1 /*
2  * Copyright (c) 2016 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file @brief mutex kernel services
9  *
10  * This module contains routines for handling mutex locking and unlocking.
11  *
12  * Mutexes implement a priority inheritance algorithm that boosts the priority
13  * level of the owning thread to match the priority level of the highest
14  * priority thread waiting on the mutex.
15  *
16  * Each mutex that contributes to priority inheritance must be released in the
17  * reverse order in which it was acquired.  Furthermore each subsequent mutex
18  * that contributes to raising the owning thread's priority level must be
19  * acquired at a point after the most recent "bumping" of the priority level.
20  *
21  * For example, if thread A has two mutexes contributing to the raising of its
22  * priority level, the second mutex M2 must be acquired by thread A after
23  * thread A's priority level was bumped due to owning the first mutex M1.
24  * When releasing the mutex, thread A must release M2 before it releases M1.
25  * Failure to follow this nested model may result in threads running at
26  * unexpected priority levels (too high, or too low).
27  */
28 
29 #include <zephyr/kernel.h>
30 #include <zephyr/kernel_structs.h>
31 #include <zephyr/toolchain.h>
32 #include <ksched.h>
33 #include <wait_q.h>
34 #include <errno.h>
35 #include <zephyr/init.h>
36 #include <zephyr/internal/syscall_handler.h>
37 #include <zephyr/tracing/tracing.h>
38 #include <zephyr/sys/check.h>
39 #include <zephyr/logging/log.h>
40 #include <zephyr/llext/symbol.h>
41 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
42 
43 /* We use a global spinlock here because some of the synchronization
44  * is protecting things like owner thread priorities which aren't
45  * "part of" a single k_mutex.  Should move those bits of the API
46  * under the scheduler lock so we can break this up.
47  */
48 static struct k_spinlock lock;
49 
50 #ifdef CONFIG_OBJ_CORE_MUTEX
51 static struct k_obj_type obj_type_mutex;
52 #endif
53 
z_impl_k_mutex_init(struct k_mutex * mutex)54 int z_impl_k_mutex_init(struct k_mutex *mutex)
55 {
56 	mutex->owner = NULL;
57 	mutex->lock_count = 0U;
58 
59 	z_waitq_init(&mutex->wait_q);
60 
61 	k_object_init(mutex);
62 
63 #ifdef CONFIG_OBJ_CORE_MUTEX
64 	k_obj_core_init_and_link(K_OBJ_CORE(mutex), &obj_type_mutex);
65 #endif
66 
67 	SYS_PORT_TRACING_OBJ_INIT(k_mutex, mutex, 0);
68 
69 	return 0;
70 }
71 
72 #ifdef CONFIG_USERSPACE
z_vrfy_k_mutex_init(struct k_mutex * mutex)73 static inline int z_vrfy_k_mutex_init(struct k_mutex *mutex)
74 {
75 	K_OOPS(K_SYSCALL_OBJ_INIT(mutex, K_OBJ_MUTEX));
76 	return z_impl_k_mutex_init(mutex);
77 }
78 #include <syscalls/k_mutex_init_mrsh.c>
79 #endif
80 
new_prio_for_inheritance(int32_t target,int32_t limit)81 static int32_t new_prio_for_inheritance(int32_t target, int32_t limit)
82 {
83 	int new_prio = z_is_prio_higher(target, limit) ? target : limit;
84 
85 	new_prio = z_get_new_prio_with_ceiling(new_prio);
86 
87 	return new_prio;
88 }
89 
adjust_owner_prio(struct k_mutex * mutex,int32_t new_prio)90 static bool adjust_owner_prio(struct k_mutex *mutex, int32_t new_prio)
91 {
92 	if (mutex->owner->base.prio != new_prio) {
93 
94 		LOG_DBG("%p (ready (y/n): %c) prio changed to %d (was %d)",
95 			mutex->owner, z_is_thread_ready(mutex->owner) ?
