1 /*
2  * Copyright (c) 2016 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file @brief mutex kernel services
9  *
10  * This module contains routines for handling mutex locking and unlocking.
11  *
12  * Mutexes implement a priority inheritance algorithm that boosts the priority
13  * level of the owning thread to match the priority level of the highest
14  * priority thread waiting on the mutex.
15  *
16  * Each mutex that contributes to priority inheritance must be released in the
17  * reverse order in which it was acquired.  Furthermore each subsequent mutex
18  * that contributes to raising the owning thread's priority level must be
19  * acquired at a point after the most recent "bumping" of the priority level.
20  *
21  * For example, if thread A has two mutexes contributing to the raising of its
22  * priority level, the second mutex M2 must be acquired by thread A after
23  * thread A's priority level was bumped due to owning the first mutex M1.
24  * When releasing the mutex, thread A must release M2 before it releases M1.
25  * Failure to follow this nested model may result in threads running at
26  * unexpected priority levels (too high, or too low).
27  */
28 
29 #include <zephyr/kernel.h>
30 #include <zephyr/kernel_structs.h>
31 #include <zephyr/toolchain.h>
32 #include <ksched.h>
33 #include <wait_q.h>
34 #include <errno.h>
35 #include <zephyr/init.h>
36 #include <zephyr/syscall_handler.h>
37 #include <zephyr/tracing/tracing.h>
38 #include <zephyr/sys/check.h>
39 #include <zephyr/logging/log.h>
40 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
41 
42 /* We use a global spinlock here because some of the synchronization
43  * is protecting things like owner thread priorities which aren't
44  * "part of" a single k_mutex.  Should move those bits of the API
45  * under the scheduler lock so we can break this up.
46  */
47 static struct k_spinlock lock;
48 
49 #ifdef CONFIG_OBJ_CORE_MUTEX
50 static struct k_obj_type obj_type_mutex;
51 #endif
52 
z_impl_k_mutex_init(struct k_mutex * mutex)53 int z_impl_k_mutex_init(struct k_mutex *mutex)
54 {
55 	mutex->owner = NULL;
56 	mutex->lock_count = 0U;
57 
58 	z_waitq_init(&mutex->wait_q);
59 
60 	z_object_init(mutex);
61 
62 #ifdef CONFIG_OBJ_CORE_MUTEX
63 	k_obj_core_init_and_link(K_OBJ_CORE(mutex), &obj_type_mutex);
64 #endif
65 
66 	SYS_PORT_TRACING_OBJ_INIT(k_mutex, mutex, 0);
67 
68 	return 0;
69 }
70 
71 #ifdef CONFIG_USERSPACE
z_vrfy_k_mutex_init(struct k_mutex * mutex)72 static inline int z_vrfy_k_mutex_init(struct k_mutex *mutex)
73 {
74 	Z_OOPS(Z_SYSCALL_OBJ_INIT(mutex, K_OBJ_MUTEX));
75 	return z_impl_k_mutex_init(mutex);
76 }
77 #include <syscalls/k_mutex_init_mrsh.c>
78 #endif
79 
new_prio_for_inheritance(int32_t target,int32_t limit)80 static int32_t new_prio_for_inheritance(int32_t target, int32_t limit)
81 {
82 	int new_prio = z_is_prio_higher(target, limit) ? target : limit;
83 
84 	new_prio = z_get_new_prio_with_ceiling(new_prio);
85 
86 	return new_prio;
87 }
88 
adjust_owner_prio(struct k_mutex * mutex,int32_t new_prio)89 static bool adjust_owner_prio(struct k_mutex *mutex, int32_t new_prio)
90 {
91 	if (mutex->owner->base.prio != new_prio) {
92 
93 		LOG_DBG("%p (ready (y/n): %c) prio changed to %d (was %d)",
94 			mutex->owner, z_is_thread_ready(mutex->owner) ?
