1 /*
2  * Copyright (c) 2021 Microchip Technology Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #define DT_DRV_COMPAT microchip_xec_qmspi_ldma
8 
9 #include <errno.h>
10 #include <soc.h>
11 
12 #include <zephyr/device.h>
13 #include <zephyr/drivers/clock_control.h>
14 #include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
15 #include <zephyr/drivers/gpio.h>
16 #include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
17 #include <zephyr/drivers/pinctrl.h>
18 #include <zephyr/drivers/spi.h>
19 #include <zephyr/dt-bindings/clock/mchp_xec_pcr.h>
20 #include <zephyr/dt-bindings/interrupt-controller/mchp-xec-ecia.h>
21 #include <zephyr/irq.h>
22 #include <zephyr/pm/device.h>
23 #include <zephyr/sys/sys_io.h>
24 #include <zephyr/sys/util.h>
25 #include <zephyr/logging/log.h>
26 LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL);
27 
28 #include "spi_context.h"
29 
30 /* #define MCHP_XEC_QMSPI_DEBUG 1 */
31 
32 /* MEC172x QMSPI controller SPI Mode 3 signalling has an anomaly where
33  * received data is shifted off the input line(s) improperly. Received
34  * data bytes will be left shifted by 1. Work-around for SPI Mode 3 is
35  * to sample input line(s) on same edge as output data is ready.
36  */
37 #define XEC_QMSPI_SPI_MODE_3_ANOMALY 1
38 
39 /* common clock control device node for all Microchip XEC chips */
40 #define MCHP_XEC_CLOCK_CONTROL_NODE	DT_NODELABEL(pcr)
41 
42 /* spin loops waiting for HW to clear soft reset bit */
43 #define XEC_QMSPI_SRST_LOOPS		16
44 
45 /* microseconds for busy wait and total wait interval */
46 #define XEC_QMSPI_WAIT_INTERVAL		8
47 #define XEC_QMSPI_WAIT_COUNT		64
48 
49 /* QSPI transfer and DMA done */
50 #define XEC_QSPI_HW_XFR_DMA_DONE	(MCHP_QMSPI_STS_DONE | MCHP_QMSPI_STS_DMA_DONE)
51 
52 /* QSPI hardware error status
53  * Misprogrammed control or descriptors (software error)
54  * Overflow TX FIFO
55  * Underflow RX FIFO
56  */
57 #define XEC_QSPI_HW_ERRORS		(MCHP_QMSPI_STS_PROG_ERR |	\
58 					 MCHP_QMSPI_STS_TXB_ERR |	\
59 					 MCHP_QMSPI_STS_RXB_ERR)
60 
61 #define XEC_QSPI_HW_ERRORS_LDMA		(MCHP_QMSPI_STS_LDMA_RX_ERR |	\
62 					 MCHP_QMSPI_STS_LDMA_TX_ERR)
63 
64 #define XEC_QSPI_HW_ERRORS_ALL		(XEC_QSPI_HW_ERRORS |		\
65 					 XEC_QSPI_HW_ERRORS_LDMA)
66 
67 #define XEC_QSPI_TIMEOUT_US		(100 * 1000) /* 100 ms */
68 
69 /* Device constant configuration parameters */
70 struct spi_qmspi_config {
71 	struct qmspi_regs *regs;
72 	const struct device *clk_dev;
73 	struct mchp_xec_pcr_clk_ctrl clksrc;
74 	uint32_t clock_freq;
75 	uint32_t cs1_freq;
76 	uint32_t cs_timing;
77 	uint16_t taps_adj;
78 	uint8_t girq;
79 	uint8_t girq_pos;
80 	uint8_t girq_nvic_aggr;
81 	uint8_t girq_nvic_direct;
82 	uint8_t irq_pri;
83 	uint8_t chip_sel;
84 	uint8_t width;	/* 0(half) 1(single), 2(dual), 4(quad) */
85 	uint8_t unused[1];
86 	const struct pinctrl_dev_config *pcfg;
87 	void (*irq_config_func)(void);
88 };
89 
90 #define XEC_QMSPI_XFR_FLAG_TX		BIT(0)
91 #define XEC_QMSPI_XFR_FLAG_RX		BIT(1)
92 
93 /* Device run time data */
94 struct spi_qmspi_data {
95 	struct spi_context ctx;
96 	uint32_t base_freq_hz;
97 	uint32_t spi_freq_hz;
98 	uint32_t qstatus;
99 	uint8_t np; /* number of data pins: 1, 2, or 4 */
100 #ifdef CONFIG_SPI_ASYNC
101 	spi_callback_t cb;
102 	void *userdata;
103 	size_t xfr_len;
104 #endif
105 	uint32_t tempbuf[2];
106 #ifdef MCHP_XEC_QMSPI_DEBUG
107 	uint32_t bufcnt_status;
108 	uint32_t rx_ldma_ctrl0;
109 	uint32_t tx_ldma_ctrl0;
110 	uint32_t qunits;
111 	uint32_t qxfru;
112 	uint32_t xfrlen;
113 
114 #endif
115 };
116 
xec_qmspi_spin_yield(int * counter,int max_count)117 static int xec_qmspi_spin_yield(int *counter, int max_count)
118 {
119 	*counter = *counter + 1;
120 
121 	if (*counter > max_count) {
122 		return -ETIMEDOUT;
123 	}
124 
125 	k_busy_wait(XEC_QMSPI_WAIT_INTERVAL);
126 
127 	return 0;
128 }
129 
130 /*
131  * reset QMSPI controller with save/restore of timing registers.
132  * Some QMSPI timing register may be modified by the Boot-ROM OTP
133  * values.
