1 /* XMC4XXX Ethernet controller
2 *
3 * Copyright (c) 2023 SLB
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT infineon_xmc4xxx_ethernet
9
10 #include "eth.h"
11
12 #include <stdint.h>
13
14 #include <soc.h>
15 #include <zephyr/device.h>
16 #include <zephyr/drivers/pinctrl.h>
17 #include <zephyr/drivers/ptp_clock.h>
18 #include <zephyr/net/ethernet.h>
19 #include <zephyr/net/gptp.h>
20 #include <zephyr/net/net_pkt.h>
21 #include <zephyr/net/net_if.h>
22 #include <zephyr/net/phy.h>
23 #include <zephyr/kernel.h>
24 #include <zephyr/sys/slist.h>
25 #include <zephyr/sys/util.h>
26
27 #include <ethernet/eth_stats.h>
28
29 #include <xmc_eth_mac.h>
30 #include <xmc_scu.h>
31
32 #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
33 #include <zephyr/logging/log.h>
34 LOG_MODULE_REGISTER(eth_xmc4xxx);
35
36 #define NUM_TX_DMA_DESCRIPTORS CONFIG_ETH_XMC4XXX_NUM_TX_DMA_DESCRIPTORS
37 #define NUM_RX_DMA_DESCRIPTORS CONFIG_ETH_XMC4XXX_NUM_RX_DMA_DESCRIPTORS
38
39 #define ETH_NODE DT_NODELABEL(eth)
40 #define PHY_NODE DT_PHANDLE_BY_IDX(ETH_NODE, phy, 0)
41
42 #define INFINEON_OUI_B0 0x00
43 #define INFINEON_OUI_B1 0x03
44 #define INFINEON_OUI_B2 0x19
45
46 #define MODULO_INC_TX(val) {(val) = (++(val) < NUM_TX_DMA_DESCRIPTORS) ? (val) : 0; }
47 #define MODULO_INC_RX(val) {(val) = (++(val) < NUM_RX_DMA_DESCRIPTORS) ? (val) : 0; }
48
49 #define IS_OWNED_BY_DMA_TX(desc) (((desc)->status & ETH_MAC_DMA_TDES0_OWN) != 0)
50 #define IS_OWNED_BY_DMA_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_OWN) != 0)
51
52 #define IS_START_OF_FRAME_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_FS) != 0)
53 #define IS_END_OF_FRAME_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_LS) != 0)
54
55 #define IS_TIMESTAMP_AVAILABLE_RX(desc) (((desc)->status & ETH_MAC_DMA_RDES0_TSA) != 0)
56 #define IS_TIMESTAMP_AVAILABLE_TX(desc) (((desc)->status & ETH_MAC_DMA_TDES0_TTSS) != 0)
57
58 #define TOTAL_FRAME_LENGTH(desc) (FIELD_GET(ETH_MAC_DMA_RDES0_FL, (desc)->status) - 4)
59
60 #define ETH_STATUS_ERROR_TRANSMIT_EVENTS \
61 (XMC_ETH_MAC_EVENT_BUS_ERROR | XMC_ETH_MAC_EVENT_TRANSMIT_JABBER_TIMEOUT | \
62 XMC_ETH_MAC_EVENT_TRANSMIT_UNDERFLOW | XMC_ETH_MAC_EVENT_TRANSMIT_PROCESS_STOPPED)
63
64 #define ETH_STATUS_ERROR_RECEIVE_EVENTS \
65 (XMC_ETH_MAC_EVENT_BUS_ERROR | XMC_ETH_MAC_EVENT_RECEIVE_OVERFLOW)
66
67 #define ETH_STATUS_ALL_EVENTS \
68 (ETH_STATUS_ERROR_TRANSMIT_EVENTS | ETH_STATUS_ERROR_RECEIVE_EVENTS | \
69 XMC_ETH_MAC_EVENT_RECEIVE | XMC_ETH_MAC_EVENT_TRANSMIT | ETH_INTERRUPT_ENABLE_NIE_Msk | \
70 ETH_INTERRUPT_ENABLE_AIE_Msk)
71
72 #define ETH_MAC_DISABLE_MMC_INTERRUPT_MSK 0x03ffffffu
73 #define ETH_MAC_DISABLE_MMC_IPC_RECEIVE_INTERRUPT_MSK 0x3fff3fffu
74
75 #define ETH_STATUS_CLEARABLE_BITS 0x1e7ffu
76
77 #define ETH_RX_DMA_DESC_SECOND_ADDR_CHAINED_MASK BIT(14)
78
79 #define ETH_RESET_TIMEOUT_USEC 200000u
80 #define ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC 100000u
81
82 #define ETH_LINK_SPEED_10M 0
83 #define ETH_LINK_SPEED_100M 1
84
85 #define ETH_LINK_DUPLEX_HALF 0
86 #define ETH_LINK_DUPLEX_FULL 1
87
88 #define ETH_PTP_CLOCK_FREQUENCY 50000000
89 #define ETH_PTP_RATE_ADJUST_RATIO_MIN 0.9
90 #define ETH_PTP_RATE_ADJUST_RATIO_MAX 1.1
91
92 struct eth_xmc4xxx_data {
93 struct net_if *iface;
94 uint8_t mac_addr[6];
95 struct k_sem tx_desc_sem;
96 bool link_up;
97 #if defined(CONFIG_NET_STATISTICS_ETHERNET)
98 struct net_stats_eth stats;
99 #endif
100 bool tx_frames_flushed;
101 uint16_t dma_desc_tx_head;
102 uint16_t dma_desc_rx_tail;
103 sys_slist_t tx_frame_list;
104 struct net_buf *rx_frag_list[NUM_RX_DMA_DESCRIPTORS];
105 #if defined(CONFIG_PTP_CLOCK_XMC4XXX)
106 const struct device *ptp_clock;
107 #endif
108 };
109
110 struct eth_xmc4xxx_config {
111 ETH_GLOBAL_TypeDef *regs;
112 const struct device *phy_dev;
113 void (*irq_config_func)(void);
114 const struct pinctrl_dev_config *pcfg;
115 const uint8_t phy_connection_type;
116 XMC_ETH_MAC_PORT_CTRL_t port_ctrl;
117 };
118
119 struct eth_xmc4xxx_tx_frame {
120 sys_snode_t node;
121 struct net_pkt *pkt;
122 uint16_t tail_index;
123 uint16_t head_index;
124 };
125
126 K_MEM_SLAB_DEFINE_STATIC(tx_frame_slab, sizeof(struct eth_xmc4xxx_tx_frame),
127 CONFIG_ETH_XMC4XXX_TX_FRAME_POOL_SIZE, 4);
128
129 static XMC_ETH_MAC_DMA_DESC_t __aligned(4) tx_dma_desc[NUM_TX_DMA_DESCRIPTORS];
130 static XMC_ETH_MAC_DMA_DESC_t __aligned(4) rx_dma_desc[NUM_RX_DMA_DESCRIPTORS];
131
get_iface(struct eth_xmc4xxx_data * ctx,uint16_t vlan_tag)132 static inline struct net_if *get_iface(struct eth_xmc4xxx_data *ctx, uint16_t vlan_tag)
133 {
134 #if defined(CONFIG_NET_VLAN)
135 struct net_if *iface;
136
137 iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag);
138 if (!iface) {
139 return ctx->iface;
140 }
141
142 return iface;
143 #else
144 ARG_UNUSED(vlan_tag);
145
146 return ctx->iface;
147 #endif
148 }
149
