1 /*
2 * Copyright (c) 2021 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * @brief Driver to utilize TLB on Intel Audio DSP
10 *
11 * TLB (Translation Lookup Buffer) table is used to map between
12 * physical and virtual memory. This is global to all cores
13 * on the DSP, as changes to the TLB table are visible to
14 * all cores.
15 *
16 * Note that all passed in addresses should be in cached range
17 * (aka cached addresses). Due to the need to calculate TLB
18 * indexes, virtual addresses will be converted internally to
19 * cached one via sys_cache_cached_ptr_get(). However, physical addresses
20 * are untouched.
21 */
22
23 #define DT_DRV_COMPAT intel_adsp_tlb
24
25 #include <zephyr/device.h>
26 #include <zephyr/kernel.h>
27 #include <zephyr/spinlock.h>
28 #include <zephyr/sys/__assert.h>
29 #include <zephyr/sys/check.h>
30 #include <zephyr/kernel/mm.h>
31 #include <zephyr/sys/util.h>
32 #include <zephyr/debug/sparse.h>
33 #include <zephyr/cache.h>
34
35 #include <adsp_memory.h>
36
37 #include <zephyr/drivers/mm/system_mm.h>
38 #include "mm_drv_common.h"
39
40 DEVICE_MMIO_TOPLEVEL_STATIC(tlb_regs, DT_DRV_INST(0));
41
42 #define TLB_BASE \
43 ((mm_reg_t)DEVICE_MMIO_TOPLEVEL_GET(tlb_regs))
44
45 /*
46 * Number of significant bits in the page index (defines the size of
47 * the table)
48 */
49 #define TLB_PADDR_SIZE DT_INST_PROP(0, paddr_size)
50 #define TLB_PADDR_MASK ((1 << TLB_PADDR_SIZE) - 1)
51 #define TLB_ENABLE_BIT BIT(TLB_PADDR_SIZE)
52
53 static struct k_spinlock tlb_lock;
54
55 /**
56 * Calculate the index to the TLB table.
57 *
58 * @param vaddr Page-aligned virtual address.
59 * @return Index to the TLB table.
60 */
get_tlb_entry_idx(uintptr_t vaddr)61 static uint32_t get_tlb_entry_idx(uintptr_t vaddr)
62 {
63 return (POINTER_TO_UINT(vaddr) - CONFIG_KERNEL_VM_BASE) /
64 CONFIG_MM_DRV_PAGE_SIZE;
65 }
66
sys_mm_drv_map_page(void * virt,uintptr_t phys,uint32_t flags)67 int sys_mm_drv_map_page(void *virt, uintptr_t phys, uint32_t flags)
68 {
69 k_spinlock_key_t key;
70 uint32_t entry_idx;
71 uint16_t entry;
72 uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE);
73 int ret = 0;
74
75 /*
76 * Cached addresses for both physical and virtual.
77 *
78 * As the main memory is in cached address ranges,
79 * the cached physical address is needed to perform
80 * bound check.
81 */
82 uintptr_t pa = POINTER_TO_UINT(sys_cache_cached_ptr_get(UINT_TO_POINTER(phys)));
83 uintptr_t va = POINTER_TO_UINT(sys_cache_cached_ptr_get(virt));
84
85 ARG_UNUSED(flags);
86
87 /* Make sure inputs are page-aligned */
88 CHECKIF(!sys_mm_drv_is_addr_aligned(pa) ||
89 !sys_mm_drv_is_addr_aligned(va)) {
90 ret = -EINVAL;
91 goto out;
92 }
93
94 /* Check bounds of physical address space */
95 CHECKIF((pa < L2_SRAM_BASE) ||
96 (pa >= (L2_SRAM_BASE + L2_SRAM_SIZE))) {
97 ret = -EINVAL;
98 goto out;
99 }
100
101 /* Check bounds of virtual address space */
102 CHECKIF((va < CONFIG_KERNEL_VM_BASE) ||
103 (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) {
104 ret = -EINVAL;
105 goto out;
106 }
107
108 key = k_spin_lock(&tlb_lock);
109
110 entry_idx = get_tlb_entry_idx(va);
111
112 /*
113 * The address part of the TLB entry takes the lowest
114 * TLB_PADDR_SIZE bits of the physical page number,
115 * and discards the highest bits. This is due to the
116 * architecture design where the same physical page
117 * can be accessed via two addresses. One address goes
118 * through the cache, and the other one accesses
119 * memory directly (without cache). The difference
120 * between these two addresses are in the higher bits,
121 * and the lower bits are the same. And this is why
122 * TLB only cares about the lower part of the physical
123 * address.