95 			'y' : 'n',
96 			new_prio, mutex->owner->base.prio);
97 
98 		return z_set_prio(mutex->owner, new_prio);
99 	}
100 	return false;
101 }
102 
z_impl_k_mutex_lock(struct k_mutex * mutex,k_timeout_t timeout)103 int z_impl_k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
104 {
105 	int new_prio;
106 	k_spinlock_key_t key;
107 	bool resched = false;
108 
109 	__ASSERT(!arch_is_in_isr(), "mutexes cannot be used inside ISRs");
110 
111 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mutex, lock, mutex, timeout);
112 
113 	key = k_spin_lock(&lock);
114 
115 	if (likely((mutex->lock_count == 0U) || (mutex->owner == _current))) {
116 
117 		mutex->owner_orig_prio = (mutex->lock_count == 0U) ?
118 					_current->base.prio :
119 					mutex->owner_orig_prio;
120 
121 		mutex->lock_count++;
122 		mutex->owner = _current;
123 
124 		LOG_DBG("%p took mutex %p, count: %d, orig prio: %d",
125 			_current, mutex, mutex->lock_count,
126 			mutex->owner_orig_prio);
127 
128 		k_spin_unlock(&lock, key);
129 
130 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, 0);
131 
132 		return 0;
133 	}
134 
135 	if (unlikely(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) {
136 		k_spin_unlock(&lock, key);
137 
138 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, -EBUSY);
139 
140 		return -EBUSY;
141 	}
142 
143 	SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_mutex, lock, mutex, timeout);
144 
145 	new_prio = new_prio_for_inheritance(_current->base.prio,
146 					    mutex->owner->base.prio);
147 
148 	LOG_DBG("adjusting prio up on mutex %p", mutex);
149 
150 	if (z_is_prio_higher(new_prio, mutex->owner->base.prio)) {
151 		resched = adjust_owner_prio(mutex, new_prio);
152 	}
153 
154 	int got_mutex = z_pend_curr(&lock, key, &mutex->wait_q, timeout);
155 
156 	LOG_DBG("on mutex %p got_mutex value: %d", mutex, got_mutex);
157 
158 	LOG_DBG("%p got mutex %p (y/n): %c", _current, mutex,
159 		got_mutex ? 'y' : 'n');
160 
161 	if (got_mutex == 0) {
162 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, 0);
163 		return 0;
164 	}
165 
166 	/* timed out */
167 
168 	LOG_DBG("%p timeout on mutex %p", _current, mutex);
169 
170 	key = k_spin_lock(&lock);
171 
172 	/*
173 	 * Check if mutex was unlocked after this thread was unpended.
174 	 * If so, skip adjusting owner's priority down.
175 	 */
176 	if (likely(mutex->owner != NULL)) {
177 		struct k_thread *waiter = z_waitq_head(&mutex->wait_q);
178 
179 		new_prio = (waiter != NULL) ?
180 			new_prio_for_inheritance(waiter->base.prio, mutex->owner_orig_prio) :
181 			mutex->owner_orig_prio;
182 
183 		LOG_DBG("adjusting prio down on mutex %p", mutex);
184 
185 		resched = adjust_owner_prio(mutex, new_prio) || resched;
186 	}
187 
188 	if (resched) {
189 		z_reschedule(&lock, key);
190 	} else {
191 		k_spin_unlock(&lock, key);
192 	}
193 
194 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, lock, mutex, timeout, -EAGAIN);
195 
196 	return -EAGAIN;
197 }
198 
199 #ifdef CONFIG_USERSPACE
z_vrfy_k_mutex_lock(struct k_mutex * mutex,k_timeout_t timeout)200 static inline int z_vrfy_k_mutex_lock(struct k_mutex *mutex,
201 				      k_timeout_t timeout)
202 {
203 	Z_OOPS(Z_SYSCALL_OBJ(mutex, K_OBJ_MUTEX));
204 	return z_impl_k_mutex_lock(mutex, timeout);
205 }
206 #include <syscalls/k_mutex_lock_mrsh.c>
207 #endif
208 
z_impl_k_mutex_unlock(struct k_mutex * mutex)209 int z_impl_k_mutex_unlock(struct k_mutex *mutex)
210 {
211 	struct k_thread *new_owner;
212 
213 	__ASSERT(!arch_is_in_isr(), "mutexes cannot be used inside ISRs");
214 
215 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mutex, unlock, mutex);
216 
217 	CHECKIF(mutex->owner == NULL) {
218 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, unlock, mutex, -EINVAL);
219 
220 		return -EINVAL;
221 	}
222 	/*
223 	 * The current thread does not own the mutex.
