conf)129 static int region_allocate_and_init(const uint8_t index,
130 const struct nxp_mpu_region *region_conf)
131 {
132 /* Attempt to allocate new region index. */
133 if (index > (get_num_regions() - 1)) {
134
135 /* No available MPU region index. */
136 LOG_ERR("Failed to allocate new MPU region %u\n", index);
137 return -EINVAL;
138 }
139
140 LOG_DBG("Program MPU region at index 0x%x", index);
141
142 /* Program region */
143 region_init(index, region_conf);
144
145 return index;
146 }
147
148 #define _BUILD_REGION_CONF(reg, _ATTR) \
149 (struct nxp_mpu_region) { .name = (reg).dt_name, \
150 .base = (reg).dt_addr, \
151 .end = (reg).dt_addr + (reg).dt_size, \
152 .attr = _ATTR, \
153 }
154
155 /* This internal function programs the MPU regions defined in the DT when using
156 * the `zephyr,memory-attr = <( DT_MEM_ARM(...) )>` property.
157 */
mpu_configure_regions_from_dt(uint8_t * reg_index)158 static int mpu_configure_regions_from_dt(uint8_t *reg_index)
159 {
160 const struct mem_attr_region_t *region;
161 size_t num_regions;
162
163 num_regions = mem_attr_get_regions(®ion);
164
165 for (size_t idx = 0; idx < num_regions; idx++) {
166 struct nxp_mpu_region region_conf;
167
168 switch (DT_MEM_ARM_GET(region[idx].dt_attr)) {
169 case DT_MEM_ARM_MPU_RAM:
170 region_conf = _BUILD_REGION_CONF(region[idx], REGION_RAM_ATTR);
171 break;
172 #ifdef REGION_FLASH_ATTR
173 case DT_MEM_ARM_MPU_FLASH:
174 region_conf = _BUILD_REGION_CONF(region[idx], REGION_FLASH_ATTR);
175 break;
176 #endif
177 #ifdef REGION_IO_ATTR
178 case DT_MEM_ARM_MPU_IO:
179 region_conf = _BUILD_REGION_CONF(region[idx], REGION_IO_ATTR);
180 break;
181 #endif
182 default:
183 /* Either the specified `ATTR_MPU_*` attribute does not
184 * exists or the `REGION_*_ATTR` macro is not defined
185 * for that attribute.
186 */
187 LOG_ERR("Invalid attribute for the region\n");
188 return -EINVAL;
189 }
190
191 if (region_allocate_and_init((*reg_index),
192 (const struct nxp_mpu_region *) ®ion_conf) < 0) {
193 return -EINVAL;
194 }
195
196 (*reg_index)++;
197 }
198
199 return 0;
200 }
201
202 /**
203 * This internal function is utilized by the MPU driver to combine a given
204 * region attribute configuration and size and fill-in a driver-specific
205 * structure with the correct MPU region attribute configuration.
206 */
get_region_attr_from_mpu_partition_info(nxp_mpu_region_attr_t * p_attr,const k_mem_partition_attr_t * attr,uint32_t base,uint32_t size)207 static inline void get_region_attr_from_mpu_partition_info(
208 nxp_mpu_region_attr_t *p_attr,
209 const k_mem_partition_attr_t *attr, uint32_t base, uint32_t size)
210 {
211 /* in NXP MPU the base address and size are not required
212 * to determine region attributes
213 */
214 (void) base;
215 (void) size;
216
217 p_attr->attr = attr->ap_attr;
218 }
219
220 /* This internal function programs an MPU region
221 * of a given configuration at a given MPU index.
222 */
mpu_configure_region(const uint8_t index,const struct z_arm_mpu_partition * new_region)223 static int mpu_configure_region(const uint8_t index,
224 const struct z_arm_mpu_partition *new_region)
225 {
226 struct nxp_mpu_region region_conf;
227
228 LOG_DBG("Configure MPU region at index 0x%x", index);
229
230 /* Populate internal NXP MPU region configuration structure. */
231 region_conf.base = new_region->start;
232 region_conf.end = (new_region->start + new_region->size - 1);
233 get_region_attr_from_mpu_partition_info(®ion_conf.attr,
234 &new_region->attr, new_region->start, new_region->size);
235
236 /* Allocate and program region */
237 return region_allocate_and_init(index,
238 (const struct nxp_mpu_region *)®ion_conf);
239 }
240
241 #if defined(CONFIG_MPU_STACK_GUARD)
242 /* This internal function partitions the SRAM MPU region */
mpu_sram_partitioning(uint8_t index,const struct z_arm_mpu_partition * p_region)243 static int mpu_sram_partitioning(uint8_t index,
244 const struct z_arm_mpu_partition *p_region)
245 {
246 /*
247 * The NXP MPU manages the permissions of the overlapping regions
248 * doing the logical OR in between them, hence they can't be used
249 * for stack/stack guard protection. For this reason we need to
250 * perform a partitioning of the SRAM area in such a way that the
251 * guard region does not overlap with the (background) SRAM regions
252 * holding the default SRAM access permission configuration.
