1 /*
2 * Copyright (c) 2020 Bose Corporation
3 * Copyright (c) 2021-2022 Nordic Semiconductor ASA
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * The static functions in this file operate on Big Endian (BE) as the
8 * underlying encryption library is BE as well. Furthermore, the sample data
9 * in the CSIS spec is also provided as BE, and logging values as BE will make
10 * it easier to compare.
11 */
12 #include "csip_crypto.h"
13 #include <zephyr/bluetooth/crypto.h>
14 #include <tinycrypt/constants.h>
15 #include <tinycrypt/utils.h>
16 #include <tinycrypt/aes.h>
17 #include <tinycrypt/cmac_mode.h>
18 #include <tinycrypt/ccm_mode.h>
19 #include <zephyr/sys/byteorder.h>
20
21 #include "common/bt_str.h"
22
23 #include <zephyr/logging/log.h>
24
25 LOG_MODULE_REGISTER(bt_csip_crypto, CONFIG_BT_CSIP_SET_MEMBER_CRYPTO_LOG_LEVEL);
26
27 #define BT_CSIP_CRYPTO_PADDING_SIZE 13
28 #define BT_CSIP_PADDED_RAND_SIZE (BT_CSIP_CRYPTO_PADDING_SIZE + BT_CSIP_CRYPTO_PRAND_SIZE)
29 #define BT_CSIP_R_MASK BIT_MASK(24) /* r is 24 bit / 3 octet */
30
aes_cmac(const uint8_t key[BT_CSIP_CRYPTO_KEY_SIZE],const uint8_t * in,size_t in_len,uint8_t * out)31 static int aes_cmac(const uint8_t key[BT_CSIP_CRYPTO_KEY_SIZE],
32 const uint8_t *in, size_t in_len, uint8_t *out)
33 {
34 struct tc_aes_key_sched_struct sched;
35 struct tc_cmac_struct state;
36
37 /* TODO: Copy of the aes_cmac from smp.c: Can we merge them? */
38
39 if (tc_cmac_setup(&state, key, &sched) == TC_CRYPTO_FAIL) {
40 return -EIO;
41 }
42
43 if (tc_cmac_update(&state, in, in_len) == TC_CRYPTO_FAIL) {
44 return -EIO;
45 }
46
47 if (tc_cmac_final(out, &state) == TC_CRYPTO_FAIL) {
48 return -EIO;
49 }
50
51 return 0;
52 }
53
xor_128(const uint8_t a[16],const uint8_t b[16],uint8_t out[16])54 static void xor_128(const uint8_t a[16], const uint8_t b[16], uint8_t out[16])
55 {
56 size_t len = 16;
57 /* TODO: Identical to the xor_128 from smp.c: Move to util */
58
59 while (len--) {
60 *out++ = *a++ ^ *b++;
61 }
62 }
63
bt_csip_sih(const uint8_t sirk[BT_CSIP_SET_SIRK_SIZE],uint8_t r[BT_CSIP_CRYPTO_PRAND_SIZE],uint8_t out[BT_CSIP_CRYPTO_HASH_SIZE])64 int bt_csip_sih(const uint8_t sirk[BT_CSIP_SET_SIRK_SIZE], uint8_t r[BT_CSIP_CRYPTO_PRAND_SIZE],
65 uint8_t out[BT_CSIP_CRYPTO_HASH_SIZE])
66 {
67 uint8_t res[BT_CSIP_PADDED_RAND_SIZE]; /* need to store 128 bit */
68 int err;
69
70 if ((r[BT_CSIP_CRYPTO_PRAND_SIZE - 1] & BIT(7)) ||
71 ((r[BT_CSIP_CRYPTO_PRAND_SIZE - 1] & BIT(6)) == 0)) {
72 LOG_DBG("Invalid r %s", bt_hex(r, BT_CSIP_CRYPTO_PRAND_SIZE));
73 }
74
75 LOG_DBG("SIRK %s", bt_hex(sirk, BT_CSIP_SET_SIRK_SIZE));
76 LOG_DBG("r %s", bt_hex(r, BT_CSIP_CRYPTO_PRAND_SIZE));
77
78 /* r' = padding || r */
79 (void)memset(res + BT_CSIP_CRYPTO_PRAND_SIZE, 0, BT_CSIP_CRYPTO_PADDING_SIZE);
80 memcpy(res, r, BT_CSIP_CRYPTO_PRAND_SIZE);
81
82 LOG_DBG("r' %s", bt_hex(res, sizeof(res)));
83
84 err = bt_encrypt_le(sirk, res, res);
85
86 if (err != 0) {
87 return err;
88 }
89
90 /* The output of the function sih is:
91 * sih(k, r) = e(k, r') mod 2^24
92 * The output of the security function e is then truncated to 24 bits
93 * by taking the least significant 24 bits of the output of e as the
94 * result of sih.