224 	 */
225 	CHECKIF(mutex->owner != _current) {
226 		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, unlock, mutex, -EPERM);
227 
228 		return -EPERM;
229 	}
230 
231 	/*
232 	 * Attempt to unlock a mutex which is unlocked. mutex->lock_count
233 	 * cannot be zero if the current thread is equal to mutex->owner,
234 	 * therefore no underflow check is required. Use assert to catch
235 	 * undefined behavior.
236 	 */
237 	__ASSERT_NO_MSG(mutex->lock_count > 0U);
238 
239 	LOG_DBG("mutex %p lock_count: %d", mutex, mutex->lock_count);
240 
241 	/*
242 	 * If we are the owner and count is greater than 1, then decrement
243 	 * the count and return and keep current thread as the owner.
244 	 */
245 	if (mutex->lock_count > 1U) {
246 		mutex->lock_count--;
247 		goto k_mutex_unlock_return;
248 	}
249 
250 	k_spinlock_key_t key = k_spin_lock(&lock);
251 
252 	adjust_owner_prio(mutex, mutex->owner_orig_prio);
253 
254 	/* Get the new owner, if any */
255 	new_owner = z_unpend_first_thread(&mutex->wait_q);
256 
257 	mutex->owner = new_owner;
258 
259 	LOG_DBG("new owner of mutex %p: %p (prio: %d)",
260 		mutex, new_owner, new_owner ? new_owner->base.prio : -1000);
261 
262 	if (new_owner != NULL) {
263 		/*
264 		 * new owner is already of higher or equal prio than first
265 		 * waiter since the wait queue is priority-based: no need to
266 		 * adjust its priority
267 		 */
268 		mutex->owner_orig_prio = new_owner->base.prio;
269 		arch_thread_return_value_set(new_owner, 0);
270 		z_ready_thread(new_owner);
271 		z_reschedule(&lock, key);
272 	} else {
273 		mutex->lock_count = 0U;
274 		k_spin_unlock(&lock, key);
275 	}
276 
277 
278 k_mutex_unlock_return:
279 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mutex, unlock, mutex, 0);
280 
281 	return 0;
282 }
283 
284 #ifdef CONFIG_USERSPACE
z_vrfy_k_mutex_unlock(struct k_mutex * mutex)285 static inline int z_vrfy_k_mutex_unlock(struct k_mutex *mutex)
286 {
287 	Z_OOPS(Z_SYSCALL_OBJ(mutex, K_OBJ_MUTEX));
288 	return z_impl_k_mutex_unlock(mutex);
289 }
290 #include <syscalls/k_mutex_unlock_mrsh.c>
291 #endif
292 
293 #ifdef CONFIG_OBJ_CORE_MUTEX
init_mutex_obj_core_list(void)294 static int init_mutex_obj_core_list(void)
295 {
296 	/* Initialize mutex object type */
297 
298 	z_obj_type_init(&obj_type_mutex, K_OBJ_TYPE_MUTEX_ID,
299 			offsetof(struct k_mutex, obj_core));
300 
301 	/* Initialize and link statically defined mutexs */
302 
303 	STRUCT_SECTION_FOREACH(k_mutex, mutex) {
304 		k_obj_core_init_and_link(K_OBJ_CORE(mutex), &obj_type_mutex);
305 	}
306 
307 	return 0;
308 }
309 
310 SYS_INIT(init_mutex_obj_core_list, PRE_KERNEL_1,
311 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
312 #endif
313