eth_xmc4xxx_tx_dma_descriptors_init(const struct device * dev)150 static void eth_xmc4xxx_tx_dma_descriptors_init(const struct device *dev)
151 {
152 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
153
154 memset(tx_dma_desc, 0, sizeof(tx_dma_desc));
155
156 dev_cfg->regs->TRANSMIT_DESCRIPTOR_LIST_ADDRESS = (uint32_t)&tx_dma_desc[0];
157
158 /* chain the descriptors */
159 for (int i = 0; i < NUM_TX_DMA_DESCRIPTORS - 1; i++) {
160 XMC_ETH_MAC_DMA_DESC_t *dma_desc = &tx_dma_desc[i];
161
162 dma_desc->buffer2 = (volatile uint32_t)&tx_dma_desc[i + 1];
163 }
164
165 /* TER: transmit end of ring - it is the last descriptor in ring */
166 tx_dma_desc[NUM_TX_DMA_DESCRIPTORS - 1].status |= ETH_MAC_DMA_TDES0_TER;
167 tx_dma_desc[NUM_TX_DMA_DESCRIPTORS - 1].buffer2 = (volatile uint32_t)&tx_dma_desc[0];
168 }
169
eth_xmc4xxx_flush_rx(const struct device * dev)170 static void eth_xmc4xxx_flush_rx(const struct device *dev)
171 {
172 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
173 struct eth_xmc4xxx_data *dev_data = dev->data;
174
175 dev_cfg->regs->OPERATION_MODE &= ~ETH_OPERATION_MODE_SR_Msk;
176
177 for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS; i++) {
178 rx_dma_desc[i].status = ETH_MAC_DMA_RDES0_OWN;
179 }
180
181 dev_cfg->regs->OPERATION_MODE |= ETH_OPERATION_MODE_SR_Msk;
182 dev_data->dma_desc_rx_tail = 0;
183 }
184
eth_xmc4xxx_flush_tx(const struct device * dev)185 static void eth_xmc4xxx_flush_tx(const struct device *dev)
186 {
187 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
188 struct eth_xmc4xxx_data *dev_data = dev->data;
189 sys_snode_t *node;
190
191 LOG_DBG("Flushing tx frames");
192
193 if (dev_data->tx_frames_flushed) {
194 return;
195 }
196
197 dev_cfg->regs->OPERATION_MODE &= ~ETH_OPERATION_MODE_ST_Msk;
198
199 node = sys_slist_get(&dev_data->tx_frame_list);
200 while (node) {
201 struct eth_xmc4xxx_tx_frame *tx_frame = SYS_SLIST_CONTAINER(node, tx_frame, node);
202
203 net_pkt_unref(tx_frame->pkt);
204 k_mem_slab_free(&tx_frame_slab, (void *)tx_frame);
205
206 node = sys_slist_get(&dev_data->tx_frame_list);
207 #ifdef CONFIG_NET_STATISTICS_ETHERNET
208 dev_data->stats.errors.tx++;
209 dev_data->stats.error_details.tx_aborted_errors++;
210 #endif
211 }
212
213 k_sem_reset(&dev_data->tx_desc_sem);
214
215 eth_xmc4xxx_tx_dma_descriptors_init(dev);
216 dev_cfg->regs->OPERATION_MODE |= ETH_OPERATION_MODE_ST_Msk;
217 dev_data->dma_desc_tx_head = 0;
218 dev_data->tx_frames_flushed = true;
219
220 for (int i = 0; i < NUM_TX_DMA_DESCRIPTORS; i++) {
221 k_sem_give(&dev_data->tx_desc_sem);
222 }
223 }
224
eth_xmc4xxx_trigger_dma_tx(ETH_GLOBAL_TypeDef * regs)225 static inline void eth_xmc4xxx_trigger_dma_tx(ETH_GLOBAL_TypeDef *regs)
226 {
227 regs->STATUS = ETH_STATUS_TPS_Msk;
228 regs->TRANSMIT_POLL_DEMAND = 0;
229 }
230
eth_xmc4xxx_trigger_dma_rx(ETH_GLOBAL_TypeDef * regs)231 static inline void eth_xmc4xxx_trigger_dma_rx(ETH_GLOBAL_TypeDef *regs)
232 {
233 regs->STATUS = ETH_STATUS_RU_Msk;
234 regs->RECEIVE_POLL_DEMAND = 0U;
235 }
236
eth_xmc4xxx_send(const struct device * dev,struct net_pkt * pkt)237 static int eth_xmc4xxx_send(const struct device *dev, struct net_pkt *pkt)
238 {
239 struct eth_xmc4xxx_data *dev_data = dev->data;
240 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
241 struct net_buf *frag;
242 uint8_t *frag_data;
243 uint16_t frag_len;
244 int ret = 0;
245 XMC_ETH_MAC_DMA_DESC_t *dma_desc = NULL;
246 struct eth_xmc4xxx_tx_frame *tx_frame;
247 int num_frags = 0;
248 bool first_descriptor = false;
249
250 frag = pkt->frags;
251 while (frag) {
252 num_frags++;
253 frag = frag->frags;
254 }
255
256 if (num_frags > NUM_TX_DMA_DESCRIPTORS) {
257 #ifdef CONFIG_NET_STATISTICS_ETHERNET
258 dev_data->stats.error_details.tx_dma_failed++;
259 #endif
260 LOG_DBG("Number of fragments exceeds total descriptors. Dropping packet");
261 return -ENOMEM;
262 }
263
264 /* All available frames buffered inside the driver. Apply back pressure in the driver. */
265 while (tx_frame_slab.info.num_used == CONFIG_ETH_XMC4XXX_TX_FRAME_POOL_SIZE) {
266 eth_xmc4xxx_trigger_dma_tx(dev_cfg->regs);
267 k_yield();
268 }
269
270 ret = k_mem_slab_alloc(&tx_frame_slab, (void **)&tx_frame, K_NO_WAIT);
271 __ASSERT_NO_MSG(ret == 0);
272
273 net_pkt_ref(pkt);
274
275 dev_data->tx_frames_flushed = false;
276
277 first_descriptor = true;
278 tx_frame->pkt = pkt;
279 tx_frame->tail_index = dev_data->dma_desc_tx_head;
280
281 frag = pkt->frags;
282 while (frag) {
283 ret = k_sem_take(&dev_data->tx_desc_sem, K_FOREVER);
284 /* isr may call k_sem_reset() */
285 if (ret < 0 || dev_data->tx_frames_flushed) {
286 k_mem_slab_free(&tx_frame_slab, (void **)&tx_frame);
287 net_pkt_unref(pkt);
288 #ifdef CONFIG_NET_STATISTICS_ETHERNET
289 dev_data->stats.error_details.tx_aborted_errors++;
290 #endif
291 LOG_DBG("Dropping frame. Buffered Tx frames were flushed in ISR.");
292 return -EIO;
