1 /*
2 * Copyright (c) 2016, Freescale Semiconductor, Inc.
3 * Copyright (c) 2017, 2020-2021, NXP
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT nxp_kinetis_dspi
9
10 #include <errno.h>
11 #include <zephyr/drivers/spi.h>
12 #include <zephyr/drivers/clock_control.h>
13 #include <fsl_dspi.h>
14 #include <zephyr/drivers/pinctrl.h>
15 #ifdef CONFIG_DSPI_MCUX_EDMA
16 #include <zephyr/drivers/dma.h>
17 #include <fsl_edma.h>
18 #endif
19
20 #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
21 #include <zephyr/logging/log.h>
22 #include <zephyr/irq.h>
23 LOG_MODULE_REGISTER(spi_mcux_dspi);
24
25 #include "spi_context.h"
26
27 #ifdef CONFIG_DSPI_MCUX_EDMA
28
29 struct spi_edma_config {
30 const struct device *dma_dev;
31 int32_t state;
32 uint32_t dma_channel;
33 void (*irq_call_back)(void);
34 struct dma_config dma_cfg;
35 };
36 #endif
37
38 struct spi_mcux_config {
39 SPI_Type *base;
40 const struct device *clock_dev;
41 clock_control_subsys_t clock_subsys;
42 void (*irq_config_func)(const struct device *dev);
43 uint32_t pcs_sck_delay;
44 uint32_t sck_pcs_delay;
45 uint32_t transfer_delay;
46 uint32_t which_ctar;
47 uint32_t samplePoint;
48 bool enable_continuous_sck;
49 bool enable_rxfifo_overwrite;
50 bool enable_modified_timing_format;
51 bool is_dma_chn_shared;
52 const struct pinctrl_dev_config *pincfg;
53 };
54
55 struct spi_mcux_data {
56 const struct device *dev;
57 dspi_master_handle_t handle;
58 struct spi_context ctx;
59 size_t transfer_len;
60 #ifdef CONFIG_DSPI_MCUX_EDMA
61 struct dma_block_config tx_dma_block;
62 struct dma_block_config tx_dma_block_end;
63 struct dma_block_config rx_dma_block;
64 struct spi_edma_config rx_dma_config;
65 struct spi_edma_config tx_dma_config;
66 int frame_size;
67 int tx_transfer_count;
68 int rx_transfer_count;
69 uint32_t which_pcs;
70 struct spi_buf *inner_tx_buffer;
71 struct spi_buf *inner_rx_buffer;
72 #endif
73 };
74
75 #ifdef CONFIG_DSPI_MCUX_EDMA
get_size_byte_by_frame_size(int len,int frame_size)76 static int get_size_byte_by_frame_size(int len, int frame_size)
77 {
78 if (frame_size == 8) {
79 return (len * 4);
80 } else { /* frame_size == 16*/
81 return (len * 2);
82 }
83 }
84 #endif
85
spi_mcux_transfer_next_packet(const struct device * dev)86 static int spi_mcux_transfer_next_packet(const struct device *dev)
87 {
88 const struct spi_mcux_config *config = dev->config;
89 struct spi_mcux_data *data = dev->data;
90 SPI_Type *base = config->base;
91 struct spi_context *ctx = &data->ctx;
92 dspi_transfer_t transfer;
93 status_t status;
94
95 if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
96 /* nothing left to rx or tx, we're done! */
97 LOG_DBG("spi transceive done");
98 spi_context_cs_control(&data->ctx, false);
99 spi_context_complete(&data->ctx, dev, 0);
100 return 0;
101 }
102
103 #ifdef CONFIG_DSPI_MCUX_EDMA
104
105 if (!config->is_dma_chn_shared) {
106 /* start dma directly in not shared mode */
107 if (ctx->tx_len != 0) {
108 int ret = 0;
109
110 LOG_DBG("Starting DMA Ch%u",
111 data->tx_dma_config.dma_channel);
112 ret = dma_start(data->tx_dma_config.dma_dev,
113 data->tx_dma_config.dma_channel);
114 if (ret < 0) {
115 LOG_ERR("Failed to start DMA Ch%d (%d)",
116 data->tx_dma_config.dma_channel, ret);
117 return ret;
118 }
119 }
120
121 if (ctx->rx_len != 0) {
122 int ret = 0;
123
124 LOG_DBG("Starting DMA Ch%u",
125 data->rx_dma_config.dma_channel);
