1 /*
2  * Copyright (c) 2010-2012, 2014-2015 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Architecture-independent private kernel APIs
10  *
11  * This file contains private kernel APIs that are not architecture-specific.
12  */
13 
14 #ifndef ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_
15 #define ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_
16 
17 #include <zephyr/kernel.h>
18 #include <kernel_arch_interface.h>
19 #include <string.h>
20 
21 #ifndef _ASMLANGUAGE
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Initialize per-CPU kernel data */
28 void z_init_cpu(int id);
29 
30 /* Initialize a thread */
31 void z_init_thread_base(struct _thread_base *thread_base, int priority,
32 			uint32_t initial_state, unsigned int options);
33 
34 /* Early boot functions */
35 void z_early_memset(void *dst, int c, size_t n);
36 void z_early_memcpy(void *dst, const void *src, size_t n);
37 
38 void z_bss_zero(void);
39 #ifdef CONFIG_XIP
40 void z_data_copy(void);
41 #else
z_data_copy(void)42 static inline void z_data_copy(void)
43 {
44 	/* Do nothing */
45 }
46 #endif /* CONFIG_XIP */
47 
48 #ifdef CONFIG_LINKER_USE_BOOT_SECTION
49 void z_bss_zero_boot(void);
50 #else
z_bss_zero_boot(void)51 static inline void z_bss_zero_boot(void)
52 {
53 	/* Do nothing */
54 }
55 #endif /* CONFIG_LINKER_USE_BOOT_SECTION */
56 
57 #ifdef CONFIG_LINKER_USE_PINNED_SECTION
58 void z_bss_zero_pinned(void);
59 #else
z_bss_zero_pinned(void)60 static inline void z_bss_zero_pinned(void)
61 {
62 	/* Do nothing */
63 }
64 #endif /* CONFIG_LINKER_USE_PINNED_SECTION */
65 
66 FUNC_NORETURN void z_cstart(void);
67 
68 void z_device_state_init(void);
69 
70 extern FUNC_NORETURN void z_thread_entry(k_thread_entry_t entry,
71 			  void *p1, void *p2, void *p3);
72 
73 extern char *z_setup_new_thread(struct k_thread *new_thread,
74 				k_thread_stack_t *stack, size_t stack_size,
75 				k_thread_entry_t entry,
76 				void *p1, void *p2, void *p3,
77 				int prio, uint32_t options, const char *name);
78 
79 /**
80  * @brief Allocate aligned memory from the current thread's resource pool
81  *
82  * Threads may be assigned a resource pool, which will be used to allocate
83  * memory on behalf of certain kernel and driver APIs. Memory reserved
84  * in this way should be freed with k_free().
85  *
86  * If called from an ISR, the k_malloc() system heap will be used if it exists.
87  *
88  * @param align Required memory alignment
89  * @param size Memory allocation size
90  * @return A pointer to the allocated memory, or NULL if there is insufficient
91  * RAM in the pool or there is no pool to draw memory from
92  */
93 void *z_thread_aligned_alloc(size_t align, size_t size);
94 
95 /**
96  * @brief Allocate some memory from the current thread's resource pool
97  *
98  * Threads may be assigned a resource pool, which will be used to allocate
99  * memory on behalf of certain kernel and driver APIs. Memory reserved
100  * in this way should be freed with k_free().
101  *
102  * If called from an ISR, the k_malloc() system heap will be used if it exists.
103  *
104  * @param size Memory allocation size
105  * @return A pointer to the allocated memory, or NULL if there is insufficient
106  * RAM in the pool or there is no pool to draw memory from
107  */
z_thread_malloc(size_t size)108 static inline void *z_thread_malloc(size_t size)
109 {
110 	return z_thread_aligned_alloc(0, size);
111 }
112 
113 
114 #ifdef CONFIG_USE_SWITCH
115 /* This is a arch function traditionally, but when the switch-based
116  * z_swap() is in use it's a simple inline provided by the kernel.
117  */
118 static ALWAYS_INLINE void
arch_thread_return_value_set(struct k_thread * thread,unsigned int value)119 arch_thread_return_value_set(struct k_thread *thread, unsigned int value)
120 {
121 	thread->swap_retval = value;
122 }
123 #endif
124 
125 static ALWAYS_INLINE void
z_thread_return_value_set_with_data(struct k_thread * thread,unsigned int value,void * data)126 z_thread_return_value_set_with_data(struct k_thread *thread,
127 				   unsigned int value,
128 				   void *data)
129 {
130 	arch_thread_return_value_set(thread, value);
131 	thread->base.swap_data = data;
132 }
133 
134 #ifdef CONFIG_SMP
135 extern void z_smp_init(void);
136 #ifdef CONFIG_SYS_CLOCK_EXISTS
137 extern void smp_timer_init(void);
138 #endif /* CONFIG_SYS_CLOCK_EXISTS */
139 #endif /* CONFIG_SMP */
140 
141 extern void z_early_rand_get(uint8_t *buf, size_t length);
142 
143 #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
144 extern int z_stack_adjust_initialized;
145 #endif /* CONFIG_STACK_POINTER_RANDOM */
146 
147 extern struct k_thread z_main_thread;
148 
149 
150 #ifdef CONFIG_MULTITHREADING
151 extern struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
152 #endif /* CONFIG_MULTITHREADING */
153 K_KERNEL_PINNED_STACK_ARRAY_DECLARE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS,
154 				    CONFIG_ISR_STACK_SIZE);
155 
156 #ifdef CONFIG_GEN_PRIV_STACKS
157 extern uint8_t *z_priv_stack_find(k_thread_stack_t *stack);
158 #endif /* CONFIG_GEN_PRIV_STACKS */
159 
160 /* Calculate stack usage. */
161 int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr);
162 
163 #ifdef CONFIG_USERSPACE
164 bool z_stack_is_user_capable(k_thread_stack_t *stack);
165 
166 /* Memory domain setup hook, called from z_setup_new_thread() */
167 void z_mem_domain_init_thread(struct k_thread *thread);
168 
169 /* Memory domain teardown hook, called from z_thread_abort() */
170 void z_mem_domain_exit_thread(struct k_thread *thread);
171 
172 /* This spinlock:
173  *
174  * - Protects the full set of active k_mem_domain objects and their contents
175  * - Serializes calls to arch_mem_domain_* APIs
176  *
177  * If architecture code needs to access k_mem_domain structures or the
178  * partitions they contain at any other point, this spinlock should be held.