293 }
294
295 unsigned int key = irq_lock();
296 /* Critical section for dma_desc_tx_head and tx_dma_desc. Isr may */
297 /* reinitialize the descriptors and set dma_desc_tx_head to 0 */
298
299 dma_desc = &tx_dma_desc[dev_data->dma_desc_tx_head];
300
301 frag_data = frag->data;
302 frag_len = frag->len;
303
304 dma_desc->buffer1 = (volatile uint32_t)frag_data;
305 dma_desc->length = frag_len;
306
307 /* give ownership of descriptor back to dma and set checksum offload */
308 /* TCH we are using a circular list */
309 dma_desc->status = ETH_MAC_DMA_TDES0_CIC | ETH_MAC_DMA_TDES0_TCH;
310
311 if (!first_descriptor) {
312 /* Delay giving ownership of first frag to DMA. Prevents race condition */
313 /* where second other frags are not ready */
314 dma_desc->status |= ETH_MAC_DMA_TDES0_OWN;
315 } else {
316 dma_desc->status |= ETH_MAC_DMA_TDES0_FS;
317
318 #if defined(CONFIG_NET_GPTP)
319 struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);
320
321 if (ntohs(hdr->type) == NET_ETH_PTYPE_PTP) {
322 dma_desc->status |= ETH_MAC_DMA_TDES0_TTSE;
323 }
324 #endif
325 }
326 first_descriptor = false;
327
328 tx_frame->head_index = dev_data->dma_desc_tx_head;
329
330 MODULO_INC_TX(dev_data->dma_desc_tx_head);
331
332 irq_unlock(key);
333
334 frag = frag->frags;
335 }
336
337 if (dev_data->tx_frames_flushed) {
338 k_mem_slab_free(&tx_frame_slab, (void **)&tx_frame);
339 net_pkt_unref(pkt);
340 #ifdef CONFIG_NET_STATISTICS_ETHERNET
341 dev_data->stats.error_details.tx_aborted_errors++;
342 #endif
343 LOG_DBG("Dropping frame. Buffered Tx frames were flushed in ISR.");
344 return -EIO;
345 }
346
347 unsigned int key = irq_lock();
348
349 /* label last dma descriptor as last segment and trigger interrupt on last segment */
350 dma_desc->status |= ETH_MAC_DMA_TDES0_IC | ETH_MAC_DMA_TDES0_LS;
351
352 /* Finally give ownership of first frag to DMA. After this point the DMA engine */
353 /* may transfer the whole frame from RAM to Ethernet */
354 tx_dma_desc[tx_frame->tail_index].status |= ETH_MAC_DMA_TDES0_OWN;
355
356 sys_slist_append(&dev_data->tx_frame_list, &tx_frame->node);
357
358 eth_xmc4xxx_trigger_dma_tx(dev_cfg->regs);
359
360 irq_unlock(key);
361
362 return 0;
363 }
364
eth_xmc4xxx_rx_pkt(const struct device * dev)365 static struct net_pkt *eth_xmc4xxx_rx_pkt(const struct device *dev)
366 {
367 struct eth_xmc4xxx_data *dev_data = dev->data;
368 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
369 struct net_pkt *pkt = NULL;
370 struct net_buf *new_frag;
371
372 bool eof_found = false;
373 uint16_t tail;
374 XMC_ETH_MAC_DMA_DESC_t *dma_desc;
375 int num_frags = 0;
376 uint16_t frame_end_index;
377 struct net_buf *frag, *last_frag = NULL;
378
379 tail = dev_data->dma_desc_rx_tail;
380 dma_desc = &rx_dma_desc[tail];
381
382 if (IS_OWNED_BY_DMA_RX(dma_desc)) {
383 return NULL;
384 }
385
386 if (!IS_START_OF_FRAME_RX(dma_desc)) {
387 /* handle this error - missing SOF packet? */
388 eth_xmc4xxx_flush_rx(dev);
389 return NULL;
390 }
391
392 while (!IS_OWNED_BY_DMA_RX(dma_desc)) {
393 eof_found = IS_END_OF_FRAME_RX(dma_desc);
394 num_frags++;
395 if (eof_found) {
396 break;
397 }
398
399 MODULO_INC_RX(tail);
400
401 if (tail == dev_data->dma_desc_rx_tail) {
402 /* wrapped */
403 break;
404 }
405
406 dma_desc = &rx_dma_desc[tail];
407 }
408
409 if (!eof_found) {
410 return NULL;
411 }
412
413 frame_end_index = tail;
414
415 pkt = net_pkt_rx_alloc(K_NO_WAIT);
416 if (pkt == NULL) {
417 #ifdef CONFIG_NET_STATISTICS_ETHERNET
418 dev_data->stats.errors.rx++;
419 dev_data->stats.error_details.rx_no_buffer_count++;
420 #endif
421 LOG_DBG("Net packet allocation error");
422 /* continue because we still need to read out the packet */
423 }
424
425 tail = dev_data->dma_desc_rx_tail;
426 dma_desc = &rx_dma_desc[tail];
427 for (;;) {
428 if (pkt != NULL) {
429 uint16_t frag_len = CONFIG_NET_BUF_DATA_SIZE;
430
431 frag = dev_data->rx_frag_list[tail];
432 if (tail == frame_end_index) {
433 frag_len = TOTAL_FRAME_LENGTH(dma_desc) -
434 CONFIG_NET_BUF_DATA_SIZE * (num_frags - 1);
435
436 if (IS_TIMESTAMP_AVAILABLE_RX(dma_desc)) {
437 struct net_ptp_time timestamp = {
438 .second = dma_desc->time_stamp_seconds,
439 .nanosecond = dma_desc->time_stamp_nanoseconds};
440
441 net_pkt_set_timestamp(pkt, ×tamp);
442 net_pkt_set_priority(pkt, NET_PRIORITY_CA);
443 }
444 }
445
446 new_frag = net_pkt_get_frag(pkt, CONFIG_NET_BUF_DATA_SIZE, K_NO_WAIT);
447 if (new_frag == NULL) {
448 #ifdef CONFIG_NET_STATISTICS_ETHERNET
449 dev_data->stats.errors.rx++;
450 dev_data->stats.error_details.rx_buf_alloc_failed++;
451 #endif
452 LOG_DBG("Frag allocation error. Increase CONFIG_NET_BUF_RX_COUNT.");
453 net_pkt_unref(pkt);
454 pkt = NULL;
455 } else {
456 net_buf_add(frag, frag_len);
457 if (!last_frag) {
458 net_pkt_frag_insert(pkt, frag);
459 } else {
460 net_buf_frag_insert(last_frag, frag);
461 }