95 */
96
97 LOG_DBG("res %s", bt_hex(res, sizeof(res)));
98
99 /* Result is the lowest 3 bytes */
100 memcpy(out, res, BT_CSIP_CRYPTO_HASH_SIZE);
101
102 LOG_DBG("sih %s", bt_hex(out, BT_CSIP_CRYPTO_HASH_SIZE));
103
104 return 0;
105 }
106
107 /**
108 * @brief k1 derivation function
109 *
110 * The key derivation function k1 is used to derive a key. The derived key is
111 * used to encrypt and decrypt the value of the Set Identity Resolving Key
112 * characteristic.
113 *
114 * @param n n is 0 or more bytes.
115 * @param n_size Number of bytes in @p n.
116 * @param salt A 16-byte salt.
117 * @param p p is 0 or more bytes.
118 * @param p_size Number of bytes in @p p.
119 * @param out A 16-byte output buffer.
120 * @return int 0 on success, any other value indicates a failure.
121 */
k1(const uint8_t * n,size_t n_size,const uint8_t salt[BT_CSIP_CRYPTO_SALT_SIZE],const uint8_t * p,size_t p_size,uint8_t out[16])122 static int k1(const uint8_t *n, size_t n_size,
123 const uint8_t salt[BT_CSIP_CRYPTO_SALT_SIZE],
124 const uint8_t *p, size_t p_size, uint8_t out[16])
125 {
126 /* TODO: This is basically a duplicate of bt_mesh_k1 - Perhaps they can
127 * be merged
128 */
129 uint8_t t[16];
130 int err;
131
132 /*
133 * T = AES_CMAC_SALT(N)
134 *
135 * k1(N, SALT, P) = AES-CMAC_T(P)
136 */
137
138 LOG_DBG("BE: n %s", bt_hex(n, n_size));
139 LOG_DBG("BE: salt %s", bt_hex(salt, BT_CSIP_CRYPTO_SALT_SIZE));
140 LOG_DBG("BE: p %s", bt_hex(p, p_size));
141
142 err = aes_cmac(salt, n, n_size, t);
143
144 LOG_DBG("BE: t %s", bt_hex(t, sizeof(t)));
145
146 if (err) {
147 return err;
148 }
149
150 err = aes_cmac(t, p, p_size, out);
151
152 LOG_DBG("BE: out %s", bt_hex(out, 16));
153
154 return err;
155 }
156
157 /**
158 * @brief s1 SALT generation function
159 *
160 * @param m A non-zero length octet array or ASCII encoded string
161 * @param m_size Size of @p m.
162 * @param out 16-byte output buffer.
163 * @return int 0 on success, any other value indicates a failure.