96 			'y' : 'n',
97 			new_prio, mutex->owner->base.prio);
98 
99 		return z_set_prio(mutex->owner, new_prio);
100 	}
101 	return false;
102 }
103 
z_impl_k_mutex_lock(struct k_mutex * mutex,k_timeout_t timeout)104 int z_impl_k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
105 {
106 	int new_prio;
107 	k_spinlock_key_t key;
108 	bool resched = false;
109 
110 	__ASSERT(!arch_is_in_isr(), "mutexes cannot be used inside ISRs");
111 
112 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mutex, lock, mutex, timeout);
113 
114 	key = k_spin_lock(&lock);
115 
116 	if (likely((mutex->lock_count == 0U) || (mutex->owner == _current))) {
117 
118 		mutex->owner_orig_prio = (mutex->lock_count == 0U) ?
119 					_current->base.prio :
120 					mutex->owner_orig_prio;
121 
122 		mutex->lock_count++;
123 		mutex->owner = _current;
124 
125 		LOG_DBG("%p took mutex %p, count: %d, orig prio: %d",
126 			_current, mutex, mutex->lock_count,
127 			mutex->owner_orig_prio);
128 
129 		k_spin_unlock(&lock, key);
130 
131 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, 0);
132 
133 		return 0;
134 	}
135 
136 	if (unlikely(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) {
137 		k_spin_unlock(&lock, key);
138 
139 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, -EBUSY);
140 
141 		return -EBUSY;
142 	}
143 
144 	SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_mutex, lock, mutex, timeout);
145 
146 	new_prio = new_prio_for_inheritance(_current->base.prio,
147 					    mutex->owner->base.prio);
148 
149 	LOG_DBG("adjusting prio up on mutex %p", mutex);
150 
151 	if (z_is_prio_higher(new_prio, mutex->owner->base.prio)) {
152 		resched = adjust_owner_prio(mutex, new_prio);
153 	}
154 
155 	int got_mutex = z_pend_curr(&lock, key, &mutex->wait_q, timeout);
156 
157 	LOG_DBG("on mutex %p got_mutex value: %d", mutex, got_mutex);
158 
159 	LOG_DBG("%p got mutex %p (y/n): %c", _current, mutex,
160 		got_mutex ? 'y' : 'n');
161 
162 	if (got_mutex == 0) {
163 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, 0);
164 		return 0;
165 	}
166 
167 	/* timed out */
168 
169 	LOG_DBG("%p timeout on mutex %p", _current, mutex);
170 
171 	key = k_spin_lock(&lock);
172 
173 	/*
174 	 * Check if mutex was unlocked after this thread was unpended.
175 	 * If so, skip adjusting owner's priority down.
176 	 */
177 	if (likely(mutex->owner != NULL)) {
178 		struct k_thread *waiter = z_waitq_head(&mutex->wait_q);
179 
180 		new_prio = (waiter != NULL) ?
181 			new_prio_for_inheritance(waiter->base.prio, mutex->owner_orig_prio) :
182 			mutex->owner_orig_prio;
183 
184 		LOG_DBG("adjusting prio down on mutex %p", mutex);
185 
186 		resched = adjust_owner_prio(mutex, new_prio) || resched;
187 	}
188 
189 	if (resched) {
190 		z_reschedule(&lock, key);
191 	} else {
192 		k_spin_unlock(&lock, key);
193 	}
194 
195 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, -EAGAIN);
196 
197 	return -EAGAIN;
198 }
199 EXPORT_SYSCALL(k_mutex_lock);
200 
201 #ifdef CONFIG_USERSPACE
z_vrfy_k_mutex_lock(struct k_mutex * mutex,k_timeout_t timeout)202 static inline int z_vrfy_k_mutex_lock(struct k_mutex *mutex,
203 				      k_timeout_t timeout)
204 {
205 	K_OOPS(K_SYSCALL_OBJ(mutex, K_OBJ_MUTEX));
206 	return z_impl_k_mutex_lock(mutex, timeout);
207 }
208 #include <syscalls/k_mutex_lock_mrsh.c>
209 #endif
210 
z_impl_k_mutex_unlock(struct k_mutex * mutex)211 int z_impl_k_mutex_unlock(struct k_mutex *mutex)
212 {
213 	struct k_thread *new_owner;
214 
215 	__ASSERT(!arch_is_in_isr(), "mutexes cannot be used inside ISRs");
216 
217 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mutex, unlock, mutex);
218 
219 	CHECKIF(mutex->owner == NULL) {
220 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, unlock, mutex, -EINVAL);
221 
222 		return -EINVAL;
223 	}
224 	/*
225 	 * The current thread does not own the mutex.