462
463 last_frag = frag;
464 frag = new_frag;
465 dev_data->rx_frag_list[tail] = frag;
466 }
467 }
468
469 dma_desc->buffer1 = (uint32_t)dev_data->rx_frag_list[tail]->data;
470 dma_desc->length = dev_data->rx_frag_list[tail]->size |
471 ETH_RX_DMA_DESC_SECOND_ADDR_CHAINED_MASK;
472 dma_desc->status = ETH_MAC_DMA_RDES0_OWN;
473
474 if (tail == frame_end_index) {
475 break;
476 }
477
478 MODULO_INC_RX(tail);
479 dma_desc = &rx_dma_desc[tail];
480 }
481
482
483 MODULO_INC_RX(tail);
484 dev_data->dma_desc_rx_tail = tail;
485
486 eth_xmc4xxx_trigger_dma_rx(dev_cfg->regs);
487
488 return pkt;
489 }
490
eth_xmc4xxx_handle_rx(const struct device * dev)491 static void eth_xmc4xxx_handle_rx(const struct device *dev)
492 {
493 struct eth_xmc4xxx_data *dev_data = dev->data;
494 struct net_pkt *pkt = NULL;
495
496 for (;;) {
497 uint16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
498
499 pkt = eth_xmc4xxx_rx_pkt(dev);
500 if (!pkt) {
501 return;
502 }
503 #if defined(CONFIG_NET_VLAN)
504 struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);
505
506 if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) {
507 struct net_eth_vlan_hdr *hdr_vlan = (struct net_eth_vlan_hdr *)hdr;
508
509 net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci));
510 vlan_tag = net_pkt_vlan_tag(pkt);
511
512 #if CONFIG_NET_TC_RX_COUNT > 1
513 enum net_priority prio;
514
515 prio = net_vlan2priority(net_pkt_vlan_priority(pkt));
516 net_pkt_set_priority(pkt, prio);
517 #endif
518 }
519 #endif /* CONFIG_NET_VLAN */
520 if (net_recv_data(get_iface(dev_data, vlan_tag), pkt) < 0) {
521 eth_stats_update_errors_rx(get_iface(dev_data, vlan_tag));
522 net_pkt_unref(pkt);
523 }
524 }
525 }
526
eth_xmc4xxx_handle_tx(const struct device * dev)527 static void eth_xmc4xxx_handle_tx(const struct device *dev)
528 {
529 struct eth_xmc4xxx_data *dev_data = dev->data;
530 sys_snode_t *node = sys_slist_peek_head(&dev_data->tx_frame_list);
531
532 while (node) {
533 struct eth_xmc4xxx_tx_frame *tx_frame = SYS_SLIST_CONTAINER(node, tx_frame, node);
534 bool owned_by_mcu = true;
535 uint8_t index;
536 int num_descriptors;
537
538 if (tx_frame->head_index >= tx_frame->tail_index) {
539 num_descriptors = tx_frame->head_index - tx_frame->tail_index + 1;
540 } else {
541 num_descriptors = tx_frame->head_index + NUM_TX_DMA_DESCRIPTORS -
542 tx_frame->tail_index + 1;
543 }
544
545 index = tx_frame->tail_index;
546 for (int i = 0; i < num_descriptors; i++) {
547 if (IS_OWNED_BY_DMA_TX(&tx_dma_desc[index])) {
548 owned_by_mcu = false;
549 break;
550 }
551
552 MODULO_INC_TX(index);
553 }
554
555 if (owned_by_mcu) {
556 #if defined(CONFIG_NET_GPTP)
557 XMC_ETH_MAC_DMA_DESC_t *dma_desc = &tx_dma_desc[tx_frame->head_index];
558
559 if (IS_TIMESTAMP_AVAILABLE_TX(dma_desc)) {
560 struct net_pkt *pkt = tx_frame->pkt;
561
562 if (atomic_get(&pkt->atomic_ref) > 1) {
563 struct net_ptp_time timestamp = {
564 .second = dma_desc->time_stamp_seconds,
565 .nanosecond = dma_desc->time_stamp_nanoseconds};
566
567 net_pkt_set_timestamp(pkt, ×tamp);
568 net_if_add_tx_timestamp(pkt);
569 }
570 }
571 #endif
572
573 for (int i = 0; i < num_descriptors; i++) {
574 k_sem_give(&dev_data->tx_desc_sem);
575 }
576
577 sys_slist_get(&dev_data->tx_frame_list);
578 net_pkt_unref(tx_frame->pkt);
579 k_mem_slab_free(&tx_frame_slab, (void *)tx_frame);
580 node = sys_slist_peek_head(&dev_data->tx_frame_list);
581 } else {
582 node = NULL;
583 }
584 }
585 }
586
eth_xmc4xxx_isr(const struct device * dev)587 static void eth_xmc4xxx_isr(const struct device *dev)
588 {
589 uint32_t lock;
590 uint32_t status;
591 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
592
593 lock = irq_lock();
594 status = dev_cfg->regs->STATUS;
595
596 if ((status & XMC_ETH_MAC_EVENT_RECEIVE) != 0) {
597 eth_xmc4xxx_handle_rx(dev);
598 }
599
600 if ((status & XMC_ETH_MAC_EVENT_TRANSMIT) != 0) {
601 eth_xmc4xxx_handle_tx(dev);
602 }
603
604 if ((status & ETH_STATUS_ERROR_TRANSMIT_EVENTS) != 0) {
605 LOG_ERR("Transmit error event [0x%x]", status);
606 eth_xmc4xxx_flush_tx(dev);
607 }
608
609 if ((status & ETH_STATUS_ERROR_RECEIVE_EVENTS) != 0) {
610 LOG_ERR("Receive error event [0x%x]", status);
611 eth_xmc4xxx_flush_rx(dev);
612 }
613
614 dev_cfg->regs->STATUS = status & ETH_STATUS_CLEARABLE_BITS;
615
616 irq_unlock(lock);
617 }
618
eth_xmc4xxx_enable_tx(ETH_GLOBAL_TypeDef * regs)619 static inline void eth_xmc4xxx_enable_tx(ETH_GLOBAL_TypeDef *regs)
620 {
621 regs->OPERATION_MODE |= ETH_OPERATION_MODE_ST_Msk;
622 regs->MAC_CONFIGURATION |= ETH_MAC_CONFIGURATION_TE_Msk;
623 }
624
eth_xmc4xxx_enable_rx(ETH_GLOBAL_TypeDef * regs)625 static inline void eth_xmc4xxx_enable_rx(ETH_GLOBAL_TypeDef *regs)
626 {
627 regs->OPERATION_MODE |= ETH_OPERATION_MODE_SR_Msk;
628 regs->MAC_CONFIGURATION |= ETH_MAC_CONFIGURATION_RE_Msk;
629 }
630
