1 /*
2 * Copyright (c) 2014-2015 Wind River Systems, Inc.
3 * Copyright (c) 2018 Synopsys Inc, Inc.
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7 #include <zephyr/init.h>
8 #include <zephyr/drivers/timer/system_timer.h>
9 #include <zephyr/sys_clock.h>
10 #include <zephyr/spinlock.h>
11 #include <zephyr/arch/arc/v2/aux_regs.h>
12 #include <zephyr/irq.h>
13 /*
14 * note: This implementation assumes Timer0 is present. Be sure
15 * to build the ARC CPU with Timer0.
16 *
17 * If secureshield is present and secure firmware is configured,
18 * use secure Timer 0
19 */
20
21 #ifdef CONFIG_ARC_SECURE_FIRMWARE
22
23 #undef _ARC_V2_TMR0_COUNT
24 #undef _ARC_V2_TMR0_CONTROL
25 #undef _ARC_V2_TMR0_LIMIT
26
27 #define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT
28 #define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL
29 #define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT
30 #define IRQ_TIMER0 DT_IRQN(DT_NODELABEL(sectimer0))
31
32 #else
33 #define IRQ_TIMER0 DT_IRQN(DT_NODELABEL(timer0))
34 #endif
35
36 #define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */
37 #define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */
38 #define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */
39 #define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */
40
41 /* Minimum cycles in the future to try to program. */
42 #define MIN_DELAY 1024
43 /* arc timer has 32 bit, here use 31 bit to avoid the possible
44 * overflow,e.g, 0xffffffff + any value will cause overflow
45 */
46 #define COUNTER_MAX 0x7fffffff
47 #define TIMER_STOPPED 0x0
48 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
49 / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
50
51 #define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1)
52 #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
53
54 #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL))
55
56 #define SMP_TIMER_DRIVER (CONFIG_SMP && CONFIG_MP_MAX_NUM_CPUS > 1)
57
58 #if defined(CONFIG_TEST)
59 const int32_t z_sys_timer_irq_for_test = IRQ_TIMER0;
60 #endif
61 static struct k_spinlock lock;
62
63
64 #if SMP_TIMER_DRIVER
65 volatile static uint64_t last_time;
66 volatile static uint64_t start_time;
67
68 #else
69 static uint32_t last_load;
70
71
72 /*
73 * This local variable holds the amount of timer cycles elapsed
74 * and it is updated in timer_int_handler and sys_clock_set_timeout().
75 *
76 * Note:
77 * At an arbitrary point in time the "current" value of the
78 * HW timer is calculated as:
79 *
80 * t = cycle_counter + elapsed();
81 */
82 static uint32_t cycle_count;
83
84 /*
85 * This local variable holds the amount of elapsed HW cycles
86 * that have been announced to the kernel.
87 */
88 static uint32_t announced_cycles;
89
90
91 /*
92 * This local variable holds the amount of elapsed HW cycles due to
93 * timer wraps ('overflows') and is used in the calculation
94 * in elapsed() function, as well as in the updates to cycle_count.
95 *
96 * Note:
97 * Each time cycle_count is updated with the value from overflow_cycles,
98 * the overflow_cycles must be reset to zero.
99 */
100 static volatile uint32_t overflow_cycles;
101 #endif
102
103 /**
104 * @brief Get contents of Timer0 count register
105 *
106 * @return Current Timer0 count
107 */
timer0_count_register_get(void)108 static ALWAYS_INLINE uint32_t timer0_count_register_get(void)
109 {
110 return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT);
111 }
112
113 /**
114 * @brief Set Timer0 count register to the specified value
115 */
timer0_count_register_set(uint32_t value)116 static ALWAYS_INLINE void timer0_count_register_set(uint32_t value)
117 {
118 z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value);
119 }
120
121 /**
122 * @brief Get contents of Timer0 control register
123 *
124 * @return Contents of Timer0 control register.
125 */
timer0_control_register_get(void)126 static ALWAYS_INLINE uint32_t timer0_control_register_get(void)
127 {
128 return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL);
129 }
130
131 /**
132 * @brief Set Timer0 control register to the specified value
133 */
timer0_control_register_set(uint32_t value)134 static ALWAYS_INLINE void timer0_control_register_set(uint32_t value)
135 {
136 z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value);
137 }
138
139 /**
140 * @brief Get contents of Timer0 limit register
141 *
142 * @return Contents of Timer0 limit register.
143 */
timer0_limit_register_get(void)144 static ALWAYS_INLINE uint32_t timer0_limit_register_get(void)
145 {
146 return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT);
147 }
148
149 /**
150 * @brief Set Timer0 limit register to the specified value
151 */
timer0_limit_register_set(uint32_t count)152 static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count)
153 {
154 z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count);
155 }
156
157 #if !SMP_TIMER_DRIVER
158 /* This internal function calculates the amount of HW cycles that have
159 * elapsed since the last time the absolute HW cycles counter has been
160 * updated. 'cycle_count' may be updated either by the ISR, or
161 * in sys_clock_set_timeout().