134  */
qmspi_reset(struct qmspi_regs * regs)135 static void qmspi_reset(struct qmspi_regs *regs)
136 {
137 	uint32_t taps[3];
138 	uint32_t malt1;
139 	uint32_t cstm;
140 	uint32_t mode;
141 	uint32_t cnt = XEC_QMSPI_SRST_LOOPS;
142 
143 	taps[0] = regs->TM_TAPS;
144 	taps[1] = regs->TM_TAPS_ADJ;
145 	taps[2] = regs->TM_TAPS_CTRL;
146 	malt1 = regs->MODE_ALT1;
147 	cstm = regs->CSTM;
148 	mode = regs->MODE;
149 	regs->MODE = MCHP_QMSPI_M_SRST;
150 	while (regs->MODE & MCHP_QMSPI_M_SRST) {
151 		if (cnt == 0) {
152 			break;
153 		}
154 		cnt--;
155 	}
156 	regs->MODE = 0;
157 	regs->MODE = mode & ~MCHP_QMSPI_M_ACTIVATE;
158 	regs->CSTM = cstm;
159 	regs->MODE_ALT1 = malt1;
160 	regs->TM_TAPS = taps[0];
161 	regs->TM_TAPS_ADJ = taps[1];
162 	regs->TM_TAPS_CTRL = taps[2];
163 }
164 
qmspi_encoded_fdiv(const struct device * dev,uint32_t freq_hz)165 static uint32_t qmspi_encoded_fdiv(const struct device *dev, uint32_t freq_hz)
166 {
167 	struct spi_qmspi_data *qdata = dev->data;
168 
169 	if (freq_hz == 0u) {
170 		return 0u; /* maximum frequency divider */
171 	}
172 
173 	return (qdata->base_freq_hz / freq_hz);
174 }
175 
176 /* Program QMSPI frequency divider field in the mode register.
177  * MEC172x QMSPI input clock source is the Fast Peripheral domain whose
178  * clock is controlled by the PCR turbo clock. 96 MHz if turbo mode
179  * enabled else 48 MHz. Query the clock control driver to get clock
180  * rate of fast peripheral domain. MEC172x QMSPI clock divider has
181  * been expanded to a 16-bit field encoded as:
182  * 0 = divide by 0x10000
183  * 1 to 0xffff = divide by this value.
184  */
qmspi_set_frequency(struct spi_qmspi_data * qdata,struct qmspi_regs * regs,uint32_t freq_hz)185 static int qmspi_set_frequency(struct spi_qmspi_data *qdata, struct qmspi_regs *regs,
186 			       uint32_t freq_hz)
187 {
188 	uint32_t clk = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ;
189 	uint32_t fdiv = 0u; /* maximum divider */
190 
191 	if (qdata->base_freq_hz) {
192 		clk = qdata->base_freq_hz;
193 	}
194 
195 	if (freq_hz) {
196 		fdiv = 1u;
197 		if (freq_hz < clk) {
198 			fdiv = clk / freq_hz;
199 		}
200 	}
201 
202 	regs->MODE = ((regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK)) |
203 		((fdiv << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK));
204 
205 	if (!fdiv) {
206 		fdiv = 0x10000u;
207 	}
208 
209 	qdata->spi_freq_hz = clk / fdiv;
210 
211 	return 0;
212 }
213 
214 /*
215  * SPI signalling mode: CPOL and CPHA
216  * CPOL = 0 is clock idles low, 1 is clock idle high
217  * CPHA = 0 Transmitter changes data on trailing of preceding clock cycle.
218  *          Receiver samples data on leading edge of clock cyle.
219  *        1 Transmitter changes data on leading edge of current clock cycle.
220  *          Receiver samples data on the trailing edge of clock cycle.
221  * SPI Mode nomenclature:
222  * Mode CPOL CPHA
223  *  0     0    0
224  *  1     0    1
225  *  2     1    0
226  *  3     1    1
227  * QMSPI has three controls, CPOL, CPHA for output and CPHA for input.
228  * SPI frequency < 48MHz
229  *	Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0)
230  *	Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1)
231  * Data sheet recommends when QMSPI set at max. SPI frequency (48MHz).
232  * SPI frequency == 48MHz sample and change data on same edge.
233  *  Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0)
234  *  Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1)
235  *
236  * There is an anomaly in MEC172x for SPI signalling mode 3. We must
237  * set CHPA_MISO=0 for SPI Mode 3 at all frequencies.
238  */
239 
240 const uint8_t smode_tbl[4] = {
241 	0x00u, 0x06u, 0x01u,
242 #ifdef XEC_QMSPI_SPI_MODE_3_ANOMALY
243 	0x03u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=0 */
244 #else
245 	0x07u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=1 */
246 #endif
247 };
248 
249 const uint8_t smode48_tbl[4] = {
250 	0x04u, 0x02u, 0x05u, 0x03u
251 };
252 
qmspi_set_signalling_mode(struct spi_qmspi_data * qdata,struct qmspi_regs * regs,uint32_t smode)253 static void qmspi_set_signalling_mode(struct spi_qmspi_data *qdata,
254 				      struct qmspi_regs *regs, uint32_t smode)
255 {
256 	const uint8_t *ptbl;
257 	uint32_t m;
258 
259 	ptbl = smode_tbl;
260 	if (qdata->spi_freq_hz >= MHZ(48)) {
261 		ptbl = smode48_tbl;
262 	}
263 
264 	m = (uint32_t)ptbl[smode & 0x03];
265 	regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK))
266 		     | (m << MCHP_QMSPI_M_SIG_POS);
267 }
268 
269 #ifdef CONFIG_SPI_EXTENDED_MODES
270 /*
271  * QMSPI HW support single, dual, and quad.
272  * Return QMSPI Control/Descriptor register encoded value.