eth_xmc4xxx_set_link(ETH_GLOBAL_TypeDef * regs,struct phy_link_state * state)631 static inline void eth_xmc4xxx_set_link(ETH_GLOBAL_TypeDef *regs, struct phy_link_state *state)
632 {
633 uint32_t reg = regs->MAC_CONFIGURATION;
634 uint32_t val;
635
636 reg &= ~(ETH_MAC_CONFIGURATION_DM_Msk | ETH_MAC_CONFIGURATION_FES_Msk);
637
638 val = PHY_LINK_IS_FULL_DUPLEX(state->speed) ? ETH_LINK_DUPLEX_FULL :
639 ETH_LINK_DUPLEX_HALF;
640 reg |= FIELD_PREP(ETH_MAC_CONFIGURATION_DM_Msk, val);
641
642 val = PHY_LINK_IS_SPEED_100M(state->speed) ? ETH_LINK_SPEED_100M :
643 ETH_LINK_SPEED_10M;
644 reg |= FIELD_PREP(ETH_MAC_CONFIGURATION_FES_Msk, val);
645
646 regs->MAC_CONFIGURATION = reg;
647 }
648
phy_link_state_changed(const struct device * phy_dev,struct phy_link_state * state,void * user_data)649 static void phy_link_state_changed(const struct device *phy_dev, struct phy_link_state *state,
650 void *user_data)
651 {
652 struct device *dev = user_data;
653 struct eth_xmc4xxx_data *dev_data = dev->data;
654 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
655 bool is_up = state->is_up;
656
657 if (is_up && !dev_data->link_up) {
658 LOG_INF("Link up");
659 dev_data->link_up = true;
660 net_eth_carrier_on(dev_data->iface);
661 eth_xmc4xxx_set_link(dev_cfg->regs, state);
662 } else if (!is_up && dev_data->link_up) {
663 LOG_INF("Link down");
664 dev_data->link_up = false;
665 net_eth_carrier_off(dev_data->iface);
666 }
667 }
668
eth_xmc4xxx_iface_init(struct net_if * iface)669 static void eth_xmc4xxx_iface_init(struct net_if *iface)
670 {
671 const struct device *dev = net_if_get_device(iface);
672 struct eth_xmc4xxx_data *dev_data = dev->data;
673 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
674
675 dev_data->iface = iface;
676
677 net_if_set_link_addr(iface, dev_data->mac_addr, sizeof(dev_data->mac_addr),
678 NET_LINK_ETHERNET);
679
680 ethernet_init(iface);
681
682 dev_cfg->irq_config_func();
683
684 /* Do not start the interface until PHY link is up */
685 net_if_carrier_off(iface);
686
687 phy_link_callback_set(dev_cfg->phy_dev, &phy_link_state_changed, (void *)dev);
688
689 dev_cfg->regs->INTERRUPT_ENABLE |= ETH_STATUS_ALL_EVENTS;
690
691 eth_xmc4xxx_enable_tx(dev_cfg->regs);
692 eth_xmc4xxx_enable_rx(dev_cfg->regs);
693 }
694
695 #if defined(CONFIG_NET_STATISTICS_ETHERNET)
eth_xmc4xxx_stats(const struct device * dev)696 static struct net_stats_eth *eth_xmc4xxx_stats(const struct device *dev)
697 {
698 struct eth_xmc4xxx_data *dev_data = dev->data;
699
700 return &dev_data->stats;
701 }
702 #endif
703
eth_xmc4xxx_free_rx_bufs(const struct device * dev)704 static inline void eth_xmc4xxx_free_rx_bufs(const struct device *dev)
705 {
706 struct eth_xmc4xxx_data *dev_data = dev->data;
707
708 for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS; i++) {
709 if (dev_data->rx_frag_list[i]) {
710 net_buf_unref(dev_data->rx_frag_list[i]);
711 dev_data->rx_frag_list[i] = NULL;
712 }
713 }
714 }
715
eth_xmc4xxx_rx_dma_descriptors_init(const struct device * dev)716 static int eth_xmc4xxx_rx_dma_descriptors_init(const struct device *dev)
717 {
718 struct eth_xmc4xxx_data *dev_data = dev->data;
719 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
720
721 dev_cfg->regs->RECEIVE_DESCRIPTOR_LIST_ADDRESS = (uint32_t)&rx_dma_desc[0];
722
723 for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS - 1; i++) {
724 XMC_ETH_MAC_DMA_DESC_t *dma_desc = &rx_dma_desc[i];
725
726 dma_desc->buffer2 = (volatile uint32_t)&rx_dma_desc[i + 1];
727 }
728
729 rx_dma_desc[NUM_RX_DMA_DESCRIPTORS - 1].status |= ETH_MAC_DMA_TDES0_TER;
730 rx_dma_desc[NUM_RX_DMA_DESCRIPTORS - 1].buffer2 = (volatile uint32_t)&rx_dma_desc[0];
731
732 for (int i = 0; i < NUM_RX_DMA_DESCRIPTORS; i++) {
733 XMC_ETH_MAC_DMA_DESC_t *dma_desc = &rx_dma_desc[i];
734 struct net_buf *rx_buf = net_pkt_get_reserve_rx_data(CONFIG_NET_BUF_DATA_SIZE,
735 K_NO_WAIT);
736
737 if (rx_buf == NULL) {
738 eth_xmc4xxx_free_rx_bufs(dev);
739 LOG_ERR("Failed to reserve data net buffers");
740 return -ENOBUFS;
741 }
742
743 dev_data->rx_frag_list[i] = rx_buf;
744 dma_desc->buffer1 = (uint32_t)rx_buf->data;
745 dma_desc->length = rx_buf->size | ETH_RX_DMA_DESC_SECOND_ADDR_CHAINED_MASK;
746 dma_desc->status = ETH_MAC_DMA_RDES0_OWN;
747 }
748
749 return 0;
750 }
751
eth_xmc4xxx_reset(const struct device * dev)752 static inline int eth_xmc4xxx_reset(const struct device *dev)
753 {
754 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
755
756 dev_cfg->regs->BUS_MODE |= ETH_BUS_MODE_SWR_Msk;
757
758 /* reset may fail if the clocks are not properly setup */
759 if (!WAIT_FOR((dev_cfg->regs->BUS_MODE & ETH_BUS_MODE_SWR_Msk) == 0,
760 ETH_RESET_TIMEOUT_USEC,)) {
761 return -ETIMEDOUT;
762 }
763
764 return 0;
765 }
766
eth_xmc4xxx_set_mac_address(ETH_GLOBAL_TypeDef * regs,uint8_t * const addr)767 static inline void eth_xmc4xxx_set_mac_address(ETH_GLOBAL_TypeDef *regs, uint8_t *const addr)