126 ret = dma_start(data->rx_dma_config.dma_dev,
127 data->rx_dma_config.dma_channel);
128 if (ret < 0) {
129 LOG_ERR("Failed to start DMA Ch%d (%d)",
130 data->rx_dma_config.dma_channel, ret);
131 return ret;
132 }
133 }
134 }
135
136 DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable |
137 (uint32_t)kDSPI_TxDmaEnable);
138 DSPI_StartTransfer(base);
139
140 if (config->is_dma_chn_shared) {
141 /* in master mode start tx */
142 dma_start(data->tx_dma_config.dma_dev, data->tx_dma_config.dma_channel);
143 /* TBD kDSPI_TxFifoFillRequestFlag */
144 DSPI_EnableInterrupts(base,
145 (uint32_t)kDSPI_RxFifoDrainRequestFlag);
146 LOG_DBG("trigger tx to start master");
147 }
148
149 return 0;
150 #endif
151
152 transfer.configFlags = kDSPI_MasterCtar0 | kDSPI_MasterPcsContinuous |
153 (ctx->config->slave << DSPI_MASTER_PCS_SHIFT);
154
155 if (ctx->tx_len == 0) {
156 /* rx only, nothing to tx */
157 transfer.txData = NULL;
158 transfer.rxData = ctx->rx_buf;
159 transfer.dataSize = ctx->rx_len;
160 } else if (ctx->rx_len == 0) {
161 /* tx only, nothing to rx */
162 transfer.txData = (uint8_t *) ctx->tx_buf;
163 transfer.rxData = NULL;
164 transfer.dataSize = ctx->tx_len;
165 } else if (ctx->tx_len == ctx->rx_len) {
166 /* rx and tx are the same length */
167 transfer.txData = (uint8_t *) ctx->tx_buf;
168 transfer.rxData = ctx->rx_buf;
169 transfer.dataSize = ctx->tx_len;
170 } else if (ctx->tx_len > ctx->rx_len) {
171 /* Break up the tx into multiple transfers so we don't have to
172 * rx into a longer intermediate buffer. Leave chip select
173 * active between transfers.
174 */
175 transfer.txData = (uint8_t *) ctx->tx_buf;
176 transfer.rxData = ctx->rx_buf;
177 transfer.dataSize = ctx->rx_len;
178 transfer.configFlags |= kDSPI_MasterActiveAfterTransfer;
179 } else {
180 /* Break up the rx into multiple transfers so we don't have to
181 * tx from a longer intermediate buffer. Leave chip select
182 * active between transfers.
183 */
184 transfer.txData = (uint8_t *) ctx->tx_buf;
185 transfer.rxData = ctx->rx_buf;
186 transfer.dataSize = ctx->tx_len;
187 transfer.configFlags |= kDSPI_MasterActiveAfterTransfer;
188 }
189
190 if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) {
191 transfer.configFlags |= kDSPI_MasterActiveAfterTransfer;
192 }
193
194 data->transfer_len = transfer.dataSize;
195
196 status = DSPI_MasterTransferNonBlocking(base, &data->handle, &transfer);
197 if (status != kStatus_Success) {
198 LOG_ERR("Transfer could not start");
199 }
200
201 return status == kStatus_Success ? 0 :
202 status == kDSPI_Busy ? -EBUSY : -EINVAL;
203 }
204
spi_mcux_isr(const struct device * dev)205 static void spi_mcux_isr(const struct device *dev)
206 {
207 const struct spi_mcux_config *config = dev->config;
208 struct spi_mcux_data *data = dev->data;
209 SPI_Type *base = config->base;
210
211 #ifdef CONFIG_DSPI_MCUX_EDMA
212 LOG_DBG("isr is called");
213
214 if (0U != (DSPI_GetStatusFlags(base) &
215 (uint32_t)kDSPI_RxFifoDrainRequestFlag)) {
216 /* start rx */
217 dma_start(data->rx_dma_config.dma_dev, data->rx_dma_config.dma_channel);
218 }
219 #else
220 DSPI_MasterTransferHandleIRQ(base, &data->handle);
221 #endif
222 }
223
224 #ifdef CONFIG_DSPI_MCUX_EDMA
225
mcux_init_inner_buffer_with_cmd(const struct device * dev,uint16_t dummy)226 static void mcux_init_inner_buffer_with_cmd(const struct device *dev,