124 */
125 entry = ((pa / CONFIG_MM_DRV_PAGE_SIZE) & TLB_PADDR_MASK);
126
127 /* Enable the translation in the TLB entry */
128 entry |= TLB_ENABLE_BIT;
129
130 tlb_entries[entry_idx] = entry;
131
132 /*
133 * Invalid the cache of the newly mapped virtual page to
134 * avoid stale data.
135 */
136 sys_cache_data_invd_range(virt, CONFIG_MM_DRV_PAGE_SIZE);
137
138 k_spin_unlock(&tlb_lock, key);
139
140 out:
141 return ret;
142 }
143
sys_mm_drv_map_region(void * virt,uintptr_t phys,size_t size,uint32_t flags)144 int sys_mm_drv_map_region(void *virt, uintptr_t phys,
145 size_t size, uint32_t flags)
146 {
147 void *va = (__sparse_force void *)sys_cache_cached_ptr_get(virt);
148
149 return sys_mm_drv_simple_map_region(va, phys, size, flags);
150 }
151
sys_mm_drv_map_array(void * virt,uintptr_t * phys,size_t cnt,uint32_t flags)152 int sys_mm_drv_map_array(void *virt, uintptr_t *phys,
153 size_t cnt, uint32_t flags)
154 {
155 void *va = (__sparse_force void *)sys_cache_cached_ptr_get(virt);
156
157 return sys_mm_drv_simple_map_array(va, phys, cnt, flags);
158 }
159
sys_mm_drv_unmap_page(void * virt)160 int sys_mm_drv_unmap_page(void *virt)
161 {
162 k_spinlock_key_t key;
163 uint32_t entry_idx;
164 uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE);
165 int ret = 0;
166
167 /* Use cached virtual address */
168 uintptr_t va = POINTER_TO_UINT(sys_cache_cached_ptr_get(virt));
169
170 /* Check bounds of virtual address space */
171 CHECKIF((va < CONFIG_KERNEL_VM_BASE) ||
172 (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) {
173 ret = -EINVAL;
174 goto out;
175 }
176
177 /* Make sure inputs are page-aligned */
178 CHECKIF(!sys_mm_drv_is_addr_aligned(va)) {
179 ret = -EINVAL;
180 goto out;
181 }
182
183 key = k_spin_lock(&tlb_lock);
184
185 /*
186 * Flush the cache to make sure the backing physical page
187 * has the latest data.
188 */
189 sys_cache_data_flush_range(virt, CONFIG_MM_DRV_PAGE_SIZE);
190
191 entry_idx = get_tlb_entry_idx(va);
192
193 /* Simply clear the enable bit */
194 tlb_entries[entry_idx] &= ~TLB_ENABLE_BIT;
195
196 k_spin_unlock(&tlb_lock, key);
197
198 out:
199 return ret;
200 }
201
sys_mm_drv_unmap_region(void * virt,size_t size)202 int sys_mm_drv_unmap_region(void *virt, size_t size)
203 {
204 void *va = (__sparse_force void *)sys_cache_cached_ptr_get(virt);
205
206 return sys_mm_drv_simple_unmap_region(va, size);
207 }
208
sys_mm_drv_page_phys_get(void * virt,uintptr_t * phys)209 int sys_mm_drv_page_phys_get(void *virt, uintptr_t *phys)
210 {
211 uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE);
212 uintptr_t ent;
213 int ret = 0;
214
215 /* Use cached address */
216 uintptr_t va = POINTER_TO_UINT(sys_cache_cached_ptr_get(virt));
217
218 CHECKIF(!sys_mm_drv_is_addr_aligned(va)) {
219 ret = -EINVAL;
220 goto out;
221 }
222
223 /* Check bounds of virtual address space */
224 CHECKIF((va < CONFIG_KERNEL_VM_BASE) ||
225 (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) {
226 ret = -EINVAL;
227 goto out;
228 }
229
230 ent = tlb_entries[get_tlb_entry_idx(va)];
231
232 if ((ent & TLB_ENABLE_BIT) != TLB_ENABLE_BIT) {
233 ret = -EFAULT;
234 } else {
235 if (phys != NULL) {
236 *phys = (ent & TLB_PADDR_MASK) * CONFIG_MM_DRV_PAGE_SIZE + L2_SRAM_BASE;
237 }
238
239 ret = 0;
240 }
241
242 out:
243 return ret;
244 }
245
sys_mm_drv_page_flag_get(void * virt,uint32_t * flags)246 int sys_mm_drv_page_flag_get(void *virt, uint32_t *flags)
247 {
248 ARG_UNUSED(virt);
249
250 /*
251 * There are no caching mode, or R/W, or eXecution (etc.) bits.