273  */
encode_lines(const struct spi_config * config)274 static uint32_t encode_lines(const struct spi_config *config)
275 {
276 	uint32_t qlines;
277 
278 	switch (config->operation & SPI_LINES_MASK) {
279 	case SPI_LINES_SINGLE:
280 		qlines = MCHP_QMSPI_C_IFM_1X;
281 		break;
282 #if DT_INST_PROP(0, lines) > 1
283 	case SPI_LINES_DUAL:
284 		qlines = MCHP_QMSPI_C_IFM_2X;
285 		break;
286 #endif
287 #if DT_INST_PROP(0, lines) > 2
288 	case SPI_LINES_QUAD:
289 		qlines = MCHP_QMSPI_C_IFM_4X;
290 		break;
291 #endif
292 	default:
293 		qlines = 0xffu;
294 	}
295 
296 	return qlines;
297 }
298 
npins_from_spi_config(const struct spi_config * config)299 static uint8_t npins_from_spi_config(const struct spi_config *config)
300 {
301 	switch (config->operation & SPI_LINES_MASK) {
302 	case SPI_LINES_DUAL:
303 		return 2u;
304 	case SPI_LINES_QUAD:
305 		return 4u;
306 	default:
307 		return 1u;
308 	}
309 }
310 #endif /* CONFIG_SPI_EXTENDED_MODES */
311 
spi_feature_support(const struct spi_config * config)312 static int spi_feature_support(const struct spi_config *config)
313 {
314 	if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP)) {
315 		LOG_ERR("Driver does not support LSB first, slave, or loop back");
316 		return -ENOTSUP;
317 	}
318 
319 	if (config->operation & SPI_CS_ACTIVE_HIGH) {
320 		LOG_ERR("CS active high not supported");
321 		return -ENOTSUP;
322 	}
323 
324 	if (config->operation & SPI_LOCK_ON) {
325 		LOG_ERR("Lock On not supported");
326 		return -ENOTSUP;
327 	}
328 
329 	if (SPI_WORD_SIZE_GET(config->operation) != 8) {
330 		LOG_ERR("Word size != 8 not supported");
331 		return -ENOTSUP;
332 	}
333 
334 	return 0;
335 }
336 
337 /* Configure QMSPI.
338  * NOTE: QMSPI Shared SPI port has two chip selects.
339  * Private SPI and internal SPI ports support one chip select.
340  * Hardware supports dual and quad I/O. Dual and quad are allowed
341  * if SPI extended mode is enabled at build time. User must
342  * provide pin configuration via DTS.
343  */
qmspi_configure(const struct device * dev,const struct spi_config * config)344 static int qmspi_configure(const struct device *dev,
345 			   const struct spi_config *config)
346 {
347 	const struct spi_qmspi_config *cfg = dev->config;
348 	struct spi_qmspi_data *qdata = dev->data;
349 	const struct spi_config *curr_cfg = qdata->ctx.config;
350 	struct qmspi_regs *regs = cfg->regs;
351 	uint32_t smode;
352 	int ret;
353 
354 	if (!config) {
355 		return -EINVAL;
356 	}
357 
358 	if (curr_cfg->frequency != config->frequency) {
359 		qmspi_set_frequency(qdata, regs, config->frequency);
360 	}
361 
362 	if (curr_cfg->operation == config->operation) {
363 		return 0; /* no change required */
364 	}
365 
366 	/* check new configuration */
367 	ret = spi_feature_support(config);
368 	if (ret) {
369 		return ret;
370 	}
371 
372 #ifdef CONFIG_SPI_EXTENDED_MODES
373 	smode = encode_lines(config);
374 	if (smode == 0xff) {
375 		LOG_ERR("Requested lines mode not supported");
376 		return -ENOTSUP;
377 	}
378 	qdata->np = npins_from_spi_config(config);
379 #else
380 	smode = MCHP_QMSPI_C_IFM_1X;
381 	qdata->np = 1u;
382 #endif
383 	regs->CTRL = smode;
384 
385 	smode = 0;
386 	if ((config->operation & SPI_MODE_CPHA) != 0U) {
387 		smode |= BIT(0);
388 	}
389 
390 	if ((config->operation & SPI_MODE_CPOL) != 0U) {
391 		smode |= BIT(1);
392 	}
393 
394 	qmspi_set_signalling_mode(qdata, regs, smode);
395 
396 	/* chip select */
397 	smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK);
398 	if (cfg->chip_sel == 0) {
399 		smode |= MCHP_QMSPI_M_CS0;
400 	} else {
401 		smode |= MCHP_QMSPI_M_CS1;
402 	}
403 	regs->MODE = smode;
404 
405 	/* chip select timing and TAPS adjust */
406 	regs->CSTM = cfg->cs_timing;
407 	regs->TM_TAPS_ADJ = cfg->taps_adj;
408 
409 	/* CS1 alternate mode (frequency) */
410 	regs->MODE_ALT1 = 0;
411 	if (cfg->cs1_freq) {
412 		uint32_t fdiv = qmspi_encoded_fdiv(dev, cfg->cs1_freq);
413 
414 		regs->MODE_ALT1 = (fdiv << MCHP_QMSPI_MA1_CS1_CDIV_POS) &
415 				  MCHP_QMSPI_MA1_CS1_CDIV_MSK;
416 		regs->MODE_ALT1 |= MCHP_QMSPI_MA1_CS1_CDIV_EN;
417 	}
418 
419 	qdata->ctx.config = config;
420 
421 	regs->MODE |= MCHP_QMSPI_M_ACTIVATE;
422 
423 	return 0;
424 }
425 
encode_npins(uint8_t npins)426 static uint32_t encode_npins(uint8_t npins)
427 {
428 	if (npins == 4) {
429 		return MCHP_QMSPI_C_IFM_4X;
430 	} else if (npins == 2) {
431 		return MCHP_QMSPI_C_IFM_2X;
432 	} else {
433 		return MCHP_QMSPI_C_IFM_1X;
434 	}
435 }
436 
437 /* Common controller transfer initialziation using Local-DMA.
