1 /* main.c */
2
3 /*
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /*
8 *
9 * Basic example of userspace thread protected memory
10 *
11 * NOTE: The encryption algorithm is unverified and
12 * based on a 1930's era piece of hardware.
13 * DO NOT USE THIS CODE FOR SECURITY
14 *
15 */
16
17 #include <zephyr/sys/__assert.h>
18 #include <zephyr/sys/libc-hooks.h> /* for z_libc_partition */
19
20 #include "main.h"
21 #include "enc.h"
22 /* the following definition name prefix is to avoid a conflict */
23 #define SAMP_BLOCKSIZE 50
24
25 /*
26 * The memory partitions have been named to simplify
27 * the definition of variables. A possible alternative
28 * is using one source file per thread and implementing
29 * a objcopy to rename the data and bss section for the
30 * thread to the partition name.
31 */
32
33 /* prepare the memory partition structures */
34 FOR_EACH(K_APPMEM_PARTITION_DEFINE, (;), user_part, red_part, enc_part, blk_part, ct_part);
35 /* prepare the memory domain structures */
36 struct k_mem_domain pt_domain, enc_domain;
37 /* each variable starts with a name defined in main.h
38 * the names are symbolic for the memory partitions
39 * purpose.
40 */
41 volatile _app_red_b BYTE fBUFIN;
42 volatile _app_red_b BYTE BUFIN[63];
43
44 volatile _app_blk_b BYTE fBUFOUT;
45 volatile _app_blk_b BYTE BUFOUT[63];
46
47 /* declare and set wheel and reflector */
48 /* To use add definition ALTMSG */
49 #ifdef ALTMSG
50 volatile _app_enc_d BYTE W1[26] = START_WHEEL;
51 #else
52 volatile _app_enc_d BYTE W1[26] = START_WHEEL2;
53 #endif
54 volatile _app_enc_d BYTE W2[26] = START_WHEEL;
55 volatile _app_enc_d BYTE W3[26] = START_WHEEL;
56 volatile _app_enc_d BYTE R[26] = REFLECT;
57
58 volatile _app_enc_b int IW1;
59 volatile _app_enc_b int IW2;
60 volatile _app_enc_b int IW3;
61
62 /*
63 * calculated by the enc thread at init and when the wheels
64 * change.
65 */
66 volatile _app_enc_b BYTE W1R[26];
67 volatile _app_enc_b BYTE W2R[26];
68 volatile _app_enc_b BYTE W3R[26];
69
70 /*
71 * sync threads
72 */
73 K_SEM_DEFINE(allforone, 0, 3);
74
75 struct k_thread enc_thread;
76 K_THREAD_STACK_DEFINE(enc_stack, STACKSIZE);
77
78 struct k_thread pt_thread;
79 K_THREAD_STACK_DEFINE(pt_stack, STACKSIZE);
80
81 struct k_thread ct_thread;
82 K_THREAD_STACK_DEFINE(ct_stack, STACKSIZE);
83
84 _app_enc_d char encMSG[] = "ENC!\n";
85 volatile _app_enc_b char enc_pt[50]; /* Copy form shared pt */
86 volatile _app_enc_b char enc_ct[50]; /* Copy to shared ct */
87
88 _app_user_d char ptMSG[] = "PT: message to encrypt\n";
89
90 /* encrypted message when W1 = START_WHEEL */
91 /* to use add definition ALTMSG */
92 #ifdef ALTMSG
93 _app_user_d char ptMSG2[] = "nfttbhfspfmdqzos\n";
94 #else
95 /* encrypted message when W1 = START_WHEEL2 */
96 _app_user_d char ptMSG2[] = "ofttbhfspgmeqzos\n";
97 #endif
98 _app_ct_d char ctMSG[] = "CT!\n";
99
100
101
102
main(void)103 int main(void)
104 {
105 struct k_mem_partition *enc_parts[] = {
106 #if Z_LIBC_PARTITION_EXISTS
107 &z_libc_partition,
108 #endif
109 &enc_part, &red_part, &blk_part
110 };
111 struct k_mem_partition *pt_parts[] = {
112 #if Z_LIBC_PARTITION_EXISTS
113 &z_libc_partition,
114 #endif
115 &user_part, &red_part
116 };
117 k_tid_t tPT, tENC, tCT;
118 int ret;
119
120 fBUFIN = 0; /* clear flags */
121 fBUFOUT = 0;
122 calc_rev_wheel((BYTE *) &W1, (BYTE *)&W1R);
123 calc_rev_wheel((BYTE *) &W2, (BYTE *)&W2R);
124 calc_rev_wheel((BYTE *) &W3, (BYTE *)&W3R);
125 IW1 = 0;
126 IW2 = 0;
127 IW3 = 0;
128
129 k_thread_access_grant(k_current_get(), &allforone);
130
131 /*
132 * create an enc thread init the memory domain and add partitions
133 * then add the thread to the domain.
