1 /*
2  * Copyright (c) 2017 Intel Corporation
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include <zephyr/ztest.h>
8 #include <zephyr/pm/pm.h>
9 
10 #define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACK_SIZE)
11 #define NUM_THREAD 4
12 static K_THREAD_STACK_ARRAY_DEFINE(tstack, NUM_THREAD, STACK_SIZE);
13 static struct k_thread tdata[NUM_THREAD];
14 
15 #define IDLE_THRESH 20
16 
17 /*sleep duration tickless*/
18 #define SLEEP_TICKLESS	 k_ticks_to_ms_floor64(IDLE_THRESH)
19 
20 /*sleep duration with tick*/
21 #define SLEEP_TICKFUL	 k_ticks_to_ms_floor64(IDLE_THRESH - 1)
22 
23 /*slice size is set as half of the sleep duration*/
24 #define SLICE_SIZE	 k_ticks_to_ms_floor64(IDLE_THRESH >> 1)
25 
26 /*maximum slice duration accepted by the test*/
27 #define SLICE_SIZE_LIMIT k_ticks_to_ms_floor64((IDLE_THRESH >> 1) + 1)
28 
29 /*align to millisecond boundary*/
30 #define ALIGN_MS_BOUNDARY()		       \
31 	do {				       \
32 		uint32_t t = k_uptime_get_32();   \
33 		while (t == k_uptime_get_32()) \
34 			Z_SPIN_DELAY(50);       \
35 	} while (0)
36 
37 K_SEM_DEFINE(sema, 0, NUM_THREAD);
38 static int64_t elapsed_slice;
39 
thread_tslice(void * p1,void * p2,void * p3)40 static void thread_tslice(void *p1, void *p2, void *p3)
41 {
42 	int64_t t = k_uptime_delta(&elapsed_slice);
43 
44 	TC_PRINT("elapsed slice %" PRId64 ", expected: <%" PRId64 ", %" PRId64 ">\n",
45 		t, SLICE_SIZE, SLICE_SIZE_LIMIT);
46 
47 	/**TESTPOINT: verify slicing scheduler behaves as expected*/
48 	zassert_true(t >= SLICE_SIZE);
49 	/*less than one tick delay*/
50 	zassert_true(t <= SLICE_SIZE_LIMIT);
51 
52 	/*keep the current thread busy for more than one slice*/
53 	k_busy_wait(1000 * SLEEP_TICKLESS);
54 	k_sem_give(&sema);
55 }
56 /**
57  * @defgroup  kernel_tickless_tests Tickless
58  * @ingroup all_tests
59  * @{
60  */
61 
62 
63 /**
64  * @brief Verify system clock with and without tickless idle
65  *
66  * @details Check if system clock recovers and works as expected
67  * when tickless idle is enabled and disabled.
68  */
ZTEST(tickless_concept,test_tickless_sysclock)69 ZTEST(tickless_concept, test_tickless_sysclock)
70 {
71 	volatile uint32_t t0, t1;
72 
73 	ALIGN_MS_BOUNDARY();
74 	t0 = k_uptime_get_32();
75 	k_msleep(SLEEP_TICKLESS);
76 	t1 = k_uptime_get_32();
77 	TC_PRINT("time %d, %d\n", t0, t1);
78 	/**TESTPOINT: verify system clock recovery after exiting tickless idle*/
79 	zassert_true((t1 - t0) >= SLEEP_TICKLESS);
80 
81 	ALIGN_MS_BOUNDARY();
82 	t0 = k_uptime_get_32();
83 	k_sem_take(&sema, K_MSEC(SLEEP_TICKFUL));
84 	t1 = k_uptime_get_32();
85 	TC_PRINT("time %d, %d\n", t0, t1);
86 	/**TESTPOINT: verify system clock recovery after exiting tickful idle*/
87 	zassert_true((t1 - t0) >= SLEEP_TICKFUL);
88 }
89 
90 /**
91  * @brief Verify tickless functionality with time slice
92  *
93  * @details Create threads of equal priority and enable time
94  * slice. Check if the threads execute more than a tick.
95  */
ZTEST(tickless_concept,test_tickless_slice)96 ZTEST(tickless_concept, test_tickless_slice)
97 {
98 	k_tid_t tid[NUM_THREAD];
99 
100 	k_sem_reset(&sema);
101 	/*enable time slice*/
102 	k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(0));
103 
104 	/*create delayed threads with equal preemptive priority*/
105 	for (int i = 0; i < NUM_THREAD; i++) {
106 		tid[i] = k_thread_create(&tdata[i], tstack[i], STACK_SIZE,
107 					 thread_tslice, NULL, NULL, NULL,
108 					 K_PRIO_PREEMPT(0), 0,
109 					 K_MSEC(SLICE_SIZE));
110 	}
111 	k_uptime_delta(&elapsed_slice);
112 	/*relinquish CPU and wait for each thread to complete*/
113 	for (int i = 0; i < NUM_THREAD; i++) {
114 		k_sem_take(&sema, K_FOREVER);
115 	}
116 
117 	/*test case teardown*/
118 	for (int i = 0; i < NUM_THREAD; i++) {
119 		k_thread_abort(tid[i]);
120 	}
121 	/*disable time slice*/
122 	k_sched_time_slice_set(0, K_PRIO_PREEMPT(0));
123 }
124 
125 /**
126  * @}
127  */
128 
129 ZTEST_SUITE(tickless_concept, NULL, NULL,
130 		ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL);
131