438  * Full-duplex: controller configured to transmit and receive simultaneouly.
439  * Half-duplex(dual/quad): User may only specify TX or RX buffer sets.
440  * Passing both buffers sets is reported as an error.
441  */
qmspi_xfr_cm_init(const struct device * dev,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)442 static inline int qmspi_xfr_cm_init(const struct device *dev,
443 				    const struct spi_buf_set *tx_bufs,
444 				    const struct spi_buf_set *rx_bufs)
445 {
446 	const struct spi_qmspi_config *devcfg = dev->config;
447 	struct spi_qmspi_data *qdata = dev->data;
448 	struct qmspi_regs *regs = devcfg->regs;
449 
450 	regs->IEN = 0;
451 	regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
452 	regs->LDMA_RX_DESCR_BM = 0;
453 	regs->LDMA_TX_DESCR_BM = 0;
454 	regs->MODE &= ~(MCHP_QMSPI_M_LDMA_TX_EN | MCHP_QMSPI_M_LDMA_RX_EN);
455 	regs->STS = 0xffffffffu;
456 	regs->CTRL = encode_npins(qdata->np);
457 
458 	qdata->qstatus = 0;
459 
460 #ifdef CONFIG_SPI_EXTENDED_MODES
461 	if (qdata->np != 1) {
462 		if (tx_bufs && rx_bufs) {
463 			LOG_ERR("Cannot specify both TX and RX buffers in half-duplex(dual/quad)");
464 			return -EPROTONOSUPPORT;
465 		}
466 	}
467 #endif
468 
469 	return 0;
470 }
471 
472 /* QMSPI Local-DMA transfer configuration:
473  * Support full and half(dual/quad) duplex transfers.
474  * Requires caller to have checked that only one direction was setup
475  * in the SPI context: TX or RX not both. (refer to qmspi_xfr_cm_init)
476  * Supports spi_buf's where data pointer is NULL and length non-zero.
477  * These buffers are used as TX tri-state I/O clock only generation or
478  * RX data discard for certain SPI command protocols using dual/quad I/O.
479  * 1. Get largest contiguous data size from SPI context.
480  * 2. If the SPI TX context has a non-zero length configure Local-DMA TX
481  *    channel 1 for contigous data size. If TX context has valid buffer
482  *    configure channel to use context buffer with address increment.
483  *    If the TX buffer pointer is NULL interpret byte length as the number
484  *    of clocks to generate with output line(s) tri-stated. NOTE: The controller
485  *    must be configured with TX disabled to not drive output line(s) during
486  *    clock generation. Also, no data should be written to TX FIFO. The unit
487  *    size can be set to bits. The number of units to transfer must be computed
488  *    based upon the number of output pins in the IOM field: full-duplex is one
489  *    bit per clock, dual is 2 bits per clock, and quad is 4 bits per clock.
490  *    For example, if I/O lines is 4 (quad) meaning 4 bits per clock and the
491  *    user wants 7 clocks then the number of bit units is 4 * 7 = 28.
492  * 3. If instead, the SPI RX context has a non-zero length configure Local-DMA
493  *    RX channel 1 for the contigous data size. If RX context has a valid
494  *    buffer configure channel to use buffer with address increment else
495  *    configure channel for driver data temporary buffer without address
496  *    increment.
497  * 4. Update QMSPI Control register.
498  */
qmspi_ldma_encode_unit_size(uint32_t maddr,size_t len)499 static uint32_t qmspi_ldma_encode_unit_size(uint32_t maddr, size_t len)
500 {
501 	uint8_t temp = (maddr | (uint32_t)len) & 0x3u;
502 
503 	if (temp == 0) {
504 		return MCHP_QMSPI_LDC_ASZ_4;
505 	} else if (temp == 2) {
506 		return MCHP_QMSPI_LDC_ASZ_2;
507 	} else {
508 		return MCHP_QMSPI_LDC_ASZ_1;
509 	}
510 }
511 
qmspi_unit_size(size_t xfrlen)512 static uint32_t qmspi_unit_size(size_t xfrlen)
513 {
514 	if ((xfrlen & 0xfu) == 0u) {
515 		return 16u;
516 	} else if ((xfrlen & 0x3u) == 0u) {
517 		return 4u;
518 	} else {
519 		return 1u;
520 	}
521 }
522 
qmspi_encode_unit_size(uint32_t units_in_bytes)523 static uint32_t qmspi_encode_unit_size(uint32_t units_in_bytes)
524 {
525 	if (units_in_bytes == 16u) {
526 		return MCHP_QMSPI_C_XFR_UNITS_16;
527 	} else if (units_in_bytes == 4u) {
528 		return MCHP_QMSPI_C_XFR_UNITS_4;
529 	} else {
530 		return MCHP_QMSPI_C_XFR_UNITS_1;
531 	}
532 }
533 
q_ldma_cfg(const struct device * dev)534 static size_t q_ldma_cfg(const struct device *dev)
535 {
536 	const struct spi_qmspi_config *devcfg = dev->config;
537 	struct spi_qmspi_data *qdata = dev->data;
538 	struct spi_context *ctx = &qdata->ctx;
539 	struct qmspi_regs *regs = devcfg->regs;
540 
541 	size_t ctx_xfr_len = spi_context_max_continuous_chunk(ctx);
542 	uint32_t ctrl, ldctrl, mstart, qunits, qxfru, xfrlen;
543 