253 * In other words, the SRAM is split in two different regions.
254 */
255
256 /*
257 * SRAM partitioning needs to be performed in a strict order.
258 * First, we program a new MPU region with the default SRAM
259 * access permissions for the SRAM area _after_ the stack
260 * guard. Note that the permissions are stored in the global
261 * array:
262 * 'mpu_config.mpu_regions[]', on 'sram_region' index.
263 */
264 struct nxp_mpu_region added_sram_region;
265
266 added_sram_region.base = p_region->start + p_region->size;
267 added_sram_region.end =
268 mpu_config.mpu_regions[mpu_config.sram_region].end;
269 added_sram_region.attr.attr =
270 mpu_config.mpu_regions[mpu_config.sram_region].attr.attr;
271
272 if (region_allocate_and_init(index,
273 (const struct nxp_mpu_region *)&added_sram_region) < 0) {
274 return -EINVAL;
275 }
276
277 /* Increment, as an additional region index has been consumed. */
278 index++;
279
280 /* Second, adjust the original SRAM region to end at the beginning
281 * of the stack guard.
282 */
283 struct nxp_mpu_region adjusted_sram_region;
284
285 adjusted_sram_region.base =
286 mpu_config.mpu_regions[mpu_config.sram_region].base;
287 adjusted_sram_region.end = p_region->start - 1;
288 adjusted_sram_region.attr.attr =
289 mpu_config.mpu_regions[mpu_config.sram_region].attr.attr;
290
291 region_init(mpu_config.sram_region,
292 (const struct nxp_mpu_region *)&adjusted_sram_region);
293
294 return index;
295 }
296 #endif /* CONFIG_MPU_STACK_GUARD */
297
298 /* This internal function programs a set of given MPU regions
299 * over a background memory area, optionally performing a
300 * sanity check of the memory regions to be programmed.
301 */
mpu_configure_regions(const struct z_arm_mpu_partition regions[],uint8_t regions_num,uint8_t start_reg_index,bool do_sanity_check)302 static int mpu_configure_regions(const struct z_arm_mpu_partition regions[],
303 uint8_t regions_num, uint8_t start_reg_index,
304 bool do_sanity_check)
305 {
306 int i;
307 int reg_index = start_reg_index;
308
309 for (i = 0; i < regions_num; i++) {
310 if (regions[i].size == 0U) {
311 continue;
312 }
313 /* Non-empty region. */
314
315 if (do_sanity_check &&
316 (!mpu_partition_is_valid(®ions[i]))) {
317 LOG_ERR("Partition %u: sanity check failed.", i);
318 return -EINVAL;
319 }
320
321 #if defined(CONFIG_MPU_STACK_GUARD)
322 if (regions[i].attr.ap_attr == MPU_REGION_SU_RX) {
323 unsigned int key;
324
325 /* Attempt to configure an MPU Stack Guard region; this
326 * will require splitting of the underlying SRAM region
327 * into two SRAM regions, leaving out the guard area to
328 * be programmed afterwards.
329 */
330 key = irq_lock();
331 reg_index =
332 mpu_sram_partitioning(reg_index, ®ions[i]);
333 irq_unlock(key);
334 }
335 #endif /* CONFIG_MPU_STACK_GUARD */
336
337 if (reg_index == -EINVAL) {
338 return reg_index;
339 }
340
341 reg_index = mpu_configure_region(reg_index, ®ions[i]);
342
343 if (reg_index == -EINVAL) {
344 return reg_index;
345 }
346
347 /* Increment number of programmed MPU indices. */
348 reg_index++;
349 }
350
351 return reg_index;
352 }
353
354 /* This internal function programs the static MPU regions.