134 */
135 tENC = k_thread_create(&enc_thread, enc_stack, STACKSIZE,
136 enc, NULL, NULL, NULL,
137 -1, K_USER,
138 K_FOREVER);
139 k_thread_access_grant(tENC, &allforone);
140 /* use K_FOREVER followed by k_thread_start*/
141 printk("ENC Thread Created %p\n", tENC);
142
143 ret = k_mem_domain_init(&enc_domain, ARRAY_SIZE(enc_parts), enc_parts);
144 __ASSERT(ret == 0, "k_mem_domain_init() on enc_domain failed %d", ret);
145 ARG_UNUSED(ret);
146
147 printk("Partitions added to enc_domain\n");
148 k_mem_domain_add_thread(&enc_domain, tENC);
149 printk("enc_domain Created\n");
150
151
152 tPT = k_thread_create(&pt_thread, pt_stack, STACKSIZE,
153 pt, NULL, NULL, NULL,
154 -1, K_USER,
155 K_FOREVER);
156 k_thread_access_grant(tPT, &allforone);
157 printk("PT Thread Created %p\n", tPT);
158
159 ret = k_mem_domain_init(&pt_domain, ARRAY_SIZE(pt_parts), pt_parts);
160 __ASSERT(ret == 0, "k_mem_domain_init() on pt_domain failed %d", ret);
161
162 k_mem_domain_add_thread(&pt_domain, tPT);
163 printk("pt_domain Created\n");
164
165 tCT = k_thread_create(&ct_thread, ct_stack, STACKSIZE,
166 ct, NULL, NULL, NULL,
167 -1, K_USER,
168 K_FOREVER);
169 k_thread_access_grant(tCT, &allforone);
170 printk("CT Thread Created %p\n", tCT);
171 /* Re-using the default memory domain for CT */
172 ret = k_mem_domain_add_partition(&k_mem_domain_default, &ct_part);
173 if (ret != 0) {
174 printk("Failed to add ct_part to mem domain (%d)\n", ret);
175 k_oops();
176 }
177 printk("ct partitions installed\n");
178
179 ret = k_mem_domain_add_partition(&k_mem_domain_default, &blk_part);
180 if (ret != 0) {
181 printk("Failed to add blk_part to mem domain (%d)\n", ret);
182 k_oops();
183 }
184 printk("blk partitions installed\n");
185
186 k_thread_start(&enc_thread);
187 /* need to start all three threads. let enc go first to perform init step */
188
189 printk("ENC thread started\n");
190 k_thread_start(&pt_thread);
191 printk("PT thread started\n");
192
193 k_thread_start(&ct_thread);
194 k_sem_give(&allforone);
195 printk("CT thread started\n");
196 return 0;
197 }
198
199
200
201 /*
202 * The enc thread.
203 * Function: initialize the simulation of the wheels.
204 * Copy memory from pt thread and encrypt to a local buffer
205 * then copy to the ct thread.
