1 /*
2 * Copyright (c) 2023 Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /*
8 * USB device controller (UDC) driver skeleton
9 *
10 * This is a skeleton for a device controller driver using the UDC API.
11 * Please use it as a starting point for a driver implementation for your
12 * USB device controller. Maintaining a common style, terminology and
13 * abbreviations will allow us to speed up reviews and reduce maintenance.
14 * Copy UDC driver skeleton, remove all unrelated comments and replace the
15 * copyright notice with your own.
16 *
17 * Typically, a driver implementation contains only a single source file,
18 * but the large list of e.g. register definitions should be in a separate
19 * .h file.
20 *
21 * If you want to define a helper macro, check if there is something similar
22 * in include/zephyr/sys/util.h or include/zephyr/usb/usb_ch9.h that you can use.
23 * Please keep all identifiers and logging messages concise and clear.
24 */
25
26 #include "udc_common.h"
27
28 #include <string.h>
29 #include <stdio.h>
30
31 #include <zephyr/kernel.h>
32 #include <zephyr/drivers/usb/udc.h>
33
34 #include <zephyr/logging/log.h>
35 LOG_MODULE_REGISTER(udc_skeleton, CONFIG_UDC_DRIVER_LOG_LEVEL);
36
37 /*
38 * Structure for holding controller configuration items that can remain in
39 * non-volatile memory. This is usually accessed as
40 * const struct udc_skeleton_config *config = dev->config;
41 */
42 struct udc_skeleton_config {
43 size_t num_of_eps;
44 struct udc_ep_config *ep_cfg_in;
45 struct udc_ep_config *ep_cfg_out;
46 void (*make_thread)(const struct device *dev);
47 int speed_idx;
48 };
49
50 /*
51 * Structure to hold driver private data.
52 * Note that this is not accessible via dev->data, but as
53 * struct udc_skeleton_data *priv = udc_get_private(dev);
54 */
55 struct udc_skeleton_data {
56 struct k_thread thread_data;
57 };
58
59 /*
60 * You can use one thread per driver instance model or UDC driver workqueue,
61 * whichever model suits your needs best. If you decide to use the UDC workqueue,
62 * enable Kconfig option UDC_WORKQUEUE and remove the handler below and
63 * caller from the UDC_SKELETON_DEVICE_DEFINE macro.
64 */
skeleton_thread_handler(void * const arg)65 static ALWAYS_INLINE void skeleton_thread_handler(void *const arg)
66 {
67 const struct device *dev = (const struct device *)arg;
68
69 LOG_DBG("Driver %p thread started", dev);
70 while (true) {
71 k_msleep(1000);
72 }
73 }
74
75 /*
76 * This is called in the context of udc_ep_enqueue() and must
77 * not block. The driver can immediately claim the buffer if the queue is empty,
78 * but usually it is offloaded to a thread or workqueue to handle transfers
79 * in a single location. Please refer to existing driver implementations
80 * for examples.
81 */
udc_skeleton_ep_enqueue(const struct device * dev,struct udc_ep_config * const cfg,struct net_buf * buf)82 static int udc_skeleton_ep_enqueue(const struct device *dev,
83 struct udc_ep_config *const cfg,
84 struct net_buf *buf)
85 {
86 LOG_DBG("%p enqueue %p", dev, buf);
87 udc_buf_put(cfg, buf);
88
89 if (cfg->stat.halted) {
90 /*
91 * It is fine to enqueue a transfer for a halted endpoint,
92 * you need to make sure that transfers are retriggered when
93 * the halt is cleared.
94 *
95 * Always use the abbreviation 'ep' for the endpoint address
96 * and 'ep_idx' or 'ep_num' for the endpoint number identifiers.
97 * Although struct udc_ep_config uses address to be unambiguous
98 * in its context.
99 */
100 LOG_DBG("ep 0x%02x halted", cfg->addr);
101 return 0;
102 }
103
104 return 0;
105 }
106
107 /*
108 * This is called in the context of udc_ep_dequeue()
109 * and must remove all requests from an endpoint queue
110 * Successful removal should be reported to the higher level with
111 * ECONNABORTED as the request result.