355 *
356 * It returns the number of MPU region indices configured.
357 *
358 * Note:
359 * If the static MPU regions configuration has not been successfully
360 * performed, the error signal is propagated to the caller of the function.
361 */
mpu_configure_static_mpu_regions(const struct z_arm_mpu_partition static_regions[],const uint8_t regions_num,const uint32_t background_area_base,const uint32_t background_area_end)362 static int mpu_configure_static_mpu_regions(
363 const struct z_arm_mpu_partition static_regions[],
364 const uint8_t regions_num, const uint32_t background_area_base,
365 const uint32_t background_area_end)
366 {
367 int mpu_reg_index = static_regions_num;
368
369 /* In NXP MPU architecture the static regions are
370 * programmed on top of SRAM region configuration.
371 */
372 ARG_UNUSED(background_area_base);
373 ARG_UNUSED(background_area_end);
374
375 mpu_reg_index = mpu_configure_regions(static_regions,
376 regions_num, mpu_reg_index, true);
377
378 static_regions_num = mpu_reg_index;
379
380 return mpu_reg_index;
381 }
382
383 /* This internal function programs the dynamic MPU regions.
384 *
385 * It returns the number of MPU region indices configured.
386 *
387 * Note:
388 * If the dynamic MPU regions configuration has not been successfully
389 * performed, the error signal is propagated to the caller of the function.
390 */
mpu_configure_dynamic_mpu_regions(const struct z_arm_mpu_partition dynamic_regions[],uint8_t regions_num)391 static int mpu_configure_dynamic_mpu_regions(
392 const struct z_arm_mpu_partition dynamic_regions[],
393 uint8_t regions_num)
394 {
395 unsigned int key;
396
397 /*
398 * Programming the NXP MPU has to be done with care to avoid race
399 * conditions that will cause memory faults. The NXP MPU is composed
400 * of a number of memory region descriptors. The number of descriptors
401 * varies depending on the SOC. Each descriptor has a start addr, end
402 * addr, attribute, and valid. When the MPU is enabled, access to
403 * memory space is checked for access protection errors through an
404 * OR operation of all of the valid MPU descriptors.
405 *
406 * Writing the start/end/attribute descriptor register will clear the
407 * valid bit for that descriptor. This presents a problem because if
408 * the current program stack is in that region or if an ISR occurs
409 * that switches state and uses that region a memory fault will be
410 * triggered. Note that local variable access can also cause stack
411 * accesses while programming these registers depending on the compiler
412 * optimization level.
413 *
414 * To avoid the race condition a temporary descriptor is set to enable
415 * access to all of memory before the call to mpu_configure_regions()
416 * to configure the dynamic memory regions. After, the temporary
417 * descriptor is invalidated if the mpu_configure_regions() didn't
418 * overwrite it.
419 */
420 key = irq_lock();
421 /* Use last descriptor region as temporary descriptor */
422 region_init(get_num_regions()-1, (const struct nxp_mpu_region *)
423 &mpu_config.mpu_regions[mpu_config.sram_region]);
424
425 /* Now reset the main SRAM region */
426 region_init(mpu_config.sram_region, (const struct nxp_mpu_region *)
427 &mpu_config.mpu_regions[mpu_config.sram_region]);
428 irq_unlock(key);
429
430 int mpu_reg_index = static_regions_num;
431
432 /* In NXP MPU architecture the dynamic regions are
433 * programmed on top of existing SRAM region configuration.