544 	regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
545 	regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
546 	regs->LDRX[0].CTRL = 0;
547 	regs->LDRX[0].MSTART = 0;
548 	regs->LDRX[0].LEN = 0;
549 	regs->LDTX[0].CTRL = 0;
550 	regs->LDTX[0].MSTART = 0;
551 	regs->LDTX[0].LEN = 0;
552 
553 	if (ctx_xfr_len == 0) {
554 		return 0;
555 	}
556 
557 	qunits = qmspi_unit_size(ctx_xfr_len);
558 	ctrl = qmspi_encode_unit_size(qunits);
559 	qxfru = ctx_xfr_len / qunits;
560 	if (qxfru > 0x7fffu) {
561 		qxfru = 0x7fffu;
562 	}
563 	ctrl |= (qxfru << MCHP_QMSPI_C_XFR_NUNITS_POS);
564 	xfrlen = qxfru * qunits;
565 
566 #ifdef MCHP_XEC_QMSPI_DEBUG
567 	qdata->qunits = qunits;
568 	qdata->qxfru = qxfru;
569 	qdata->xfrlen = xfrlen;
570 #endif
571 	if (spi_context_tx_buf_on(ctx)) {
572 		mstart = (uint32_t)ctx->tx_buf;
573 		ctrl |= MCHP_QMSPI_C_TX_DATA | MCHP_QMSPI_C_TX_LDMA_CH0;
574 		ldctrl = qmspi_ldma_encode_unit_size(mstart, xfrlen);
575 		ldctrl |= MCHP_QMSPI_LDC_INCR_EN | MCHP_QMSPI_LDC_EN;
576 		regs->MODE |= MCHP_QMSPI_M_LDMA_TX_EN;
577 		regs->LDTX[0].LEN = xfrlen;
578 		regs->LDTX[0].MSTART = mstart;
579 		regs->LDTX[0].CTRL = ldctrl;
580 	}
581 
582 	if (spi_context_rx_buf_on(ctx)) {
583 		mstart = (uint32_t)ctx->rx_buf;
584 		ctrl |= MCHP_QMSPI_C_RX_LDMA_CH0 | MCHP_QMSPI_C_RX_EN;
585 		ldctrl = MCHP_QMSPI_LDC_EN | MCHP_QMSPI_LDC_INCR_EN;
586 		ldctrl |= qmspi_ldma_encode_unit_size(mstart, xfrlen);
587 		regs->MODE |= MCHP_QMSPI_M_LDMA_RX_EN;
588 		regs->LDRX[0].LEN = xfrlen;
589 		regs->LDRX[0].MSTART = mstart;
590 		regs->LDRX[0].CTRL = ldctrl;
591 	}
592 
593 	regs->CTRL = (regs->CTRL & 0x3u) | ctrl;
594 
595 	return xfrlen;
596 }
597 
598 /* Start and wait for QMSPI synchronous transfer(s) to complete.
599  * Initialize QMSPI controller for Local-DMA operation.
600  * Iterate over SPI context with non-zero TX or RX data lengths.
601  *   1. Configure QMSPI Control register and Local-DMA channel(s)
602  *   2. Clear QMSPI status
603  *   3. Start QMSPI transfer
604  *   4. Poll QMSPI status for transfer done and DMA done with timeout.
605  *   5. Hardware anomaly work-around: Poll with timeout QMSPI Local-DMA
606  *      TX and RX channels until hardware clears both channel enables.
607  *      This indicates hardware is really done with transfer to/from memory.
608  *   6. Update SPI context with amount of data transmitted and received.
609  * If SPI configuration hold chip select on flag is not set then instruct
610  * QMSPI to de-assert chip select.
611  * Set SPI context as complete
612  */
qmspi_xfr_sync(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)613 static int qmspi_xfr_sync(const struct device *dev,
614 			  const struct spi_config *spi_cfg,
615 			  const struct spi_buf_set *tx_bufs,
616 			  const struct spi_buf_set *rx_bufs)
617 {
618 	const struct spi_qmspi_config *devcfg = dev->config;
619 	struct spi_qmspi_data *qdata = dev->data;
620 	struct spi_context *ctx = &qdata->ctx;
621 	struct qmspi_regs *regs = devcfg->regs;
622 	size_t xfr_len;
623 
624 	int ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
625 
626 	if (ret) {
627 		return ret;
628 	}
629 
630 	while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
631 		xfr_len = q_ldma_cfg(dev);
632 		regs->STS = 0xffffffffu;
633 		regs->EXE = MCHP_QMSPI_EXE_START;
634 
635 #ifdef MCHP_XEC_QMSPI_DEBUG
636 		uint32_t temp = regs->STS;
637 
638 		while (!(temp & MCHP_QMSPI_STS_DONE)) {
639 			temp = regs->STS;
640 		}
641 		qdata->qstatus = temp;
642 		qdata->bufcnt_status = regs->BCNT_STS;
643 		qdata->rx_ldma_ctrl0 = regs->LDRX[0].CTRL;
644 		qdata->tx_ldma_ctrl0 = regs->LDTX[0].CTRL;
645 #else
646 		uint32_t wcnt = 0;
647 
648 		qdata->qstatus = regs->STS;
649 		while (!(qdata->qstatus & MCHP_QMSPI_STS_DONE)) {
650 			k_busy_wait(1u);
651 			if (++wcnt > XEC_QSPI_TIMEOUT_US) {
652 				regs->EXE = MCHP_QMSPI_EXE_STOP;
653 				return -ETIMEDOUT;
654 			}
655 			qdata->qstatus = regs->STS;
656 		}
657 #endif
658 		spi_context_update_tx(ctx, 1, xfr_len);
659 		spi_context_update_rx(ctx, 1, xfr_len);
660 	}
661 
662 	if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) {
663 		regs->EXE = MCHP_QMSPI_EXE_STOP;
664 	}
665 
666 	spi_context_complete(ctx, dev, 0);
667 
668 	return 0;
669 }
670 
671 #ifdef CONFIG_SPI_ASYNC
672 /* Configure QMSPI such that QMSPI transfer FSM and LDMA FSM are synchronized.
673  * Transfer length must be programmed into control/descriptor register(s) and
674  * LDMA register(s). LDMA override length bit must NOT be set.