227 uint16_t dummy)
228 {
229 const struct spi_mcux_config *config = dev->config;
230 struct spi_mcux_data *data = dev->data;
231 dspi_command_data_config_t commandStruct;
232 uint32_t *pbuf = data->inner_tx_buffer->buf;
233 uint32_t command;
234 int i = 0;
235
236 commandStruct.whichPcs = data->which_pcs;
237
238 commandStruct.isEndOfQueue = false;
239 commandStruct.clearTransferCount = false;
240 commandStruct.whichCtar = config->which_ctar;
241 commandStruct.isPcsContinuous = config->enable_continuous_sck;
242 command = DSPI_MasterGetFormattedCommand(&(commandStruct));
243 for (i = 0; i < data->inner_tx_buffer->len / 4; i++) {
244 *pbuf = command | dummy;
245 pbuf++;
246 }
247 }
248
249 /**
250 * @brief update the tx data to internal buffer with command embedded,
251 * if no tx data, use dummy value.
252 * tx data frame size shall not bigger than 16 bits
253 * the overall transfer data in one batch shall not larger than FIFO size
254 */
mcux_spi_context_data_update(const struct device * dev)255 static int mcux_spi_context_data_update(const struct device *dev)
256 {
257 struct spi_mcux_data *data = dev->data;
258 uint32_t frame_size_bit = data->frame_size;
259 struct spi_context *ctx = (struct spi_context *)&data->ctx;
260 uint32_t *pcdata = data->inner_tx_buffer->buf;
261
262 if (frame_size_bit > FSL_FEATURE_DSPI_MAX_DATA_WIDTH) {
263 /* TODO need set to continues PCS to have frame size larger than 16 */
264 LOG_ERR("frame size is larger than 16");
265 return -EINVAL;
266 }
267
268 #ifdef CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA
269 /* only used when use inner buffer to translate tx format */
270 if (CONFIG_MCUX_DSPI_BUFFER_SIZE * 4 <
271 get_size_byte_by_frame_size(ctx->current_tx->len, frame_size_bit)) {
272 /* inner buffer can not hold all transferred data */
273 LOG_ERR("inner buffer is too small to hold all data esp %d, act %d",
274 ctx->current_tx->len * 8 / frame_size_bit,
275 (CONFIG_MCUX_DSPI_BUFFER_SIZE * 4 / frame_size_bit));
276 return -EINVAL;
277 }
278
279 if (frame_size_bit == 8) {
280 int i = 0;
281 uint8_t *pdata = (uint8_t *)ctx->tx_buf;
282
283 if (pdata) {
284 do {
285 uint16_t temp_data = 0;
286
287 temp_data = *pdata;
288 pdata++;
289 *pcdata |= temp_data;
290 pcdata++;
291 i++;
292 } while (i < ctx->current_tx->len &&
293 i < data->inner_tx_buffer->len);
294 }
295 /* indicate it is the last data */
296 if (i == ctx->current_tx->len) {
297 --pcdata;
298 *pcdata |= SPI_PUSHR_EOQ(1) | SPI_PUSHR_CTCNT(1);
299 LOG_DBG("last pcdata is %x", *pcdata);
300 }
301 } else if (frame_size_bit == 16) {
302 int i = 0;
303 uint16_t *pdata = (uint16_t *)ctx->tx_buf;
304
305 if (pdata) {
306 do {
307 *pcdata |= *pdata;
308 LOG_DBG("pcdata %d is %x", i / 2, *pcdata);
309 pdata++;
310 pcdata++;
311 i += 2;
312 } while (i < ctx->current_tx->len &&
313 i < data->inner_tx_buffer->len);
314 }
315 if (i == ctx->current_tx->len) {
316 /* indicate it is the last data */
317 --pcdata;
318 *pcdata |= SPI_PUSHR_EOQ(1);
319 LOG_DBG("last pcdata is %x", *pcdata);
320 }
321 } else {
322 /* TODO for other size */
323 LOG_ERR("DMA mode only support 8/16 bits frame size");
324 return -EINVAL;
325 }
326
327 #endif /* CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA */
328
329 return 0;
330 }
331
update_tx_dma(const struct device * dev)332 static int update_tx_dma(const struct device *dev)