112 * It is up to the request owner to clean up or reuse the buffer.
113 */
udc_skeleton_ep_dequeue(const struct device * dev,struct udc_ep_config * const cfg)114 static int udc_skeleton_ep_dequeue(const struct device *dev,
115 struct udc_ep_config *const cfg)
116 {
117 unsigned int lock_key;
118 struct net_buf *buf;
119
120 lock_key = irq_lock();
121
122 buf = udc_buf_get_all(dev, cfg->addr);
123 if (buf) {
124 udc_submit_ep_event(dev, buf, -ECONNABORTED);
125 }
126
127 irq_unlock(lock_key);
128
129 return 0;
130 }
131
132 /*
133 * Configure and make an endpoint ready for use.
134 * This is called in the context of udc_ep_enable() or udc_ep_enable_internal(),
135 * the latter of which may be used by the driver to enable control endpoints.
136 */
udc_skeleton_ep_enable(const struct device * dev,struct udc_ep_config * const cfg)137 static int udc_skeleton_ep_enable(const struct device *dev,
138 struct udc_ep_config *const cfg)
139 {
140 LOG_DBG("Enable ep 0x%02x", cfg->addr);
141
142 return 0;
143 }
144
145 /*
146 * Opposite function to udc_skeleton_ep_enable(). udc_ep_disable_internal()
147 * may be used by the driver to disable control endpoints.
148 */
udc_skeleton_ep_disable(const struct device * dev,struct udc_ep_config * const cfg)149 static int udc_skeleton_ep_disable(const struct device *dev,
150 struct udc_ep_config *const cfg)
151 {
152 LOG_DBG("Disable ep 0x%02x", cfg->addr);
153
154 return 0;
155 }
156
157 /* Halt endpoint. Halted endpoint should respond with a STALL handshake. */
udc_skeleton_ep_set_halt(const struct device * dev,struct udc_ep_config * const cfg)158 static int udc_skeleton_ep_set_halt(const struct device *dev,
159 struct udc_ep_config *const cfg)
160 {
161 LOG_DBG("Set halt ep 0x%02x", cfg->addr);
162
163 cfg->stat.halted = true;
164
165 return 0;
166 }
167
168 /*
169 * Opposite to halt endpoint. If there are requests in the endpoint queue,
170 * the next transfer should be prepared.
171 */
udc_skeleton_ep_clear_halt(const struct device * dev,struct udc_ep_config * const cfg)172 static int udc_skeleton_ep_clear_halt(const struct device *dev,
173 struct udc_ep_config *const cfg)
174 {
175 LOG_DBG("Clear halt ep 0x%02x", cfg->addr);
176 cfg->stat.halted = false;
177
178 return 0;
179 }
180
udc_skeleton_set_address(const struct device * dev,const uint8_t addr)181 static int udc_skeleton_set_address(const struct device *dev, const uint8_t addr)
182 {
183 LOG_DBG("Set new address %u for %p", addr, dev);
184
185 return 0;
186 }
187
udc_skeleton_host_wakeup(const struct device * dev)188 static int udc_skeleton_host_wakeup(const struct device *dev)
189 {
190 LOG_DBG("Remote wakeup from %p", dev);
191
192 return 0;
193 }
194
195 /* Return actual USB device speed */
udc_skeleton_device_speed(const struct device * dev)196 static enum udc_bus_speed udc_skeleton_device_speed(const struct device *dev)
197 {
198 struct udc_data *data = dev->data;
199
200 return data->caps.hs ? UDC_BUS_SPEED_HS : UDC_BUS_SPEED_FS;
201 }
202
udc_skeleton_enable(const struct device * dev)203 static int udc_skeleton_enable(const struct device *dev)
204 {
205 LOG_DBG("Enable device %p", dev);
206
207 return 0;
208 }
209
udc_skeleton_disable(const struct device * dev)210 static int udc_skeleton_disable(const struct device *dev)
211 {
212 LOG_DBG("Enable device %p", dev);
213
214 return 0;
215 }
216
217 /*
218 * Prepare and configure most of the parts, if the controller has a way
219 * of detecting VBUS activity it should be enabled here.