768 {
769 regs->MAC_ADDRESS0_HIGH = addr[4] | (addr[5] << 8);
770 regs->MAC_ADDRESS0_LOW = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24);
771 }
772
eth_xmc4xxx_mask_unused_interrupts(ETH_GLOBAL_TypeDef * regs)773 static inline void eth_xmc4xxx_mask_unused_interrupts(ETH_GLOBAL_TypeDef *regs)
774 {
775 /* Disable Mac Management Counter (MMC) interrupt events */
776 regs->MMC_TRANSMIT_INTERRUPT_MASK = ETH_MAC_DISABLE_MMC_INTERRUPT_MSK;
777 regs->MMC_RECEIVE_INTERRUPT_MASK = ETH_MAC_DISABLE_MMC_INTERRUPT_MSK;
778
779 /* IPC - Receive IP checksum checker */
780 regs->MMC_IPC_RECEIVE_INTERRUPT_MASK = ETH_MAC_DISABLE_MMC_IPC_RECEIVE_INTERRUPT_MSK;
781
782 /* Disable PMT and timestamp interrupt events */
783 regs->INTERRUPT_MASK = ETH_INTERRUPT_MASK_PMTIM_Msk | ETH_INTERRUPT_MASK_TSIM_Msk;
784 }
785
eth_xmc4xxx_init_timestamp_control_reg(ETH_GLOBAL_TypeDef * regs)786 static inline int eth_xmc4xxx_init_timestamp_control_reg(ETH_GLOBAL_TypeDef *regs)
787 {
788 #if defined(CONFIG_NET_GPTP)
789 regs->TIMESTAMP_CONTROL = ETH_TIMESTAMP_CONTROL_TSENA_Msk |
790 ETH_TIMESTAMP_CONTROL_TSENALL_Msk;
791 #endif
792
793 #if defined(CONFIG_PTP_CLOCK_XMC4XXX)
794 /* use fine control */
795 regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSCFUPDT_Msk |
796 ETH_TIMESTAMP_CONTROL_TSCTRLSSR_Msk;
797
798 /* make ptp run at 50MHz - implies 20ns increment for each increment of the */
799 /* sub_second_register */
800 regs->SUB_SECOND_INCREMENT = 20;
801
802 /* f_out = f_cpu * K / 2^32, where K = TIMESTAMP_ADDEND. Target F_out = 50MHz */
803 /* Therefore, K = ceil(f_out * 2^32 / f_cpu) */
804
805 uint32_t f_cpu = XMC_SCU_CLOCK_GetSystemClockFrequency();
806 uint32_t K = (BIT64(32) * ETH_PTP_CLOCK_FREQUENCY + f_cpu / 2) / f_cpu;
807
808 regs->TIMESTAMP_ADDEND = K;
809
810 /* Addend register update */
811 regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSADDREG_Msk;
812 if (!WAIT_FOR((regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSADDREG_Msk) == 0,
813 ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
814 return -ETIMEDOUT;
815 }
816
817 regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSINIT_Msk;
818 if (!WAIT_FOR((regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSINIT_Msk) == 0,
819 ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
820 return -ETIMEDOUT;
821 }
822 #endif
823 return 0;
824 }
825
eth_xmc4xxx_init(const struct device * dev)826 static int eth_xmc4xxx_init(const struct device *dev)
827 {
828 struct eth_xmc4xxx_data *dev_data = dev->data;
829 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
830 XMC_ETH_MAC_PORT_CTRL_t port_ctrl;
831 int ret;
832
833 sys_slist_init(&dev_data->tx_frame_list);
834 k_sem_init(&dev_data->tx_desc_sem, NUM_TX_DMA_DESCRIPTORS,
835 NUM_TX_DMA_DESCRIPTORS);
836
837 if (!device_is_ready(dev_cfg->phy_dev)) {
838 LOG_ERR("Phy device not ready");
839 return -ENODEV;
840 }
841
842 /* get the port control initialized by MDIO driver */
843 port_ctrl.raw = ETH0_CON->CON;
844 port_ctrl.raw |= dev_cfg->port_ctrl.raw;
845
846 XMC_ETH_MAC_Disable(NULL);
847 ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
848 if (ret) {
849 return ret;
850 }
851
852 XMC_ETH_MAC_SetPortControl(NULL, port_ctrl);
853 XMC_ETH_MAC_Enable(NULL);
854
855 ret = eth_xmc4xxx_reset(dev);
856 if (ret != 0) {
857 LOG_ERR("Error resetting ethernet [%d]", ret);
858 return ret;
859 }
860
861 /* Initialize MAC configuration */
862 /* enable checksum offload */
863 dev_cfg->regs->MAC_CONFIGURATION = ETH_MAC_CONFIGURATION_IPC_Msk;
864
865 /* disable jumbo frames */
866 dev_cfg->regs->MAC_CONFIGURATION &= ~ETH_MAC_CONFIGURATION_JE_Msk;
867
868
869 /* Initialize Filter registers - disable zero quanta pause*/
870 dev_cfg->regs->FLOW_CONTROL = ETH_FLOW_CONTROL_DZPQ_Msk;
871
872 /* rsf - receive store and forward */
873 /* tsf - transmit store and forward */
874 dev_cfg->regs->OPERATION_MODE = ETH_OPERATION_MODE_RSF_Msk | ETH_OPERATION_MODE_TSF_Msk |
875 ETH_OPERATION_MODE_OSF_Msk;
876
877 /* Increase enhanced descriptor to 8 WORDS, required when the Advanced */
878 /* Time-Stamp feature or Full IPC Offload Engine is enabled */
879 dev_cfg->regs->BUS_MODE = ETH_BUS_MODE_ATDS_Msk | ETH_BUS_MODE_AAL_Msk |
880 ETH_BUS_MODE_FB_Msk | (0x20 << ETH_BUS_MODE_PBL_Pos);
881
882 eth_xmc4xxx_tx_dma_descriptors_init(dev);
883 ret = eth_xmc4xxx_rx_dma_descriptors_init(dev);
884 if (ret != 0) {
885 return ret;
886 }
887
888 /* Clear interrupts */
889 dev_cfg->regs->STATUS = ETH_STATUS_CLEARABLE_BITS;
890
891 eth_xmc4xxx_mask_unused_interrupts(dev_cfg->regs);
892
893 #if !DT_INST_NODE_HAS_PROP(0, local_mac_address)
894 gen_random_mac(dev_data->mac_addr, INFINEON_OUI_B0, INFINEON_OUI_B1, INFINEON_OUI_B2);
895 #endif
896 eth_xmc4xxx_set_mac_address(dev_cfg->regs, dev_data->mac_addr);
897
898 uint32_t reg = dev_cfg->regs->MAC_FRAME_FILTER;
899 /* enable reception of broadcast frames */