333 {
334 uint32_t tx_size = 0;
335 uint8_t *tx_buf;
336 struct spi_mcux_data *data = dev->data;
337 const struct spi_mcux_config *config = dev->config;
338 SPI_Type *base = config->base;
339 uint32_t frame_size = data->frame_size;
340 bool rx_only = false;
341
342 DSPI_DisableDMA(base, (uint32_t)kDSPI_TxDmaEnable);
343 if (data->ctx.tx_len == 0) {
344 LOG_DBG("empty data no need to setup DMA");
345 return 0;
346 }
347
348 if (data->ctx.current_tx && data->ctx.current_tx->len > 0 &&
349 data->ctx.current_tx->buf != NULL) {
350 #ifdef CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA
351 tx_size = get_size_byte_by_frame_size(data->transfer_len,
352 frame_size);
353 tx_buf = data->inner_tx_buffer->buf;
354 #else
355 /* expect the buffer is pre-set */
356 tx_size = get_size_byte_by_frame_size(data->ctx.current_tx->len,
357 frame_size);
358 LOG_DBG("tx size is %d", tx_size);
359 tx_buf = data->ctx.current_tx->buf;
360 #endif
361 } else {
362 tx_buf = data->inner_tx_buffer->buf;
363 tx_size = get_size_byte_by_frame_size(data->transfer_len,
364 frame_size);
365 rx_only = true;
366 LOG_DBG("rx only 0x%x, size %d", (uint32_t)tx_buf, tx_size);
367 }
368
369 data->tx_dma_block.source_address = (uint32_t)tx_buf;
370 data->tx_dma_block.dest_address =
371 DSPI_MasterGetTxRegisterAddress(base);
372 data->tx_dma_block.next_block = NULL;
373 if (config->is_dma_chn_shared) {
374 /* transfer FIFO size data */
375 data->tx_dma_block.block_size = 4;
376 } else {
377 data->tx_dma_block.block_size = tx_size;
378 }
379
380 data->tx_dma_config.dma_cfg.user_data = (void *) dev;
381 dma_config(data->tx_dma_config.dma_dev, data->tx_dma_config.dma_channel,
382 (struct dma_config *)&data->tx_dma_config.dma_cfg);
383
384 return 0;
385 }
386
update_rx_dma(const struct device * dev)387 static int update_rx_dma(const struct device *dev)
388 {
389 uint32_t rx_size = 0;
390 uint8_t *rx_buf;
391 struct spi_mcux_data *data = dev->data;
392 const struct spi_mcux_config *config = dev->config;
393 SPI_Type *base = config->base;
394 uint32_t frame_size_byte = (data->frame_size >> 3);
395 bool tx_only = false;
396
397 DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
398 if (data->ctx.rx_len == 0) {
399 LOG_DBG("empty data no need to setup DMA");
400 return 0;
401 }
402
403 if (data->ctx.current_rx) {
404 rx_size = data->transfer_len;
405 if (data->ctx.rx_buf != NULL) {
406 rx_buf = data->ctx.rx_buf;
407 } else {
408 rx_buf = data->inner_rx_buffer->buf;
409 }
410 } else {
411 /* tx only */
412 rx_buf = data->inner_rx_buffer->buf;
413 rx_size = data->transfer_len;
414 tx_only = true;
415 LOG_DBG("tx only 0x%x, size %d", (uint32_t)rx_buf, rx_size);
416 }
417
418 if (config->is_dma_chn_shared) {
419 if (data->ctx.rx_len == 1) {
420 /* do not link tx on last frame*/
421 LOG_DBG("do not link tx/rx channel for last one");
422 data->rx_dma_config.dma_cfg.source_chaining_en = 0;
423 data->rx_dma_config.dma_cfg.dest_chaining_en = 0;
424 } else {
425 LOG_DBG("shared mux mode, link tx/rx channel");
426 data->rx_dma_config.dma_cfg.source_chaining_en = 1;
427 data->rx_dma_config.dma_cfg.dest_chaining_en = 1;
428 data->rx_dma_config.dma_cfg.linked_channel =
429 data->tx_dma_config.dma_channel;
430 }
431
432 data->rx_dma_block.dest_address = (uint32_t)rx_buf;
433 data->rx_dma_block.source_address =
434 DSPI_GetRxRegisterAddress(base);
435 /* do once in share mode */