220 * Only udc_skeleton_enable() makes device visible to the host.
221 */
udc_skeleton_init(const struct device * dev)222 static int udc_skeleton_init(const struct device *dev)
223 {
224 if (udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT,
225 USB_EP_TYPE_CONTROL, 64, 0)) {
226 LOG_ERR("Failed to enable control endpoint");
227 return -EIO;
228 }
229
230 if (udc_ep_enable_internal(dev, USB_CONTROL_EP_IN,
231 USB_EP_TYPE_CONTROL, 64, 0)) {
232 LOG_ERR("Failed to enable control endpoint");
233 return -EIO;
234 }
235
236 return 0;
237 }
238
239 /* Shut down the controller completely */
udc_skeleton_shutdown(const struct device * dev)240 static int udc_skeleton_shutdown(const struct device *dev)
241 {
242 if (udc_ep_disable_internal(dev, USB_CONTROL_EP_OUT)) {
243 LOG_ERR("Failed to disable control endpoint");
244 return -EIO;
245 }
246
247 if (udc_ep_disable_internal(dev, USB_CONTROL_EP_IN)) {
248 LOG_ERR("Failed to disable control endpoint");
249 return -EIO;
250 }
251
252 return 0;
253 }
254
255 /*
256 * This is called once to initialize the controller and endpoints
257 * capabilities, and register endpoint structures.
258 */
udc_skeleton_driver_preinit(const struct device * dev)259 static int udc_skeleton_driver_preinit(const struct device *dev)
260 {
261 const struct udc_skeleton_config *config = dev->config;
262 struct udc_data *data = dev->data;
263 uint16_t mps = 1023;
264 int err;
265
266 /*
267 * You do not need to initialize it if your driver does not use
268 * udc_lock_internal() / udc_unlock_internal(), but implements its
269 * own mechanism.
270 */
271 k_mutex_init(&data->mutex);
272
273 data->caps.rwup = true;
274 data->caps.mps0 = UDC_MPS0_64;
275 if (config->speed_idx == 2) {
276 data->caps.hs = true;
277 mps = 1024;
278 }
279
280 for (int i = 0; i < config->num_of_eps; i++) {
281 config->ep_cfg_out[i].caps.out = 1;
282 if (i == 0) {
283 config->ep_cfg_out[i].caps.control = 1;
284 config->ep_cfg_out[i].caps.mps = 64;
285 } else {
286 config->ep_cfg_out[i].caps.bulk = 1;
287 config->ep_cfg_out[i].caps.interrupt = 1;
288 config->ep_cfg_out[i].caps.iso = 1;
289 config->ep_cfg_out[i].caps.mps = mps;
290 }
291
292 config->ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
293 err = udc_register_ep(dev, &config->ep_cfg_out[i]);
294 if (err != 0) {
295 LOG_ERR("Failed to register endpoint");
296 return err;
297 }
298 }
299
300 for (int i = 0; i < config->num_of_eps; i++) {
301 config->ep_cfg_in[i].caps.in = 1;
302 if (i == 0) {
303 config->ep_cfg_in[i].caps.control = 1;
304 config->ep_cfg_in[i].caps.mps = 64;
305 } else {
306 config->ep_cfg_in[i].caps.bulk = 1;
307 config->ep_cfg_in[i].caps.interrupt = 1;
308 config->ep_cfg_in[i].caps.iso = 1;
309 config->ep_cfg_in[i].caps.mps = mps;
310 }
311
312 config->ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
313 err = udc_register_ep(dev, &config->ep_cfg_in[i]);
314 if (err != 0) {
315 LOG_ERR("Failed to register endpoint");
316 return err;
317 }
318 }
319
320 config->make_thread(dev);
321 LOG_INF("Device %p (max. speed %d)", dev, config->speed_idx);
322
323 return 0;
324 }
325
udc_skeleton_lock(const struct device * dev)326 static int udc_skeleton_lock(const struct device *dev)
327 {
328 return udc_lock_internal(dev, K_FOREVER);
329 }
330
udc_skeleton_unlock(const struct device * dev)331 static int udc_skeleton_unlock(const struct device *dev)
332 {
333 return udc_unlock_internal(dev);
334 }
335
336 /*
337 * UDC API structure.
