1 /*
2 * Copyright (c) 1997-2016 Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/kernel.h>
8
9 #include <zephyr/init.h>
10 #include <zephyr/syscall_handler.h>
11 #include <stdbool.h>
12 #include <zephyr/spinlock.h>
13 #include <ksched.h>
14 #include <wait_q.h>
15
16 static struct k_spinlock lock;
17
18 #ifdef CONFIG_OBJ_CORE_TIMER
19 static struct k_obj_type obj_type_timer;
20 #endif
21
22 /**
23 * @brief Handle expiration of a kernel timer object.
24 *
25 * @param t Timeout used by the timer.
26 */
z_timer_expiration_handler(struct _timeout * t)27 void z_timer_expiration_handler(struct _timeout *t)
28 {
29 struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout);
30 struct k_thread *thread;
31 k_spinlock_key_t key = k_spin_lock(&lock);
32
33 /* In sys_clock_announce(), when a timeout expires, it is first removed
34 * from the timeout list, then its expiration handler is called (with
35 * unlocked interrupts). For kernel timers, the expiration handler is
36 * this function. Usually, the timeout structure related to the timer
37 * that is handled here will not be linked to the timeout list at this
38 * point. But it may happen that before this function is executed and
39 * interrupts are locked again, a given timer gets restarted from an
40 * interrupt context that has a priority higher than the system timer
41 * interrupt. Then, the timeout structure for this timer will turn out
42 * to be linked to the timeout list. And in such case, since the timer
43 * was restarted, its expiration handler should not be executed then,
44 * so the function exits immediately.
45 */
46 if (sys_dnode_is_linked(&t->node)) {
47 k_spin_unlock(&lock, key);
48 return;
49 }
50
51 /*
52 * if the timer is periodic, start it again; don't add _TICK_ALIGN
53 * since we're already aligned to a tick boundary
54 */
55 if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) &&
56 !K_TIMEOUT_EQ(timer->period, K_FOREVER)) {
57 k_timeout_t next = timer->period;
58
59 /* see note about z_add_timeout() in z_impl_k_timer_start() */
60 next.ticks = MAX(next.ticks - 1, 0);
61
62 #ifdef CONFIG_TIMEOUT_64BIT
63 /* Exploit the fact that uptime during a kernel
64 * timeout handler reflects the time of the scheduled
65 * event and not real time to get some inexpensive
66 * protection against late interrupts. If we're
67 * delayed for any reason, we still end up calculating
68 * the next expiration as a regular stride from where
69 * we "should" have run. Requires absolute timeouts.
70 * (Note offset by one: we're nominally at the
71 * beginning of a tick, so need to defeat the "round
72 * down" behavior on timeout addition).
73 */
74 next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + next.ticks);
75 #endif
76 z_add_timeout(&timer->timeout, z_timer_expiration_handler,
77 next);
78 }
79
80 /* update timer's status */
81 timer->status += 1U;
82
83 /* invoke timer expiry function */
84 if (timer->expiry_fn != NULL) {
85 /* Unlock for user handler. */
86 k_spin_unlock(&lock, key);
87 timer->expiry_fn(timer);
88 key = k_spin_lock(&lock);
89 }
90
91 if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
92 k_spin_unlock(&lock, key);
93 return;
94 }
95
96 thread = z_waitq_head(&timer->wait_q);
97
98 if (thread == NULL) {
99 k_spin_unlock(&lock, key);
100 return;
101 }
102
103 z_unpend_thread_no_timeout(thread);
104
105 arch_thread_return_value_set(thread, 0);
106
107 k_spin_unlock(&lock, key);
108
109 z_ready_thread(thread);
110 }
111
112
k_timer_init(struct k_timer * timer,k_timer_expiry_t expiry_fn,k_timer_stop_t stop_fn)113 void k_timer_init(struct k_timer *timer,
114 k_timer_expiry_t expiry_fn,
115 k_timer_stop_t stop_fn)
116 {
117 timer->expiry_fn = expiry_fn;
118 timer->stop_fn = stop_fn;
119 timer->status = 0U;
120
121 if (IS_ENABLED(CONFIG_MULTITHREADING)) {
122 z_waitq_init(&timer->wait_q);
123 }
124
125 z_init_timeout(&timer->timeout);
126
127 SYS_PORT_TRACING_OBJ_INIT(k_timer, timer);
128
129 timer->user_data = NULL;
130
131 z_object_init(timer);
132
133 #ifdef CONFIG_OBJ_CORE_TIMER
134 k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer);
135 #endif
136 }
137
138
z_impl_k_timer_start(struct k_timer * timer,k_timeout_t duration,k_timeout_t period)139 void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration,
140 k_timeout_t period)
141 {
142 SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period);
143
144 if (K_TIMEOUT_EQ(duration, K_FOREVER)) {
145 return;
146 }
147
148 /* z_add_timeout() always adds one to the incoming tick count
149 * to round up to the next tick (by convention it waits for
150 * "at least as long as the specified timeout"), but the
151 * period interval is always guaranteed to be reset from
152 * within the timer ISR, so no round up is desired and 1 is
153 * subtracted in there.
154 *
155 * Note that the duration (!) value gets the same treatment
156 * for backwards compatibility. This is unfortunate
157 * (i.e. k_timer_start() doesn't treat its initial sleep
158 * argument the same way k_sleep() does), but historical. The
159 * timer_api test relies on this behavior.