436 data->rx_dma_block.block_size = frame_size_byte;
437 data->rx_dma_config.dma_cfg.source_burst_length =
438 frame_size_byte;
439 data->rx_dma_config.dma_cfg.dest_burst_length = frame_size_byte;
440 data->rx_dma_config.dma_cfg.source_data_size = frame_size_byte;
441 data->rx_dma_config.dma_cfg.dest_data_size = frame_size_byte;
442
443 } else {
444 data->rx_dma_block.dest_address = (uint32_t)rx_buf;
445 data->rx_dma_block.source_address =
446 DSPI_GetRxRegisterAddress(base);
447 data->rx_dma_block.block_size = rx_size;
448 data->rx_dma_config.dma_cfg.source_burst_length =
449 frame_size_byte;
450 data->rx_dma_config.dma_cfg.dest_burst_length = frame_size_byte;
451 data->rx_dma_config.dma_cfg.source_data_size = frame_size_byte;
452 data->rx_dma_config.dma_cfg.dest_data_size = frame_size_byte;
453 }
454
455 data->rx_dma_config.dma_cfg.user_data = (void *) dev;
456 dma_config(data->rx_dma_config.dma_dev, data->rx_dma_config.dma_channel,
457 (struct dma_config *)&data->rx_dma_config.dma_cfg);
458
459 return 0;
460 }
461
configure_dma(const struct device * dev)462 static int configure_dma(const struct device *dev)
463 {
464 const struct spi_mcux_config *config = dev->config;
465
466 if (config->is_dma_chn_shared) {
467 LOG_DBG("shard DMA request");
468 }
469 update_tx_dma(dev);
470 update_rx_dma(dev);
471
472 return 0;
473 }
474
dma_callback(const struct device * dma_dev,void * callback_arg,uint32_t channel,int error_code)475 static void dma_callback(const struct device *dma_dev, void *callback_arg,
476 uint32_t channel, int error_code)
477 {
478 const struct device *dev = (const struct device *)callback_arg;
479 const struct spi_mcux_config *config = dev->config;
480 SPI_Type *base = config->base;
481 struct spi_mcux_data *data = dev->data;
482
483 LOG_DBG("=dma call back @channel %d=", channel);
484
485 if (error_code < 0) {
486 LOG_ERR("error happened no callback process %d", error_code);
487 return;
488 }
489
490 if (channel == data->tx_dma_config.dma_channel) {
491 LOG_DBG("ctx.tx_len is %d", data->ctx.tx_len);
492 LOG_DBG("tx count %d", data->ctx.tx_count);
493
494 spi_context_update_tx(&data->ctx, 1, data->transfer_len);
495 LOG_DBG("tx count %d", data->ctx.tx_count);
496 LOG_DBG("tx buf/len %p/%zu", data->ctx.tx_buf,
497 data->ctx.tx_len);
498 data->tx_transfer_count++;
499 /* tx done */
500 } else {
501 LOG_DBG("ctx.rx_len is %d", data->ctx.rx_len);
502 LOG_DBG("rx count %d", data->ctx.rx_count);
503 spi_context_update_rx(&data->ctx, 1, data->transfer_len);
504 LOG_DBG("rx count %d", data->ctx.rx_count);
505 /* setup the inner tx buffer */
506 LOG_DBG("rx buf/len %p/%zu", data->ctx.rx_buf,
507 data->ctx.rx_len);
508 data->rx_transfer_count++;
509 }
510
511 if (data->tx_transfer_count == data->rx_transfer_count) {
512 LOG_DBG("start next packet");
513 DSPI_StopTransfer(base);
514 DSPI_FlushFifo(base, true, true);
515 DSPI_ClearStatusFlags(base,
516 (uint32_t)kDSPI_AllStatusFlag);
517 mcux_init_inner_buffer_with_cmd(dev, 0);
518 mcux_spi_context_data_update(dev);
519
520 if (config->is_dma_chn_shared) {
521 data->transfer_len = data->frame_size >> 3;
522 } else {
523 if (data->ctx.tx_len == 0) {
524 data->transfer_len = data->ctx.rx_len;
525 } else if (data->ctx.rx_len == 0) {
526 data->transfer_len = data->ctx.tx_len;
527 } else {
528 data->transfer_len =
529 data->ctx.tx_len > data->ctx.rx_len ?