338 * Note, you do not need to implement basic checks, these are done by
339 * the UDC common layer udc_common.c
340 */
341 static const struct udc_api udc_skeleton_api = {
342 .lock = udc_skeleton_lock,
343 .unlock = udc_skeleton_unlock,
344 .device_speed = udc_skeleton_device_speed,
345 .init = udc_skeleton_init,
346 .enable = udc_skeleton_enable,
347 .disable = udc_skeleton_disable,
348 .shutdown = udc_skeleton_shutdown,
349 .set_address = udc_skeleton_set_address,
350 .host_wakeup = udc_skeleton_host_wakeup,
351 .ep_enable = udc_skeleton_ep_enable,
352 .ep_disable = udc_skeleton_ep_disable,
353 .ep_set_halt = udc_skeleton_ep_set_halt,
354 .ep_clear_halt = udc_skeleton_ep_clear_halt,
355 .ep_enqueue = udc_skeleton_ep_enqueue,
356 .ep_dequeue = udc_skeleton_ep_dequeue,
357 };
358
359 #define DT_DRV_COMPAT zephyr_udc_skeleton
360
361 /*
362 * A UDC driver should always be implemented as a multi-instance
363 * driver, even if your platform does not require it.
364 */
365 #define UDC_SKELETON_DEVICE_DEFINE(n) \
366 K_THREAD_STACK_DEFINE(udc_skeleton_stack_##n, CONFIG_UDC_SKELETON); \
367 \
368 static void udc_skeleton_thread_##n(void *dev, void *arg1, void *arg2) \
369 { \
370 skeleton_thread_handler(dev); \
371 } \
372 \
373 static void udc_skeleton_make_thread_##n(const struct device *dev) \
374 { \
375 struct udc_skeleton_data *priv = udc_get_private(dev); \
376 \
377 k_thread_create(&priv->thread_data, \
378 udc_skeleton_stack_##n, \
379 K_THREAD_STACK_SIZEOF(udc_skeleton_stack_##n), \
380 udc_skeleton_thread_##n, \
381 (void *)dev, NULL, NULL, \
382 K_PRIO_COOP(CONFIG_UDC_SKELETON_THREAD_PRIORITY),\
383 K_ESSENTIAL, \
384 K_NO_WAIT); \
385 k_thread_name_set(&priv->thread_data, dev->name); \
386 } \
387 \
388 static struct udc_ep_config \
389 ep_cfg_out[DT_INST_PROP(n, num_bidir_endpoints)]; \
390 static struct udc_ep_config \
391 ep_cfg_in[DT_INST_PROP(n, num_bidir_endpoints)]; \
392 \
393 static const struct udc_skeleton_config udc_skeleton_config_##n = { \
394 .num_of_eps = DT_INST_PROP(n, num_bidir_endpoints), \
395 .ep_cfg_in = ep_cfg_out, \
396 .ep_cfg_out = ep_cfg_in, \
397 .make_thread = udc_skeleton_make_thread_##n, \
398 .speed_idx = DT_ENUM_IDX(DT_DRV_INST(n), maximum_speed), \
399 }; \
400 \
401 static struct udc_skeleton_data udc_priv_##n = { \
402 }; \
403 \
404 static struct udc_data udc_data_##n = { \
405 .mutex = Z_MUTEX_INITIALIZER(udc_data_##n.mutex), \
406 .priv = &udc_priv_##n, \
407 }; \
408 \
409 DEVICE_DT_INST_DEFINE(n, udc_skeleton_driver_preinit, NULL, \
410 &udc_data_##n, &udc_skeleton_config_##n, \
411 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
412 &udc_skeleton_api);
413
414 DT_INST_FOREACH_STATUS_OKAY(UDC_SKELETON_DEVICE_DEFINE)
415