226 	 */
227 	CHECKIF(mutex->owner != _current) {
228 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, unlock, mutex, -EPERM);
229 
230 		return -EPERM;
231 	}
232 
233 	/*
234 	 * Attempt to unlock a mutex which is unlocked. mutex->lock_count
235 	 * cannot be zero if the current thread is equal to mutex->owner,
236 	 * therefore no underflow check is required. Use assert to catch
237 	 * undefined behavior.
238 	 */
239 	__ASSERT_NO_MSG(mutex->lock_count > 0U);
240 
241 	LOG_DBG("mutex %p lock_count: %d", mutex, mutex->lock_count);
242 
243 	/*
244 	 * If we are the owner and count is greater than 1, then decrement
245 	 * the count and return and keep current thread as the owner.
246 	 */
247 	if (mutex->lock_count > 1U) {
248 		mutex->lock_count--;
249 		goto k_mutex_unlock_return;
250 	}
251 
252 	k_spinlock_key_t key = k_spin_lock(&lock);
253 
254 	adjust_owner_prio(mutex, mutex->owner_orig_prio);
255 
256 	/* Get the new owner, if any */
257 	new_owner = z_unpend_first_thread(&mutex->wait_q);
258 
259 	mutex->owner = new_owner;
260 
261 	LOG_DBG("new owner of mutex %p: %p (prio: %d)",
262 		mutex, new_owner, new_owner ? new_owner->base.prio : -1000);
263 
264 	if (new_owner != NULL) {
265 		/*
266 		 * new owner is already of higher or equal prio than first
267 		 * waiter since the wait queue is priority-based: no need to
268 		 * adjust its priority
269 		 */
270 		mutex->owner_orig_prio = new_owner->base.prio;
271 		arch_thread_return_value_set(new_owner, 0);
272 		z_ready_thread(new_owner);
273 		z_reschedule(&lock, key);
274 	} else {
275 		mutex->lock_count = 0U;
276 		k_spin_unlock(&lock, key);
277 	}
278 
279 
280 k_mutex_unlock_return:
281 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, unlock, mutex, 0);
282 
283 	return 0;
284 }
285 EXPORT_SYSCALL(k_mutex_unlock);
286 
287 #ifdef CONFIG_USERSPACE
z_vrfy_k_mutex_unlock(struct k_mutex * mutex)288 static inline int z_vrfy_k_mutex_unlock(struct k_mutex *mutex)
289 {
290 	K_OOPS(K_SYSCALL_OBJ(mutex, K_OBJ_MUTEX));
291 	return z_impl_k_mutex_unlock(mutex);
292 }
293 #include <syscalls/k_mutex_unlock_mrsh.c>
294 #endif
295 
296 #ifdef CONFIG_OBJ_CORE_MUTEX
init_mutex_obj_core_list(void)297 static int init_mutex_obj_core_list(void)
298 {
299 	/* Initialize mutex object type */
300 
301 	z_obj_type_init(&obj_type_mutex, K_OBJ_TYPE_MUTEX_ID,
302 			offsetof(struct k_mutex, obj_core));
303 
304 	/* Initialize and link statically defined mutexs */
305 
306 	STRUCT_SECTION_FOREACH(k_mutex, mutex) {
307 		k_obj_core_init_and_link(K_OBJ_CORE(mutex), &obj_type_mutex);
308 	}
309 
310 	return 0;
311 }
312 
313 SYS_INIT(init_mutex_obj_core_list, PRE_KERNEL_1,
314 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
315 #endif
316