160 */
161 if (Z_TICK_ABS(duration.ticks) < 0) {
162 duration.ticks = MAX(duration.ticks - 1, 0);
163 }
164
165 (void)z_abort_timeout(&timer->timeout);
166 timer->period = period;
167 timer->status = 0U;
168
169 z_add_timeout(&timer->timeout, z_timer_expiration_handler,
170 duration);
171 }
172
173 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_start(struct k_timer * timer,k_timeout_t duration,k_timeout_t period)174 static inline void z_vrfy_k_timer_start(struct k_timer *timer,
175 k_timeout_t duration,
176 k_timeout_t period)
177 {
178 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
179 z_impl_k_timer_start(timer, duration, period);
180 }
181 #include <syscalls/k_timer_start_mrsh.c>
182 #endif
183
z_impl_k_timer_stop(struct k_timer * timer)184 void z_impl_k_timer_stop(struct k_timer *timer)
185 {
186 SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer);
187
188 bool inactive = (z_abort_timeout(&timer->timeout) != 0);
189
190 if (inactive) {
191 return;
192 }
193
194 if (timer->stop_fn != NULL) {
195 timer->stop_fn(timer);
196 }
197
198 if (IS_ENABLED(CONFIG_MULTITHREADING)) {
199 struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q);
200
201 if (pending_thread != NULL) {
202 z_ready_thread(pending_thread);
203 z_reschedule_unlocked();
204 }
205 }
206 }
207
208 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_stop(struct k_timer * timer)209 static inline void z_vrfy_k_timer_stop(struct k_timer *timer)
210 {
211 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
212 z_impl_k_timer_stop(timer);
213 }
214 #include <syscalls/k_timer_stop_mrsh.c>
215 #endif
216
z_impl_k_timer_status_get(struct k_timer * timer)217 uint32_t z_impl_k_timer_status_get(struct k_timer *timer)
218 {
219 k_spinlock_key_t key = k_spin_lock(&lock);
220 uint32_t result = timer->status;
221
222 timer->status = 0U;
223 k_spin_unlock(&lock, key);
224
225 return result;
226 }
227
228 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_status_get(struct k_timer * timer)229 static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer)
230 {
231 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
232 return z_impl_k_timer_status_get(timer);
233 }
234 #include <syscalls/k_timer_status_get_mrsh.c>
235 #endif
236
z_impl_k_timer_status_sync(struct k_timer * timer)237 uint32_t z_impl_k_timer_status_sync(struct k_timer *timer)
238 {
239 __ASSERT(!arch_is_in_isr(), "");
240 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer);
241
242 if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
243 uint32_t result;
244
245 do {
246 k_spinlock_key_t key = k_spin_lock(&lock);
247
248 if (!z_is_inactive_timeout(&timer->timeout)) {
249 result = *(volatile uint32_t *)&timer->status;
250 timer->status = 0U;
251 k_spin_unlock(&lock, key);
252 if (result > 0) {
253 break;
254 }
255 } else {
256 result = timer->status;
257 k_spin_unlock(&lock, key);
258 break;
259 }
260 } while (true);
261
262 return result;
263 }
264
265 k_spinlock_key_t key = k_spin_lock(&lock);
266 uint32_t result = timer->status;
267
268 if (result == 0U) {
269 if (!z_is_inactive_timeout(&timer->timeout)) {
270 SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER);
271
272 /* wait for timer to expire or stop */
273 (void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER);
274
275 /* get updated timer status */
276 key = k_spin_lock(&lock);
277 result = timer->status;
278 } else {
279 /* timer is already stopped */
280 }
281 } else {
282 /* timer has already expired at least once */
283 }
284
285 timer->status = 0U;
286 k_spin_unlock(&lock, key);
287
288 /**
289 * @note New tracing hook
290 */
291 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result);
292
293 return result;
294 }
295
296 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_status_sync(struct k_timer * timer)297 static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer)
298 {
299 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
300 return z_impl_k_timer_status_sync(timer);
301 }
302 #include <syscalls/k_timer_status_sync_mrsh.c>
303
z_vrfy_k_timer_remaining_ticks(const struct k_timer * timer)304 static inline k_ticks_t z_vrfy_k_timer_remaining_ticks(
305 const struct k_timer *timer)
306 {
307 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
308 return z_impl_k_timer_remaining_ticks(timer);
309 }
310 #include <syscalls/k_timer_remaining_ticks_mrsh.c>
311
z_vrfy_k_timer_expires_ticks(const struct k_timer * timer)312 static inline k_ticks_t z_vrfy_k_timer_expires_ticks(
313 const struct k_timer *timer)
314 {
315 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
316 return z_impl_k_timer_expires_ticks(timer);
317 }
318 #include <syscalls/k_timer_expires_ticks_mrsh.c>
319
z_vrfy_k_timer_user_data_get(const struct k_timer * timer)320 static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer)
321 {
322 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
323 return z_impl_k_timer_user_data_get(timer);
324 }
325 #include <syscalls/k_timer_user_data_get_mrsh.c>
326
z_vrfy_k_timer_user_data_set(struct k_timer * timer,void * user_data)327 static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer,
328 void *user_data)
329 {
330 Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
331 z_impl_k_timer_user_data_set(timer, user_data);
332 }
333 #include <syscalls/k_timer_user_data_set_mrsh.c>
334
335 #endif
336
337 #ifdef CONFIG_OBJ_CORE_TIMER
init_timer_obj_core_list(void)338 static int init_timer_obj_core_list(void)
339 {
340 /* Initialize timer object type */
341
342 z_obj_type_init(&obj_type_timer, K_OBJ_TYPE_TIMER_ID,
343 offsetof(struct k_timer, obj_core));
344
345 /* Initialize and link statically defined timers */
346
347 STRUCT_SECTION_FOREACH(k_timer, timer) {
348 k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer);
349 }
350
351 return 0;
352 }
353 SYS_INIT(init_timer_obj_core_list, PRE_KERNEL_1,
354 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
355 #endif
356