434 */
435
436 mpu_reg_index = mpu_configure_regions(dynamic_regions,
437 regions_num, mpu_reg_index, false);
438
439 if (mpu_reg_index != -EINVAL) {
440
441 /* Disable the non-programmed MPU regions. */
442 for (int i = mpu_reg_index; i < get_num_regions(); i++) {
443
444 LOG_DBG("disable region 0x%x", i);
445 /* Disable region */
446 SYSMPU->WORD[i][0] = 0;
447 SYSMPU->WORD[i][1] = 0;
448 SYSMPU->WORD[i][2] = 0;
449 SYSMPU->WORD[i][3] = 0;
450 }
451 }
452
453 return mpu_reg_index;
454 }
455
456 /* ARM Core MPU Driver API Implementation for NXP MPU */
457
458 /**
459 * @brief enable the MPU
460 */
arm_core_mpu_enable(void)461 void arm_core_mpu_enable(void)
462 {
463 /* Enable MPU */
464 SYSMPU->CESR |= SYSMPU_CESR_VLD_MASK;
465
466 /* Make sure that all the registers are set before proceeding */
467 barrier_dsync_fence_full();
468 barrier_isync_fence_full();
469 }
470
471 /**
472 * @brief disable the MPU
473 */
arm_core_mpu_disable(void)474 void arm_core_mpu_disable(void)
475 {
476 /* Force any outstanding transfers to complete before disabling MPU */
477 barrier_dmem_fence_full();
478
479 /* Disable MPU */
480 SYSMPU->CESR &= ~SYSMPU_CESR_VLD_MASK;
481 /* Clear MPU error status */
482 SYSMPU->CESR |= SYSMPU_CESR_SPERR_MASK;
483 }
484
485 #if defined(CONFIG_USERSPACE)
486
mpu_region_get_base(uint32_t r_index)487 static inline uint32_t mpu_region_get_base(uint32_t r_index)
488 {
489 return SYSMPU->WORD[r_index][0];
490 }
491
mpu_region_get_size(uint32_t r_index)492 static inline uint32_t mpu_region_get_size(uint32_t r_index)
493 {
494 /* <END> + 1 - <BASE> */
495 return (SYSMPU->WORD[r_index][1] + 1) - SYSMPU->WORD[r_index][0];
496 }
497
498 /**
499 * This internal function checks if region is enabled or not.
500 *
501 * Note:
502 * The caller must provide a valid region number.
503 */
is_enabled_region(uint32_t r_index)504 static inline int is_enabled_region(uint32_t r_index)
505 {
506 return SYSMPU->WORD[r_index][3] & SYSMPU_WORD_VLD_MASK;
507 }
508
509 /**
510 * This internal function checks if the given buffer is in the region.
511 *
512 * Note:
513 * The caller must provide a valid region number.
514 */
is_in_region(uint32_t r_index,uint32_t start,uint32_t size)515 static inline int is_in_region(uint32_t r_index, uint32_t start, uint32_t size)
516 {
517 uint32_t r_addr_start;
518 uint32_t r_addr_end;
519 uint32_t end;
520
521 r_addr_start = SYSMPU->WORD[r_index][0];
522 r_addr_end = SYSMPU->WORD[r_index][1];
523
524 size = size == 0U ? 0U : size - 1U;
525 if (u32_add_overflow(start, size, &end)) {
526 return 0;
527 }
528
529 if ((start >= r_addr_start) && (end <= r_addr_end)) {
530 return 1;
531 }
532
533 return 0;
534 }
535
536 /**
537 * @brief update configuration of an active memory partition
538 */
arm_core_mpu_mem_partition_config_update(struct z_arm_mpu_partition * partition,k_mem_partition_attr_t * new_attr)539 void arm_core_mpu_mem_partition_config_update(
540 struct z_arm_mpu_partition *partition,
541 k_mem_partition_attr_t *new_attr)
542 {
543 /* Find the partition. ASSERT if not found. */
544 uint8_t i;
545 uint8_t reg_index = get_num_regions();
546
547 for (i = static_regions_num; i < get_num_regions(); i++) {
548 if (!is_enabled_region(i)) {
549 continue;
550 }
551
552 uint32_t base = mpu_region_get_base(i);
553
554 if (base != partition->start) {
555 continue;
556 }
557
558 uint32_t size = mpu_region_get_size(i);
559
560 if (size != partition->size) {
561 continue;
562 }
563
564 /* Region found */
565 reg_index = i;
566 break;
567 }
568 __ASSERT(reg_index != get_num_regions(),
569 "Memory domain partition not found\n");
570
571 /* Modify the permissions */
572 partition->attr = *new_attr;
573 mpu_configure_region(reg_index, partition);
574 }
575
576 /**
577 * @brief get the maximum number of available (free) MPU region indices
578 * for configuring dynamic MPU partitions
579 */
arm_core_mpu_get_max_available_dyn_regions(void)580 int arm_core_mpu_get_max_available_dyn_regions(void)
581 {
582 return get_num_regions() - static_regions_num;
583 }
584
585 /**
586 * This internal function checks if the region is user accessible or not
587 *
588 * Note:
589 * The caller must provide a valid region number.