162 *
163 * Additionally, the function updates the 'overflow_cycles' counter, that
164 * holds the amount of elapsed HW cycles due to (possibly) multiple
165 * timer wraps (overflows).
166 *
167 * Prerequisites:
168 * - reprogramming of LIMIT must be clearing the COUNT
169 * - ISR must be clearing the 'overflow_cycles' counter.
170 * - no more than one counter-wrap has occurred between
171 * - the timer reset or the last time the function was called
172 * - and until the current call of the function is completed.
173 * - the function is invoked with interrupts disabled.
174 */
elapsed(void)175 static uint32_t elapsed(void)
176 {
177 uint32_t val, ctrl;
178
179 do {
180 val = timer0_count_register_get();
181 ctrl = timer0_control_register_get();
182 } while (timer0_count_register_get() < val);
183
184 if (ctrl & _ARC_V2_TMR_CTRL_IP) {
185 overflow_cycles += last_load;
186 /* clear the IP bit of the control register */
187 timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
188 _ARC_V2_TMR_CTRL_IE);
189 /* use sw triggered irq to remember the timer irq request
190 * which may be cleared by the above operation. when elapsed ()
191 * is called in timer_int_handler, no need to do this.
192 */
193 if (!z_arc_v2_irq_unit_is_in_isr() ||
194 z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) != IRQ_TIMER0) {
195 z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT,
196 IRQ_TIMER0);
197 }
198 }
199
200 return val + overflow_cycles;
201 }
202 #endif
203
204 /**
205 * @brief System clock periodic tick handler
206 *
207 * This routine handles the system clock tick interrupt. It always
208 * announces one tick when TICKLESS is not enabled, or multiple ticks
209 * when TICKLESS is enabled.
210 */
timer_int_handler(const void * unused)211 static void timer_int_handler(const void *unused)
212 {
213 ARG_UNUSED(unused);
214 uint32_t dticks;
215
216 #if defined(CONFIG_SMP) && CONFIG_MP_MAX_NUM_CPUS > 1
217 uint64_t curr_time;
218 k_spinlock_key_t key;
219
220 /* clear the IP bit of the control register */
221 timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
222 _ARC_V2_TMR_CTRL_IE);
223 key = k_spin_lock(&lock);
224 /* gfrc is the wall clock */
225 curr_time = z_arc_connect_gfrc_read();
226
227 dticks = (curr_time - last_time) / CYC_PER_TICK;
228 /* last_time should be aligned to ticks */
229 last_time += dticks * CYC_PER_TICK;
230
231 k_spin_unlock(&lock, key);
232
233 sys_clock_announce(dticks);
234 #else
235 /* timer_int_handler may be triggered by timer irq or
236 * software helper irq
237 */
238
239 /* irq with higher priority may call sys_clock_set_timeout
240 * so need a lock here
241 */
242 uint32_t key;
243
244 key = arch_irq_lock();
245
246 elapsed();
247 cycle_count += overflow_cycles;
248 overflow_cycles = 0;
249
250 arch_irq_unlock(key);
251
252 dticks = (cycle_count - announced_cycles) / CYC_PER_TICK;
253 announced_cycles += dticks * CYC_PER_TICK;
254 sys_clock_announce(TICKLESS ? dticks : 1);
255 #endif
256
257 }
258
sys_clock_set_timeout(int32_t ticks,bool idle)259 void sys_clock_set_timeout(int32_t ticks, bool idle)
260 {
261 /* If the kernel allows us to miss tick announcements in idle,
262 * then shut off the counter. (Note: we can assume if idle==true
263 * that interrupts are already disabled)
264 */
265 #if SMP_TIMER_DRIVER
266 /* as 64-bits GFRC is used as wall clock, it's ok to ignore idle
267 * systick will not be missed.
268 * However for single core using 32-bits arc timer, idle cannot
269 * be ignored, as 32-bits timer will overflow in a not-long time.
270 */
271 if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && ticks == K_TICKS_FOREVER) {
272 timer0_control_register_set(0);
273 timer0_count_register_set(0);
274 timer0_limit_register_set(0);
275 return;
276 }
277
278 #if defined(CONFIG_TICKLESS_KERNEL)
279 uint32_t delay;
280 uint32_t key;
281
282 ticks = MIN(MAX_TICKS, ticks);
283
284 /* Desired delay in the future
285 * use MIN_DEALY here can trigger the timer
286 * irq more soon, no need to go to CYC_PER_TICK
287 * later.