675  */
qmspi_xfr_start_async(const struct device * dev,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)676 static int qmspi_xfr_start_async(const struct device *dev, const struct spi_buf_set *tx_bufs,
677 				 const struct spi_buf_set *rx_bufs)
678 {
679 	const struct spi_qmspi_config *devcfg = dev->config;
680 	struct spi_qmspi_data *qdata = dev->data;
681 	struct qmspi_regs *regs = devcfg->regs;
682 	int ret;
683 
684 	ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
685 	if (ret) {
686 		return ret;
687 	}
688 
689 	qdata->xfr_len = q_ldma_cfg(dev);
690 	if (!qdata->xfr_len) {
691 		return 0; /* nothing to do */
692 	}
693 
694 	regs->STS = 0xffffffffu;
695 	regs->EXE = MCHP_QMSPI_EXE_START;
696 	regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
697 		    | MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
698 
699 	return 0;
700 }
701 
702 /* Wrapper to start asynchronous (interrupts enabled) SPI transction */
qmspi_xfr_async(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)703 static int qmspi_xfr_async(const struct device *dev,
704 			   const struct spi_config *config,
705 			   const struct spi_buf_set *tx_bufs,
706 			   const struct spi_buf_set *rx_bufs)
707 {
708 	struct spi_qmspi_data *qdata = dev->data;
709 	int err = 0;
710 
711 	qdata->qstatus = 0;
712 	qdata->xfr_len = 0;
713 
714 	err = qmspi_xfr_start_async(dev, tx_bufs, rx_bufs);
715 
716 	return err;
717 }
718 #endif /* CONFIG_SPI_ASYNC */
719 
720 /* Start (a)synchronous transaction using QMSPI Local-DMA */
qmspi_transceive(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,bool asynchronous,spi_callback_t cb,void * user_data)721 static int qmspi_transceive(const struct device *dev,
722 			    const struct spi_config *config,
723 			    const struct spi_buf_set *tx_bufs,
724 			    const struct spi_buf_set *rx_bufs,
725 			    bool asynchronous,
726 			    spi_callback_t cb,
727 			    void *user_data)
728 {
729 	struct spi_qmspi_data *qdata = dev->data;
730 	struct spi_context *ctx = &qdata->ctx;
731 	int err = 0;
732 
733 	if (!config) {
734 		return -EINVAL;
735 	}
736 
737 	if (!tx_bufs && !rx_bufs) {
738 		return 0;
739 	}
740 
741 	spi_context_lock(&qdata->ctx, asynchronous, cb, user_data, config);
742 
743 	err = qmspi_configure(dev, config);
744 	if (err != 0) {
745 		spi_context_release(ctx, err);
746 		return err;
747 	}
748 
749 	spi_context_cs_control(ctx, true);
750 	spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
751 
752 #ifdef CONFIG_SPI_ASYNC
753 	if (asynchronous) {
754 		qdata->cb = cb;
755 		qdata->userdata = user_data;
756 		err = qmspi_xfr_async(dev, config, tx_bufs, rx_bufs);
757 	} else {
758 		err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
759 	}
760 #else
761 	err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
762 #endif
763 	if (err) { /* de-assert CS# and give semaphore */
764 		spi_context_unlock_unconditionally(ctx);
765 		return err;
766 	}
767 
768 	if (asynchronous) {
769 		return err;
770 	}
771 
772 	err = spi_context_wait_for_completion(ctx);
773 	if (!(config->operation & SPI_HOLD_ON_CS)) {
774 		spi_context_cs_control(ctx, false);
775 	}
776 	spi_context_release(ctx, err);
777 
778 	return err;
779 }
780 
qmspi_transceive_sync(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)781 static int qmspi_transceive_sync(const struct device *dev,
782 				 const struct spi_config *config,
783 				 const struct spi_buf_set *tx_bufs,
784 				 const struct spi_buf_set *rx_bufs)
785 {
786 	return qmspi_transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
787 }
788 
789 #ifdef CONFIG_SPI_ASYNC
790 
qmspi_transceive_async(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,spi_callback_t cb,void * userdata)791 static int qmspi_transceive_async(const struct device *dev,
792 				  const struct spi_config *config,
793 				  const struct spi_buf_set *tx_bufs,
794 				  const struct spi_buf_set *rx_bufs,
795 				  spi_callback_t cb,
796 				  void *userdata)
797 {
798 	return qmspi_transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
799 }
800 #endif /* CONFIG_SPI_ASYNC */
801 
qmspi_release(const struct device * dev,const struct spi_config * config)802 static int qmspi_release(const struct device *dev,
803 			 const struct spi_config *config)
804 {
805 	struct spi_qmspi_data *data = dev->data;
806 	const struct spi_qmspi_config *cfg = dev->config;
807 	struct qmspi_regs *regs = cfg->regs;
808 	int ret = 0;
809 	int counter = 0;
810 
811 	if (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
812 		/* Force CS# to de-assert on next unit boundary */
813 		regs->EXE = MCHP_QMSPI_EXE_STOP;
814 		while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
815 			ret = xec_qmspi_spin_yield(&counter, XEC_QMSPI_WAIT_COUNT);
816 			if (ret != 0) {
817 				break;
818 			}
819 		}
820 	}
821 
822 	spi_context_unlock_unconditionally(&data->ctx);
823 
824 	return ret;
825 }
826 
827 /* QMSPI interrupt handler called by Zephyr ISR
828  * All transfers use QMSPI Local-DMA specified by the Control register.
829  * QMSPI descriptor mode not used.