179  * Uniprocessor systems can get away with just locking interrupts but this is
180  * not recommended.
181  */
182 extern struct k_spinlock z_mem_domain_lock;
183 #endif /* CONFIG_USERSPACE */
184 
185 #ifdef CONFIG_GDBSTUB
186 struct gdb_ctx;
187 
188 /* Should be called by the arch layer. This is the gdbstub main loop
189  * and synchronously communicate with gdb on host.
190  */
191 extern int z_gdb_main_loop(struct gdb_ctx *ctx);
192 #endif /* CONFIG_GDBSTUB */
193 
194 #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
195 void z_thread_mark_switched_in(void);
196 void z_thread_mark_switched_out(void);
197 #else
198 
199 /**
200  * @brief Called after a thread has been selected to run
201  */
202 #define z_thread_mark_switched_in()
203 
204 /**
205  * @brief Called before a thread has been selected to run
206  */
207 
208 #define z_thread_mark_switched_out()
209 
210 #endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
211 
212 /* Init hook for page frame management, invoked immediately upon entry of
213  * main thread, before POST_KERNEL tasks
214  */
215 void z_mem_manage_init(void);
216 
217 /**
218  * @brief Finalize page frame management at the end of boot process.
219  */
220 void z_mem_manage_boot_finish(void);
221 
222 
223 void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
224 
225 #ifdef CONFIG_PM
226 
227 /* When the kernel is about to go idle, it calls this function to notify the
228  * power management subsystem, that the kernel is ready to enter the idle state.
229  *
230  * At this point, the kernel has disabled interrupts and computed the maximum
231  * time the system can remain idle. The function passes the time that the system
232  * can remain idle. The SOC interface performs power operations that can be done
233  * in the available time. The power management operations must halt execution of
234  * the CPU.
235  *
236  * This function assumes that a wake up event has already been set up by the
237  * application.
238  *
239  * This function is entered with interrupts disabled. It should re-enable
240  * interrupts if it had entered a power state.
241  *
242  * @return True if the system suspended, otherwise return false
243  */
244 bool pm_system_suspend(int32_t ticks);
245 
246 #endif /* CONFIG_PM */
247 
248 #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
249 /**
250  * Initialize the timing histograms for demand paging.
251  */
252 void z_paging_histogram_init(void);
253 
254 /**
255  * Increment the counter in the timing histogram.
256  *
257  * @param hist The timing histogram to be updated.
258  * @param cycles Time spent in measured operation.
259  */
260 void z_paging_histogram_inc(struct k_mem_paging_histogram_t *hist,
261 			    uint32_t cycles);
262 #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
263 
264 #ifdef CONFIG_OBJ_CORE_STATS_THREAD
265 int z_thread_stats_raw(struct k_obj_core *obj_core, void *stats);
266 int z_thread_stats_query(struct k_obj_core *obj_core, void *stats);
267 int z_thread_stats_reset(struct k_obj_core *obj_core);
268 int z_thread_stats_disable(struct k_obj_core *obj_core);
269 int z_thread_stats_enable(struct k_obj_core *obj_core);
270 #endif /* CONFIG_OBJ_CORE_STATS_THREAD */
271 
272 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
273 int z_cpu_stats_raw(struct k_obj_core *obj_core, void *stats);
274 int z_cpu_stats_query(struct k_obj_core *obj_core, void *stats);
275 
276 int z_kernel_stats_raw(struct k_obj_core *obj_core, void *stats);
277 int z_kernel_stats_query(struct k_obj_core *obj_core, void *stats);
278 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
279 
280 #if defined(CONFIG_THREAD_ABORT_NEED_CLEANUP)
281 /**
282  * Perform cleanup at the end of k_thread_abort().
283  *
284  * This performs additional cleanup steps at the end of k_thread_abort()
285  * where these steps require that the thread is no longer running.
286  * If the target thread is not the current running thread, the cleanup
287  * steps will be performed immediately. However, if the target thread is
288  * the current running thread (e.g. k_thread_abort(_current)), it defers
289  * the cleanup steps to later when the work will be finished in another
290  * context.
291  *
292  * @param thread Pointer to thread to be cleaned up.
293  */
294 void k_thread_abort_cleanup(struct k_thread *thread);
295 
296 /**
297  * Check if thread is the same as the one waiting for cleanup.
298  *
299  * This is used to guard against reusing the same thread object
300  * before the previous cleanup has finished. This will perform
301  * the necessary cleanups before the thread object can be
302  * reused. Should mainly be used during thread creation.
303  *
304  * @param thread Pointer to thread to be checked.
305  */
306 void k_thread_abort_cleanup_check_reuse(struct k_thread *thread);
307 #endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
308 
309 #ifdef __cplusplus
310 }
311 #endif
312 
313 #endif /* _ASMLANGUAGE */
314 
315 #endif /* ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_ */
316