900 reg &= ~ETH_MAC_FRAME_FILTER_DBF_Msk;
901 /* pass all multicast frames */
902 reg |= ETH_MAC_FRAME_FILTER_PM_Msk;
903 dev_cfg->regs->MAC_FRAME_FILTER = reg;
904
905 return eth_xmc4xxx_init_timestamp_control_reg(dev_cfg->regs);
906 }
907
eth_xmc4xxx_capabilities(const struct device * dev)908 static enum ethernet_hw_caps eth_xmc4xxx_capabilities(const struct device *dev)
909 {
910 ARG_UNUSED(dev);
911 enum ethernet_hw_caps caps = ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T |
912 ETHERNET_HW_TX_CHKSUM_OFFLOAD | ETHERNET_HW_RX_CHKSUM_OFFLOAD;
913
914 #if defined(CONFIG_PTP_CLOCK_XMC4XXX)
915 caps |= ETHERNET_PTP;
916 #endif
917
918 #if defined(CONFIG_NET_VLAN)
919 caps |= ETHERNET_HW_VLAN;
920 #endif
921
922 return caps;
923 }
924
eth_xmc4xxx_set_config(const struct device * dev,enum ethernet_config_type type,const struct ethernet_config * config)925 static int eth_xmc4xxx_set_config(const struct device *dev, enum ethernet_config_type type,
926 const struct ethernet_config *config)
927 {
928 struct eth_xmc4xxx_data *dev_data = dev->data;
929 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
930
931 switch (type) {
932 case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
933 memcpy(dev_data->mac_addr, config->mac_address.addr, sizeof(dev_data->mac_addr));
934 LOG_INF("%s MAC set to %02x:%02x:%02x:%02x:%02x:%02x", dev->name,
935 dev_data->mac_addr[0], dev_data->mac_addr[1], dev_data->mac_addr[2],
936 dev_data->mac_addr[3], dev_data->mac_addr[4], dev_data->mac_addr[5]);
937
938 eth_xmc4xxx_set_mac_address(dev_cfg->regs, dev_data->mac_addr);
939 net_if_set_link_addr(dev_data->iface, dev_data->mac_addr,
940 sizeof(dev_data->mac_addr), NET_LINK_ETHERNET);
941 return 0;
942 default:
943 break;
944 }
945
946 return -ENOTSUP;
947 }
948
eth_xmc4xxx_irq_config(void)949 static void eth_xmc4xxx_irq_config(void)
950 {
951 IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), eth_xmc4xxx_isr,
952 DEVICE_DT_INST_GET(0), 0);
953 irq_enable(DT_INST_IRQN(0));
954 }
955
956 #if defined(CONFIG_PTP_CLOCK_XMC4XXX)
eth_xmc4xxx_get_ptp_clock(const struct device * dev)957 static const struct device *eth_xmc4xxx_get_ptp_clock(const struct device *dev)
958 {
959 struct eth_xmc4xxx_data *dev_data = dev->data;
960
961 return dev_data->ptp_clock;
962 }
963 #endif
964
965
966 #if defined(CONFIG_ETH_XMC4XXX_VLAN_HW_FILTER)
eth_xmc4xxx_vlan_setup(const struct device * dev,struct net_if * iface,uint16_t tag,bool enable)967 int eth_xmc4xxx_vlan_setup(const struct device *dev, struct net_if *iface, uint16_t tag,
968 bool enable)
969 {
970 ARG_UNUSED(iface);
971 const struct eth_xmc4xxx_config *dev_cfg = dev->config;
972
973 LOG_INF("Configuring vlan %d", tag);
974
975 if (enable) {
976 dev_cfg->regs->VLAN_TAG = FIELD_PREP(ETH_VLAN_TAG_VL_Msk, tag) |
977 ETH_VLAN_TAG_ETV_Msk |
978 ETH_VLAN_TAG_ESVL_Msk;
979 dev_cfg->regs->MAC_FRAME_FILTER |= ETH_MAC_FRAME_FILTER_VTFE_Msk;
980 } else {
981 dev_cfg->regs->VLAN_TAG = 0;
982 dev_cfg->regs->MAC_FRAME_FILTER &= ~ETH_MAC_FRAME_FILTER_VTFE_Msk;
983 }
984
985 return 0;
986 }
987 #endif
988
989 static const struct ethernet_api eth_xmc4xxx_api = {
990 .iface_api.init = eth_xmc4xxx_iface_init,
991 .send = eth_xmc4xxx_send,
992 .set_config = eth_xmc4xxx_set_config,
993 .get_capabilities = eth_xmc4xxx_capabilities,
994 #if defined(CONFIG_NET_STATISTICS_ETHERNET)
995 .get_stats = eth_xmc4xxx_stats,
996 #endif
997 #if defined(CONFIG_PTP_CLOCK_XMC4XXX)
998 .get_ptp_clock = eth_xmc4xxx_get_ptp_clock,
999 #endif
1000 #if defined(CONFIG_ETH_XMC4XXX_VLAN_HW_FILTER)
1001 .vlan_setup = eth_xmc4xxx_vlan_setup,
1002 #endif
1003 };
1004
1005 PINCTRL_DT_INST_DEFINE(0);
1006
1007 static struct eth_xmc4xxx_config eth_xmc4xxx_config = {
1008 .regs = (ETH_GLOBAL_TypeDef *)DT_REG_ADDR(DT_INST_PARENT(0)),
1009 .irq_config_func = eth_xmc4xxx_irq_config,
1010 .phy_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, phy_handle)),
1011 .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
1012 .port_ctrl = {
1013 .rxd0 = DT_INST_ENUM_IDX(0, rxd0_port_ctrl),
1014 .rxd1 = DT_INST_ENUM_IDX(0, rxd1_port_ctrl),
1015 .rxd2 = DT_INST_ENUM_IDX_OR(0, rxd2_port_ctrl, 0),
1016 .rxd3 = DT_INST_ENUM_IDX_OR(0, rxd3_port_ctrl, 0),
1017 .clk_rmii = DT_INST_ENUM_IDX(0, rmii_rx_clk_port_ctrl),
1018 .crs_dv = DT_INST_ENUM_IDX(0, crs_rx_dv_port_ctrl),
1019 .crs = DT_INST_ENUM_IDX_OR(0, crs_port_ctrl, 0),
1020 .rxer = DT_INST_ENUM_IDX(0, rxer_port_ctrl),
1021 .col = DT_INST_ENUM_IDX_OR(0, col_port_ctrl, 0),
1022 .clk_tx = DT_INST_ENUM_IDX_OR(0, tx_clk_port_ctrl, 0),
1023 .mode = DT_INST_ENUM_IDX_OR(0, phy_connection_type, 0),
1024 }
1025 };
1026
1027 static struct eth_xmc4xxx_data eth_xmc4xxx_data = {
1028 .mac_addr = DT_INST_PROP_OR(0, local_mac_address, {0}),
1029 };
1030
1031 ETH_NET_DEVICE_DT_INST_DEFINE(0, eth_xmc4xxx_init, NULL, ð_xmc4xxx_data, ð_xmc4xxx_config,
