1 /*
2 * Copyright (c) 2017, 2023 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <string.h>
8
9 #include <zephyr/kernel.h>
10 #include <kernel_internal.h>
11
12 #include <xtensa_asm2_context.h>
13 #include <xtensa_internal.h>
14
15 #include <zephyr/logging/log.h>
16 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
17
18 #ifdef CONFIG_USERSPACE
19
20 #ifdef CONFIG_THREAD_LOCAL_STORAGE
21 /*
22 * Per-thread (TLS) variable indicating whether execution is in user mode.
23 */
24 __thread uint32_t is_user_mode;
25 #endif
26
27 #endif /* CONFIG_USERSPACE */
28
29 /**
30 * Initializes a stack area such that it can be "restored" later and
31 * begin running with the specified function and three arguments. The
32 * entry function takes three arguments to match the signature of
33 * Zephyr's k_thread_entry_t. Thread will start with EXCM clear and
34 * INTLEVEL set to zero (i.e. it's a user thread, we don't start with
35 * anything masked, so don't assume that!).
36 */
init_stack(struct k_thread * thread,int * stack_top,void (* entry)(void *,void *,void *),void * arg1,void * arg2,void * arg3)37 static void *init_stack(struct k_thread *thread, int *stack_top,
38 void (*entry)(void *, void *, void *),
39 void *arg1, void *arg2, void *arg3)
40 {
41 void *ret;
42 _xtensa_irq_stack_frame_a11_t *frame;
43 #ifdef CONFIG_USERSPACE
44 struct xtensa_thread_stack_header *header =
45 (struct xtensa_thread_stack_header *)thread->stack_obj;
46
47 thread->arch.psp = header->privilege_stack +
48 sizeof(header->privilege_stack);
49 #endif
50
51 /* Not-a-cpu ID Ensures that the first time this is run, the
52 * stack will be invalidated. That covers the edge case of
53 * restarting a thread on a stack that had previously been run
54 * on one CPU, but then initialized on this one, and
55 * potentially run THERE and not HERE.
56 */
57 thread->arch.last_cpu = -1;
58
59 /* We cheat and shave 16 bytes off, the top four words are the
60 * A0-A3 spill area for the caller of the entry function,
61 * which doesn't exist. It will never be touched, so we
62 * arrange to enter the function with a CALLINC of 1 and a
63 * stack pointer 16 bytes above the top, so its ENTRY at the
64 * start will decrement the stack pointer by 16.
65 */
66 const int bsasz = sizeof(*frame) - 16;
67
68 frame = (void *)(((char *) stack_top) - bsasz);
69
70 (void)memset(frame, 0, bsasz);
71
72 frame->bsa.ps = PS_WOE | PS_UM | PS_CALLINC(1);
73 #ifdef CONFIG_USERSPACE
74 if ((thread->base.user_options & K_USER) == K_USER) {
75 frame->bsa.pc = (uintptr_t)arch_user_mode_enter;
76 } else {
77 frame->bsa.pc = (uintptr_t)z_thread_entry;
78 }
79 #else
80 frame->bsa.pc = (uintptr_t)z_thread_entry;
81 #endif
82
83 #if XCHAL_HAVE_THREADPTR
84 #ifdef CONFIG_THREAD_LOCAL_STORAGE
85 frame->bsa.threadptr = thread->tls;
86 #elif CONFIG_USERSPACE
87 frame->bsa.threadptr = (uintptr_t)((thread->base.user_options & K_USER) ? thread : NULL);
88 #endif
89 #endif
90
91 /* Arguments to z_thread_entry(). Remember these start at A6,
92 * which will be rotated into A2 by the ENTRY instruction that
93 * begins the C function. And A4-A7 and A8-A11 are optional
94 * quads that live below the BSA!
95 */
96 frame->a7 = (uintptr_t)arg1; /* a7 */
97 frame->a6 = (uintptr_t)entry; /* a6 */
98 frame->a5 = 0; /* a5 */
99 frame->a4 = 0; /* a4 */
100
101 frame->a11 = 0; /* a11 */
102 frame->a10 = 0; /* a10 */
103 frame->a9 = (uintptr_t)arg3; /* a9 */
104 frame->a8 = (uintptr_t)arg2; /* a8 */
105
106 /* Finally push the BSA pointer and return the stack pointer
107 * as the handle
108 */
109 frame->ptr_to_bsa = (void *)&frame->bsa;
110 ret = &frame->ptr_to_bsa;
111
112 return ret;
113 }
114
arch_new_thread(struct k_thread * thread,k_thread_stack_t * stack,char * stack_ptr,k_thread_entry_t entry,void * p1,void * p2,void * p3)115 void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
116 char *stack_ptr, k_thread_entry_t entry,
117 void *p1, void *p2, void *p3)
118 {
119 thread->switch_handle = init_stack(thread, (int *)stack_ptr, entry,
120 p1, p2, p3);
121 #ifdef CONFIG_KERNEL_COHERENCE
122 __ASSERT((((size_t)stack) % XCHAL_DCACHE_LINESIZE) == 0, "");
123 __ASSERT((((size_t)stack_ptr) % XCHAL_DCACHE_LINESIZE) == 0, "");
124 sys_cache_data_flush_and_invd_range(stack, (char *)stack_ptr - (char *)stack);
125 #endif
126 }
127
128 #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
arch_float_disable(struct k_thread * thread)129 int arch_float_disable(struct k_thread *thread)
130 {
131 /* xtensa always has FPU enabled so cannot be disabled */
132 return -ENOTSUP;
133 }
134
arch_float_enable(struct k_thread * thread,unsigned int options)135 int arch_float_enable(struct k_thread *thread, unsigned int options)
136 {
137 /* xtensa always has FPU enabled so nothing to do here */
138 return 0;
139 }
140 #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
141
142 #ifdef CONFIG_USERSPACE
arch_user_mode_enter(k_thread_entry_t user_entry,void * p1,void * p2,void * p3)143 FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
144 void *p1, void *p2, void *p3)
145 {
146 struct k_thread *current = _current;
147 size_t stack_end;
148
149 /* Transition will reset stack pointer to initial, discarding
150 * any old context since this is a one-way operation
151 */
152 stack_end = Z_STACK_PTR_ALIGN(current->stack_info.start +
153 current->stack_info.size -
154 current->stack_info.delta);
155
156 xtensa_userspace_enter(user_entry, p1, p2, p3,
157 stack_end, current->stack_info.start);
158
159 CODE_UNREACHABLE;
160 }
161 #endif /* CONFIG_USERSPACE */
162