206 */
enc(void * p1,void * p2,void * p3)207 void enc(void *p1, void *p2, void *p3)
208 {
209 ARG_UNUSED(p1);
210 ARG_UNUSED(p2);
211 ARG_UNUSED(p3);
212
213 int index, index_out;
214
215 while (1) {
216 k_sem_take(&allforone, K_FOREVER);
217 if (fBUFIN == 1) { /* 1 is process text */
218 printk("ENC Thread Received Data\n");
219 /* copy message form shared mem and clear flag */
220 memcpy((void *)&enc_pt, (void *)BUFIN, SAMP_BLOCKSIZE);
221 printk("ENC PT MSG: %s\n", (char *)&enc_pt);
222 fBUFIN = 0;
223 /* reset wheel: probably better as a flag option */
224 IW1 = 7;
225 IW2 = 2;
226 IW3 = 3;
227 /* encode */
228 memset((void *)&enc_ct, 0, SAMP_BLOCKSIZE);
229 for (index = 0, index_out = 0; index < SAMP_BLOCKSIZE; index++) {
230 if (enc_pt[index] == '\0') {
231 enc_ct[index_out] = '\0';
232 break;
233 }
234 if (enc_pt[index] >= 'a' && enc_pt[index] <= 'z') {
235 enc_ct[index_out] = (BYTE)enig_enc((BYTE) enc_pt[index]);
236 index_out++;
237 }
238 }
239 /* test for CT flag */
240 while (fBUFOUT != 0) {
241 k_sleep(K_MSEC(1));
242 }
243 /* ct thread has cleared the buffer */
244 memcpy((void *)&BUFOUT, (void *)&enc_ct,
245 SAMP_BLOCKSIZE);
246 fBUFOUT = 1;
247
248 }
249 k_sem_give(&allforone);
250 }
251 }
252
253 /*
254 * the pt function pushes data to the enc thread.
255 * It can be extended to receive data from a serial port
256 * and pass the data to enc
257 */
pt(void * p1,void * p2,void * p3)258 void pt(void *p1, void *p2, void *p3)
259 {
260 ARG_UNUSED(p1);
261 ARG_UNUSED(p2);
262 ARG_UNUSED(p3);
263
264 k_sleep(K_MSEC(20));
265 while (1) {
266 k_sem_take(&allforone, K_FOREVER);
267 if (fBUFIN == 0) { /* send message to encode */
268 printk("\nPT Sending Message 1\n");
269 memset((void *)&BUFIN, 0, SAMP_BLOCKSIZE);
270 memcpy((void *)&BUFIN, (void *)&ptMSG, sizeof(ptMSG));
271 /* strlen should not be used if user provided data, needs a max length set */
272 fBUFIN = 1;
273 }
274 k_sem_give(&allforone);
275 k_sem_take(&allforone, K_FOREVER);
276 if (fBUFIN == 0) { /* send message to decode */
277 printk("\nPT Sending Message 1'\n");
278 memset((void *)&BUFIN, 0, SAMP_BLOCKSIZE);
279 memcpy((void *)&BUFIN, (void *)&ptMSG2, sizeof(ptMSG2));
280 fBUFIN = 1;
281 }
282 k_sem_give(&allforone);
283 k_sleep(K_MSEC(50));
284 }
285 }
286
287 /*
288 * CT waits for fBUFOUT = 1 then copies
289 * the message clears the flag and prints
290 */
ct(void * p1,void * p2,void * p3)291 void ct(void *p1, void *p2, void *p3)
292 {
293 ARG_UNUSED(p1);
294 ARG_UNUSED(p2);
295 ARG_UNUSED(p3);
296
297 char tbuf[60];
298
299 while (1) {
300 k_sem_take(&allforone, K_FOREVER);
301 if (fBUFOUT == 1) {
302 printk("CT Thread Received Message\n");
303 memset((void *)&tbuf, 0, sizeof(tbuf));
304 memcpy((void *)&tbuf, (void *)BUFOUT, SAMP_BLOCKSIZE);
305 fBUFOUT = 0;
306 printk("CT MSG: %s\n", (char *)&tbuf);
307 }
308 k_sem_give(&allforone);
309 }
310 }
311