590 */
is_user_accessible_region(uint32_t r_index,int write)591 static inline int is_user_accessible_region(uint32_t r_index, int write)
592 {
593 uint32_t r_ap = SYSMPU->WORD[r_index][2];
594
595 if (write != 0) {
596 return (r_ap & MPU_REGION_WRITE) == MPU_REGION_WRITE;
597 }
598
599 return (r_ap & MPU_REGION_READ) == MPU_REGION_READ;
600 }
601
602 /**
603 * @brief validate the given buffer is user accessible or not
604 */
arm_core_mpu_buffer_validate(const void * addr,size_t size,int write)605 int arm_core_mpu_buffer_validate(const void *addr, size_t size, int write)
606 {
607 uint8_t r_index;
608
609 /* Iterate through all MPU regions */
610 for (r_index = 0U; r_index < get_num_regions(); r_index++) {
611 if (!is_enabled_region(r_index) ||
612 !is_in_region(r_index, (uint32_t)addr, size)) {
613 continue;
614 }
615
616 /* For NXP MPU, priority is given to granting permission over
617 * denying access for overlapping region.
618 * So we can stop the iteration immediately once we find the
619 * matched region that grants permission.
620 */
621 if (is_user_accessible_region(r_index, write)) {
622 return 0;
623 }
624 }
625
626 return -EPERM;
627 }
628
629 #endif /* CONFIG_USERSPACE */
630
631 /**
632 * @brief configure fixed (static) MPU regions.
633 */
arm_core_mpu_configure_static_mpu_regions(const struct z_arm_mpu_partition static_regions[],const uint8_t regions_num,const uint32_t background_area_start,const uint32_t background_area_end)634 void arm_core_mpu_configure_static_mpu_regions(
635 const struct z_arm_mpu_partition static_regions[],
636 const uint8_t regions_num, const uint32_t background_area_start,
637 const uint32_t background_area_end)
638 {
639 if (mpu_configure_static_mpu_regions(static_regions, regions_num,
640 background_area_start,
641 background_area_end) == -EINVAL) {
642
643 __ASSERT(0, "Configuring %u static MPU regions failed\n",
644 regions_num);
645 }
646 }
647
648 /**
649 * @brief configure dynamic MPU regions.
650 */
arm_core_mpu_configure_dynamic_mpu_regions(const struct z_arm_mpu_partition dynamic_regions[],uint8_t regions_num)651 void arm_core_mpu_configure_dynamic_mpu_regions(
652 const struct z_arm_mpu_partition dynamic_regions[], uint8_t regions_num)
653 {
654 if (mpu_configure_dynamic_mpu_regions(dynamic_regions,
655 regions_num) == -EINVAL) {
656
657 __ASSERT(0, "Configuring %u dynamic MPU regions failed\n",
658 regions_num);
659 }
660 }
661
662 /* NXP MPU Driver Initial Setup */
663
664 /*
665 * @brief MPU default configuration
666 *
667 * This function provides the default configuration mechanism for the Memory
668 * Protection Unit (MPU).
669 */
z_arm_mpu_init(void)670 int z_arm_mpu_init(void)
671 {
672 uint32_t r_index;
673
674 if (mpu_config.num_regions > get_num_regions()) {
675 /* Attempt to configure more MPU regions than
676 * what is supported by hardware. As this operation
677 * may be executed during system (pre-kernel) initialization,
678 * we want to ensure we can detect an attempt to
679 * perform invalid configuration.
680 */
681 __ASSERT(0,
682 "Request to configure: %u regions (supported: %u)\n",
683 mpu_config.num_regions,
684 get_num_regions()
685 );
686 return -1;
687 }
688
689 LOG_DBG("total region count: %d", get_num_regions());
690
691 arm_core_mpu_disable();
692
693 /* Architecture-specific configuration */
694 mpu_init();
695
696 /* Program fixed regions configured at SOC definition. */
697 for (r_index = 0U; r_index < mpu_config.num_regions; r_index++) {
698 region_init(r_index, &mpu_config.mpu_regions[r_index]);
699 }
700
701 /* Update the number of programmed MPU regions. */
702 static_regions_num = mpu_config.num_regions;
703
704 /* DT-defined MPU regions. */
705 if (mpu_configure_regions_from_dt(&static_regions_num) == -EINVAL) {
706 __ASSERT(0, "Failed to allocate MPU regions from DT\n");
707 return -EINVAL;
708 }
709
710 arm_core_mpu_enable();
711
712 return 0;
713 }
714