830  * Full-duplex always uses LDMA TX channel 0 and RX channel 0
831  * Half-duplex(dual/quad) use one of TX channel 0 or RX channel 0
832  */
qmspi_xec_isr(const struct device * dev)833 void qmspi_xec_isr(const struct device *dev)
834 {
835 	const struct spi_qmspi_config *cfg = dev->config;
836 	struct spi_qmspi_data *data = dev->data;
837 	struct qmspi_regs *regs = cfg->regs;
838 	uint32_t qstatus = regs->STS;
839 #ifdef CONFIG_SPI_ASYNC
840 	struct spi_context *ctx = &data->ctx;
841 	int xstatus = 0;
842 #endif
843 
844 	regs->IEN = 0;
845 	data->qstatus = qstatus;
846 	regs->STS = MCHP_QMSPI_STS_RW1C_MASK;
847 	mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
848 
849 #ifdef CONFIG_SPI_ASYNC
850 	if (qstatus & XEC_QSPI_HW_ERRORS_ALL) {
851 		xstatus = -EIO;
852 		data->qstatus |= BIT(7);
853 		regs->EXE = MCHP_QMSPI_EXE_STOP;
854 		spi_context_cs_control(ctx, false);
855 		spi_context_complete(ctx, dev, xstatus);
856 		if (data->cb) {
857 			data->cb(dev, xstatus, data->userdata);
858 		}
859 		return;
860 	}
861 
862 	/* Clear Local-DMA enables in Mode and Control registers */
863 	regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
864 	regs->CTRL &= MCHP_QMSPI_C_IFM_MASK;
865 
866 	spi_context_update_tx(ctx, 1, data->xfr_len);
867 	spi_context_update_rx(ctx, 1, data->xfr_len);
868 
869 	data->xfr_len = q_ldma_cfg(dev);
870 	if (data->xfr_len) {
871 		regs->STS = 0xffffffffu;
872 		regs->EXE = MCHP_QMSPI_EXE_START;
873 		regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
874 			    | MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
875 		return;
876 	}
877 
878 	if (!(ctx->owner->operation & SPI_HOLD_ON_CS)) {
879 		regs->EXE = MCHP_QMSPI_EXE_STOP;
880 		spi_context_cs_control(&data->ctx, false);
881 	}
882 
883 	spi_context_complete(&data->ctx, dev, xstatus);
884 
885 	if (data->cb) {
886 		data->cb(dev, xstatus, data->userdata);
887 	}
888 #endif /* CONFIG_SPI_ASYNC */
889 }
890 
891 #ifdef CONFIG_PM_DEVICE
892 /* If the application wants the QMSPI pins to be disabled in suspend it must
893  * define pinctr-1 values for each pin in the app/project DT overlay.
894  */
qmspi_xec_pm_action(const struct device * dev,enum pm_device_action action)895 static int qmspi_xec_pm_action(const struct device *dev, enum pm_device_action action)
896 {
897 	const struct spi_qmspi_config *devcfg = dev->config;
898 	int ret;
899 
900 	switch (action) {
901 	case PM_DEVICE_ACTION_RESUME:
902 		ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
903 		break;
904 	case PM_DEVICE_ACTION_SUSPEND:
905 		ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
906 		if (ret == -ENOENT) { /* pinctrl-1 does not exist */
907 			ret = 0;
908 		}
909 		break;
910 	default:
911 		ret = -ENOTSUP;
912 	}
913 
914 	return ret;
915 }
916 #endif /* CONFIG_PM_DEVICE */
917 
918 /*
919  * Called for each QMSPI controller instance
920  * Initialize QMSPI controller.
921  * Disable sleep control.
922  * Disable and clear interrupt status.
923  * Initialize SPI context.
924  * QMSPI will be fully configured and enabled when the transceive API
925  * is called.
926  */
qmspi_xec_init(const struct device * dev)927 static int qmspi_xec_init(const struct device *dev)
928 {
929 	const struct spi_qmspi_config *cfg = dev->config;
930 	struct spi_qmspi_data *qdata = dev->data;
931 	struct qmspi_regs *regs = cfg->regs;
932 	clock_control_subsys_t clkss = (clock_control_subsys_t)MCHP_XEC_PCR_CLK_PERIPH_FAST;
933 	int ret = 0;
934 
935 	qdata->base_freq_hz = 0u;
936 	qdata->qstatus = 0;
937 	qdata->np = cfg->width;
938 #ifdef CONFIG_SPI_ASYNC
939 	qdata->xfr_len = 0;
940 #endif
941 
942 	if (!cfg->clk_dev) {
943 		LOG_ERR("XEC QMSPI-LDMA clock device not configured");
944 		return -EINVAL;
945 	}
946 
947 	ret = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&cfg->clksrc);
948 	if (ret < 0) {
949 		LOG_ERR("XEC QMSPI-LDMA enable clock source error %d", ret);
950 		return ret;
951 	}
952 
953 	ret = clock_control_get_rate(cfg->clk_dev, clkss, &qdata->base_freq_hz);
954 	if (ret) {
955 		LOG_ERR("XEC QMSPI-LDMA clock get rate error %d", ret);
956 		return ret;
957 	}
958 
959 	/* controller in known state before enabling pins */
960 	qmspi_reset(regs);
961 	mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
962 
963 	ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