1032 CONFIG_ETH_INIT_PRIORITY, ð_xmc4xxx_api, NET_ETH_MTU);
1033
1034 #if defined(CONFIG_PTP_CLOCK_XMC4XXX)
1035
1036 struct ptp_context {
1037 const struct device *eth_dev;
1038 };
1039
1040 static struct ptp_context ptp_xmc4xxx_context_0;
1041
eth_xmc4xxx_ptp_clock_set(const struct device * dev,struct net_ptp_time * tm)1042 static int eth_xmc4xxx_ptp_clock_set(const struct device *dev, struct net_ptp_time *tm)
1043 {
1044 struct ptp_context *ptp_context = dev->data;
1045 const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
1046
1047 dev_cfg->regs->SYSTEM_TIME_NANOSECONDS_UPDATE = tm->nanosecond;
1048 dev_cfg->regs->SYSTEM_TIME_SECONDS_UPDATE = tm->second;
1049
1050 dev_cfg->regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSINIT_Msk;
1051 if (!WAIT_FOR((dev_cfg->regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSINIT_Msk) == 0,
1052 ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
1053 return -ETIMEDOUT;
1054 }
1055
1056 return 0;
1057 }
1058
eth_xmc4xxx_ptp_clock_get(const struct device * dev,struct net_ptp_time * tm)1059 static int eth_xmc4xxx_ptp_clock_get(const struct device *dev, struct net_ptp_time *tm)
1060 {
1061 struct ptp_context *ptp_context = dev->data;
1062 const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
1063
1064 uint32_t nanosecond_0 = dev_cfg->regs->SYSTEM_TIME_NANOSECONDS;
1065 uint32_t second_0 = dev_cfg->regs->SYSTEM_TIME_SECONDS;
1066
1067 uint32_t nanosecond_1 = dev_cfg->regs->SYSTEM_TIME_NANOSECONDS;
1068 uint32_t second_1 = dev_cfg->regs->SYSTEM_TIME_SECONDS;
1069
1070 /* check that there is no roll over while we read the timestamp. If roll over happens */
1071 /* just choose the later value */
1072 if (second_0 == second_1) {
1073 tm->second = second_0;
1074 tm->nanosecond = nanosecond_0;
1075 } else {
1076 tm->second = second_1;
1077 tm->nanosecond = nanosecond_1;
1078 }
1079
1080 return 0;
1081 }
1082
eth_xmc4xxx_ptp_clock_adjust(const struct device * dev,int increment)1083 static int eth_xmc4xxx_ptp_clock_adjust(const struct device *dev, int increment)
1084 {
1085 struct ptp_context *ptp_context = dev->data;
1086 const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
1087 uint32_t increment_tmp;
1088
1089 if ((increment <= -(int)NSEC_PER_SEC) || (increment >= (int)NSEC_PER_SEC)) {
1090 return -EINVAL;
1091 }
1092
1093 if (increment < 0) {
1094 increment_tmp = -increment;
1095 increment_tmp |= ETH_SYSTEM_TIME_NANOSECONDS_UPDATE_ADDSUB_Msk;
1096 } else {
1097 increment_tmp = increment;
1098 }
1099
1100 dev_cfg->regs->SYSTEM_TIME_NANOSECONDS_UPDATE = increment_tmp;
1101 dev_cfg->regs->SYSTEM_TIME_SECONDS_UPDATE = 0;
1102
1103 dev_cfg->regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSUPDT_Msk;
1104 if (!WAIT_FOR((dev_cfg->regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSUPDT_Msk) == 0,
1105 ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
1106 return -ETIMEDOUT;
1107 }
1108
1109 return 0;
1110 }
1111
eth_xmc4xxx_ptp_clock_rate_adjust(const struct device * dev,double ratio)1112 static int eth_xmc4xxx_ptp_clock_rate_adjust(const struct device *dev, double ratio)
1113 {
1114 struct ptp_context *ptp_context = dev->data;
1115 const struct eth_xmc4xxx_config *dev_cfg = ptp_context->eth_dev->config;
1116 uint64_t K = dev_cfg->regs->TIMESTAMP_ADDEND;
1117
1118 if (ratio < ETH_PTP_RATE_ADJUST_RATIO_MIN || ratio > ETH_PTP_RATE_ADJUST_RATIO_MAX) {
1119 return -EINVAL;
1120 }
1121
1122 /* f_out = f_cpu * K / 2^32, where K = TIMESTAMP_ADDEND. Target F_out = 50MHz */
1123 K = K * ratio + 0.5;
1124 if (K > UINT32_MAX) {
1125 return -EINVAL;
1126 }
1127 dev_cfg->regs->TIMESTAMP_ADDEND = K;
1128
1129 /* Addend register update */
1130 dev_cfg->regs->TIMESTAMP_CONTROL |= ETH_TIMESTAMP_CONTROL_TSADDREG_Msk;
1131 if (!WAIT_FOR((dev_cfg->regs->TIMESTAMP_CONTROL & ETH_TIMESTAMP_CONTROL_TSADDREG_Msk) == 0,
1132 ETH_TIMESTAMP_CONTROL_REG_TIMEOUT_USEC,)) {
1133 return -ETIMEDOUT;
1134 }
1135
1136 return 0;
1137 }
1138
1139 static const struct ptp_clock_driver_api ptp_api_xmc4xxx = {
1140 .set = eth_xmc4xxx_ptp_clock_set,
1141 .get = eth_xmc4xxx_ptp_clock_get,
1142 .adjust = eth_xmc4xxx_ptp_clock_adjust,
1143 .rate_adjust = eth_xmc4xxx_ptp_clock_rate_adjust,
1144 };
1145
ptp_clock_xmc4xxx_init(const struct device * port)1146 static int ptp_clock_xmc4xxx_init(const struct device *port)
1147 {
1148 const struct device *const eth_dev = DEVICE_DT_INST_GET(0);
1149 struct eth_xmc4xxx_data *dev_data = eth_dev->data;
1150 struct ptp_context *ptp_context = port->data;
1151
1152 dev_data->ptp_clock = port;
1153 ptp_context->eth_dev = eth_dev;
1154
1155 return 0;
1156 }
1157
1158 DEVICE_DEFINE(xmc4xxx_ptp_clock_0, PTP_CLOCK_NAME, ptp_clock_xmc4xxx_init, NULL,
1159 &ptp_xmc4xxx_context_0, NULL, POST_KERNEL, CONFIG_PTP_CLOCK_INIT_PRIORITY,
1160 &ptp_api_xmc4xxx);
1161
1162 #endif /* CONFIG_PTP_CLOCK_XMC4XXX */
1163