288 */
289 delay = MAX(ticks * CYC_PER_TICK, MIN_DELAY);
290
291 key = arch_irq_lock();
292
293 timer0_limit_register_set(delay - 1);
294 timer0_count_register_set(0);
295 timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
296 _ARC_V2_TMR_CTRL_IE);
297
298 arch_irq_unlock(key);
299 #endif
300 #else
301 if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && idle && ticks == K_TICKS_FOREVER) {
302 timer0_control_register_set(0);
303 timer0_count_register_set(0);
304 timer0_limit_register_set(0);
305 last_load = TIMER_STOPPED;
306 return;
307 }
308
309 #if defined(CONFIG_TICKLESS_KERNEL)
310 uint32_t delay;
311 uint32_t unannounced;
312
313 ticks = MIN(MAX_TICKS, (uint32_t)(MAX((int32_t)(ticks - 1), 0)));
314
315 k_spinlock_key_t key = k_spin_lock(&lock);
316
317
318 cycle_count += elapsed();
319 /* clear counter early to avoid cycle loss as few as possible,
320 * between cycle_count and clearing 0, few cycles are possible
321 * to loss
322 */
323 timer0_count_register_set(0);
324 overflow_cycles = 0U;
325
326
327 /* normal case */
328 unannounced = cycle_count - announced_cycles;
329
330 if ((int32_t)unannounced < 0) {
331 /* We haven't announced for more than half the 32-bit
332 * wrap duration, because new timeouts keep being set
333 * before the existing one fires. Force an announce
334 * to avoid loss of a wrap event, making sure the
335 * delay is at least the minimum delay possible.
336 */
337 last_load = MIN_DELAY;
338 } else {
339 /* Desired delay in the future */
340 delay = ticks * CYC_PER_TICK;
341
342 /* Round delay up to next tick boundary */
343 delay += unannounced;
344 delay = DIV_ROUND_UP(delay, CYC_PER_TICK) * CYC_PER_TICK;
345
346 delay -= unannounced;
347 delay = MAX(delay, MIN_DELAY);
348
349 last_load = MIN(delay, MAX_CYCLES);
350 }
351
352 timer0_limit_register_set(last_load - 1);
353 timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
354
355 k_spin_unlock(&lock, key);
356 #endif
357 #endif
358 }
359
sys_clock_elapsed(void)360 uint32_t sys_clock_elapsed(void)
361 {
362 if (!TICKLESS) {
363 return 0;
364 }
365
366 uint32_t cyc;
367 k_spinlock_key_t key = k_spin_lock(&lock);
368
369 #if SMP_TIMER_DRIVER
370 cyc = (z_arc_connect_gfrc_read() - last_time);
371 #else
372 cyc = elapsed() + cycle_count - announced_cycles;
373 #endif
374
375 k_spin_unlock(&lock, key);
376
377 return cyc / CYC_PER_TICK;
378 }
379
sys_clock_cycle_get_32(void)380 uint32_t sys_clock_cycle_get_32(void)
381 {
382 #if SMP_TIMER_DRIVER
383 return z_arc_connect_gfrc_read() - start_time;
384 #else
385 k_spinlock_key_t key = k_spin_lock(&lock);
386 uint32_t ret = elapsed() + cycle_count;
387
388 k_spin_unlock(&lock, key);
389 return ret;
390 #endif
391 }
392
393 #if SMP_TIMER_DRIVER
smp_timer_init(void)394 void smp_timer_init(void)
395 {
396 /* set the initial status of timer0 of each slave core
397 */
398 timer0_control_register_set(0);
399 timer0_count_register_set(0);
400 timer0_limit_register_set(0);
401
402 z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0);
403 irq_enable(IRQ_TIMER0);
404 }
405 #endif
406
407 /**
408 *
409 * @brief Initialize and enable the system clock
410 *
411 * This routine is used to program the ARCv2 timer to deliver interrupts at the
412 * rate specified via the CYC_PER_TICK.
413 *
414 * @return 0
415 */
sys_clock_driver_init(void)416 static int sys_clock_driver_init(void)
417 {
418
419 /* ensure that the timer will not generate interrupts */
420 timer0_control_register_set(0);
421
422 #if SMP_TIMER_DRIVER
423 IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY,
424 timer_int_handler, NULL, 0);
425
426 timer0_limit_register_set(CYC_PER_TICK - 1);
427 last_time = z_arc_connect_gfrc_read();
428 start_time = last_time;
429 #else
430 last_load = CYC_PER_TICK;
431 overflow_cycles = 0;
432 announced_cycles = 0;
433
434 IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY,
435 timer_int_handler, NULL, 0);
436
437 timer0_limit_register_set(last_load - 1);
438 #endif
439 timer0_count_register_set(0);
440 timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
441
442 /* everything has been configured: safe to enable the interrupt */
443
444 irq_enable(IRQ_TIMER0);
445
446 return 0;
447 }
448
449 SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
450 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
451