164 */
s1(const uint8_t * m,size_t m_size,uint8_t out[BT_CSIP_CRYPTO_SALT_SIZE])165 static int s1(const uint8_t *m, size_t m_size,
166 uint8_t out[BT_CSIP_CRYPTO_SALT_SIZE])
167 {
168 uint8_t zero[16];
169 int err;
170
171 /*
172 * s1(M) = AES-CMAC_zero(M)
173 */
174
175 LOG_DBG("BE: m %s", bt_hex(m, m_size));
176
177 memset(zero, 0, sizeof(zero));
178
179 err = aes_cmac(zero, m, m_size, out);
180
181 LOG_DBG("BE: out %s", bt_hex(out, 16));
182
183 return err;
184 }
185
bt_csip_sef(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE],const uint8_t sirk[BT_CSIP_SET_SIRK_SIZE],uint8_t out_sirk[BT_CSIP_SET_SIRK_SIZE])186 int bt_csip_sef(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE],
187 const uint8_t sirk[BT_CSIP_SET_SIRK_SIZE],
188 uint8_t out_sirk[BT_CSIP_SET_SIRK_SIZE])
189 {
190 const uint8_t m[] = {'S', 'I', 'R', 'K', 'e', 'n', 'c'};
191 const uint8_t p[] = {'c', 's', 'i', 's'};
192 uint8_t s1_out[BT_CSIP_CRYPTO_SALT_SIZE];
193 uint8_t k1_out[BT_CSIP_CRYPTO_KEY_SIZE];
194 uint8_t k1_tmp[BT_CSIP_CRYPTO_KEY_SIZE];
195 int err;
196
197 /*
198 * sef(K, SIRK) = k1(K, s1("SIRKenc"), "csis") ^ SIRK
199 */
200
201 LOG_DBG("SIRK %s", bt_hex(sirk, BT_CSIP_SET_SIRK_SIZE));
202
203 if (IS_ENABLED(CONFIG_LITTLE_ENDIAN)) {
204 /* Swap because aes_cmac is big endian
205 * and we are little endian
206 */
207 sys_memcpy_swap(k1_tmp, k, sizeof(k1_tmp));
208 } else {
209 (void)memcpy(k1_tmp, k, sizeof(k1_tmp));
210 }
211 LOG_DBG("BE: k %s", bt_hex(k1_tmp, sizeof(k1_tmp)));
212
213 err = s1(m, sizeof(m), s1_out);
214 if (err) {
215 return err;
216 }
217
218 LOG_DBG("BE: s1 result %s", bt_hex(s1_out, sizeof(s1_out)));
219
220 err = k1(k1_tmp, sizeof(k1_tmp), s1_out, p, sizeof(p), k1_out);
221 if (err) {
222 return err;
223 }
224
225 LOG_DBG("BE: k1 result %s", bt_hex(k1_out, sizeof(k1_out)));
226
227 if (IS_ENABLED(CONFIG_LITTLE_ENDIAN)) {
228 /* Swap result back to little endian */
229 sys_mem_swap(k1_out, sizeof(k1_out));
230 }
231
232 xor_128(k1_out, sirk, out_sirk);
233 LOG_DBG("out %s", bt_hex(out_sirk, BT_CSIP_SET_SIRK_SIZE));
234
235 return 0;
236 }
237
bt_csip_sdf(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE],const uint8_t enc_sirk[BT_CSIP_SET_SIRK_SIZE],uint8_t out_sirk[BT_CSIP_SET_SIRK_SIZE])238 int bt_csip_sdf(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE],
239 const uint8_t enc_sirk[BT_CSIP_SET_SIRK_SIZE],
240 uint8_t out_sirk[BT_CSIP_SET_SIRK_SIZE])
241 {
242 /* SIRK encryption is currently symmetric, which means that we can
243 * simply apply the sef function to decrypt it.
244 */
245
246 /*
247 * sdf(K, EncSIRK) = k1(K, s1("SIRKenc"), "csis") ^ EncSIRK
248 */
249
250 LOG_DBG("Running SDF as SEF");
251 return bt_csip_sef(k, enc_sirk, out_sirk);
252 }
253