964 	if (ret != 0) {
965 		LOG_ERR("XEC QMSPI-LDMA pinctrl setup failed (%d)", ret);
966 		return ret;
967 	}
968 
969 	/* default SPI Mode 0 signalling */
970 	const struct spi_config spi_cfg = {
971 		.frequency = cfg->clock_freq,
972 		.operation = SPI_LINES_SINGLE | SPI_WORD_SET(8),
973 	};
974 
975 	ret = qmspi_configure(dev, &spi_cfg);
976 	if (ret) {
977 		LOG_ERR("XEC QMSPI-LDMA init configure failed (%d)", ret);
978 		return ret;
979 	}
980 
981 #ifdef CONFIG_SPI_ASYNC
982 	cfg->irq_config_func();
983 	mchp_xec_ecia_enable(cfg->girq, cfg->girq_pos);
984 #endif
985 
986 	spi_context_unlock_unconditionally(&qdata->ctx);
987 
988 	return 0;
989 }
990 
991 static const struct spi_driver_api spi_qmspi_xec_driver_api = {
992 	.transceive = qmspi_transceive_sync,
993 #ifdef CONFIG_SPI_ASYNC
994 	.transceive_async = qmspi_transceive_async,
995 #endif
996 	.release = qmspi_release,
997 };
998 
999 #define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \
1000 					     | (((b) & 0xFu) << 8) \
1001 					     | (((c) & 0xFu) << 16) \
1002 					     | (((d) & 0xFu) << 24))
1003 
1004 #define XEC_QMSPI_TAPS_ADJ_VAL(a, b) (((a) & 0xffu) | (((b) & 0xffu) << 8))
1005 
1006 #define XEC_QMSPI_CS_TIMING(i) XEC_QMSPI_CS_TIMING_VAL(			\
1007 				DT_INST_PROP_OR(i, dcsckon, 6),		\
1008 				DT_INST_PROP_OR(i, dckcsoff, 4),	\
1009 				DT_INST_PROP_OR(i, dldh, 6),		\
1010 				DT_INST_PROP_OR(i, dcsda, 6))
1011 
1012 #define XEC_QMSPI_TAPS_ADJ(i) XEC_QMSPI_TAPS_ADJ_VAL(			\
1013 				DT_INST_PROP_OR(i, tctradj, 0),		\
1014 				DT_INST_PROP_OR(i, tsckadj, 0))
1015 
1016 #define XEC_QMSPI_GIRQ(i)						\
1017 	MCHP_XEC_ECIA_GIRQ(DT_INST_PROP_BY_IDX(i, girqs, 0))
1018 
1019 #define XEC_QMSPI_GIRQ_POS(i)						\
1020 	MCHP_XEC_ECIA_GIRQ_POS(DT_INST_PROP_BY_IDX(i, girqs, 0))
1021 
1022 #define XEC_QMSPI_NVIC_AGGR(i)						\
1023 	MCHP_XEC_ECIA_NVIC_AGGR(DT_INST_PROP_BY_IDX(i, girqs, 0))
1024 
1025 #define XEC_QMSPI_NVIC_DIRECT(i)					\
1026 	MCHP_XEC_ECIA_NVIC_DIRECT(DT_INST_PROP_BY_IDX(i, girqs, 0))
1027 
1028 #define XEC_QMSPI_PCR_INFO(i)						\
1029 	MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(i, regidx),		\
1030 				DT_INST_CLOCKS_CELL(i, bitpos),		\
1031 				DT_INST_CLOCKS_CELL(i, domain))
1032 
1033 /*
1034  * The instance number, i is not related to block ID's rather the
1035  * order the DT tools process all DT files in a build.
1036  */
1037 #define QMSPI_XEC_DEVICE(i)						\
1038 									\
1039 	PINCTRL_DT_INST_DEFINE(i);					\
1040 									\
1041 	static void qmspi_xec_irq_config_func_##i(void)			\
1042 	{								\
1043 		IRQ_CONNECT(DT_INST_IRQN(i),				\
1044 			    DT_INST_IRQ(i, priority),			\
1045 			    qmspi_xec_isr,				\
1046 			    DEVICE_DT_INST_GET(i), 0);			\
1047 		irq_enable(DT_INST_IRQN(i));				\
1048 	}								\
1049 									\
1050 	static struct spi_qmspi_data qmspi_xec_data_##i = {		\
1051 		SPI_CONTEXT_INIT_LOCK(qmspi_xec_data_##i, ctx),		\
1052 		SPI_CONTEXT_INIT_SYNC(qmspi_xec_data_##i, ctx),		\
1053 	};								\
1054 	static const struct spi_qmspi_config qmspi_xec_config_##i = {	\
1055 		.regs = (struct qmspi_regs *) DT_INST_REG_ADDR(i),	\
1056 		.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i)),	\
1057 		.clksrc = { .pcr_info = XEC_QMSPI_PCR_INFO(i), },	\
1058 		.clock_freq = DT_INST_PROP_OR(i, clock_frequency, MHZ(12)), \
1059 		.cs1_freq = DT_INST_PROP_OR(i, cs1_freq, 0),		\
1060 		.cs_timing = XEC_QMSPI_CS_TIMING(i),			\
1061 		.taps_adj = XEC_QMSPI_TAPS_ADJ(i),			\
1062 		.girq = XEC_QMSPI_GIRQ(i),				\
1063 		.girq_pos = XEC_QMSPI_GIRQ_POS(i),			\
1064 		.girq_nvic_aggr = XEC_QMSPI_NVIC_AGGR(i),		\
1065 		.girq_nvic_direct = XEC_QMSPI_NVIC_DIRECT(i),		\
1066 		.irq_pri = DT_INST_IRQ(i, priority),			\
1067 		.chip_sel = DT_INST_PROP_OR(i, chip_select, 0),		\
1068 		.width = DT_INST_PROP_OR(0, lines, 1),			\
1069 		.irq_config_func = qmspi_xec_irq_config_func_##i,	\
1070 		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i),		\
1071 	};								\
1072 	PM_DEVICE_DT_INST_DEFINE(i, qmspi_xec_pm_action);		\
1073 	DEVICE_DT_INST_DEFINE(i, &qmspi_xec_init,			\
1074 		PM_DEVICE_DT_INST_GET(i),				\
1075 		&qmspi_xec_data_##i, &qmspi_xec_config_##i,		\
1076 		POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,			\
1077 		&spi_qmspi_xec_driver_api);
1078 
1079 DT_INST_FOREACH_STATUS_OKAY(QMSPI_XEC_DEVICE)
1080