252 * So just return 0.
253 */
254
255 *flags = 0U;
256
257 return 0;
258 }
259
sys_mm_drv_update_page_flags(void * virt,uint32_t flags)260 int sys_mm_drv_update_page_flags(void *virt, uint32_t flags)
261 {
262 ARG_UNUSED(virt);
263 ARG_UNUSED(flags);
264
265 /*
266 * There are no caching mode, or R/W, or eXecution (etc.) bits.
267 * So just return 0.
268 */
269
270 return 0;
271 }
272
sys_mm_drv_update_region_flags(void * virt,size_t size,uint32_t flags)273 int sys_mm_drv_update_region_flags(void *virt, size_t size,
274 uint32_t flags)
275 {
276 void *va = (__sparse_force void *)sys_cache_cached_ptr_get(virt);
277
278 return sys_mm_drv_simple_update_region_flags(va, size, flags);
279 }
280
281
sys_mm_drv_remap_region(void * virt_old,size_t size,void * virt_new)282 int sys_mm_drv_remap_region(void *virt_old, size_t size,
283 void *virt_new)
284 {
285 void *va_new = (__sparse_force void *)sys_cache_cached_ptr_get(virt_new);
286 void *va_old = (__sparse_force void *)sys_cache_cached_ptr_get(virt_old);
287
288 return sys_mm_drv_simple_remap_region(va_old, size, va_new);
289 }
290
sys_mm_drv_move_region(void * virt_old,size_t size,void * virt_new,uintptr_t phys_new)291 int sys_mm_drv_move_region(void *virt_old, size_t size, void *virt_new,
292 uintptr_t phys_new)
293 {
294 int ret;
295
296 void *va_new = (__sparse_force void *)sys_cache_cached_ptr_get(virt_new);
297 void *va_old = (__sparse_force void *)sys_cache_cached_ptr_get(virt_old);
298
299 ret = sys_mm_drv_simple_move_region(va_old, size, va_new, phys_new);
300
301 /*
302 * Since memcpy() is done in virtual space, need to
303 * flush the cache to make sure the backing physical
304 * pages have the new data.
305 */
306 sys_cache_data_flush_range(va_new, size);
307
308 return ret;
309 }
310
sys_mm_drv_move_array(void * virt_old,size_t size,void * virt_new,uintptr_t * phys_new,size_t phys_cnt)311 int sys_mm_drv_move_array(void *virt_old, size_t size, void *virt_new,
312 uintptr_t *phys_new, size_t phys_cnt)
313 {
314 int ret;
315
316 void *va_new = (__sparse_force void *)sys_cache_cached_ptr_get(virt_new);
317 void *va_old = (__sparse_force void *)sys_cache_cached_ptr_get(virt_old);
318
319 ret = sys_mm_drv_simple_move_array(va_old, size, va_new,
320 phys_new, phys_cnt);
321
322 /*
323 * Since memcpy() is done in virtual space, need to
324 * flush the cache to make sure the backing physical
325 * pages have the new data.
326 */
327 sys_cache_data_flush_range(va_new, size);
328
329 return ret;
330 }
331