530 data->ctx.rx_len :
531 data->ctx.tx_len;
532 }
533 }
534 update_tx_dma(dev);
535 update_rx_dma(dev);
536 spi_mcux_transfer_next_packet(dev);
537 } else if (data->ctx.rx_len == 0 && data->ctx.tx_len == 0) {
538 LOG_DBG("end of transfer");
539 DSPI_StopTransfer(base);
540 DSPI_FlushFifo(base, true, true);
541 DSPI_ClearStatusFlags(base,
542 (uint32_t)kDSPI_AllStatusFlag);
543 data->transfer_len = 0;
544 spi_mcux_transfer_next_packet(dev);
545 }
546 LOG_DBG("TX/RX DMA callback done");
547 }
548
549 #else
550
spi_mcux_master_transfer_callback(SPI_Type * base,dspi_master_handle_t * handle,status_t status,void * userData)551 static void spi_mcux_master_transfer_callback(SPI_Type *base,
552 dspi_master_handle_t *handle, status_t status, void *userData)
553 {
554 struct spi_mcux_data *data = userData;
555
556 spi_context_update_tx(&data->ctx, 1, data->transfer_len);
557 spi_context_update_rx(&data->ctx, 1, data->transfer_len);
558
559 spi_mcux_transfer_next_packet(data->dev);
560 }
561
562 #endif /* CONFIG_DSPI_MCUX_EDMA */
563
spi_mcux_configure(const struct device * dev,const struct spi_config * spi_cfg)564 static int spi_mcux_configure(const struct device *dev,
565 const struct spi_config *spi_cfg)
566 {
567 const struct spi_mcux_config *config = dev->config;
568 struct spi_mcux_data *data = dev->data;
569 SPI_Type *base = config->base;
570 dspi_master_config_t master_config;
571 uint32_t clock_freq;
572 uint32_t word_size;
573
574 dspi_master_ctar_config_t *ctar_config = &master_config.ctarConfig;
575
576 if (spi_context_configured(&data->ctx, spi_cfg)) {
577 /* This configuration is already in use */
578 return 0;
579 }
580
581 if (spi_cfg->operation & SPI_HALF_DUPLEX) {
582 LOG_ERR("Half-duplex not supported");
583 return -ENOTSUP;
584 }
585
586 DSPI_MasterGetDefaultConfig(&master_config);
587
588 master_config.whichPcs = 1U << spi_cfg->slave;
589 master_config.whichCtar = config->which_ctar;
590 master_config.pcsActiveHighOrLow =
591 (spi_cfg->operation & SPI_CS_ACTIVE_HIGH) ?
592 kDSPI_PcsActiveHigh :
593 kDSPI_PcsActiveLow;
594 master_config.samplePoint = config->samplePoint;
595 master_config.enableContinuousSCK = config->enable_continuous_sck;
596 master_config.enableRxFifoOverWrite = config->enable_rxfifo_overwrite;
597 master_config.enableModifiedTimingFormat =
598 config->enable_modified_timing_format;
599
600 if (spi_cfg->slave > FSL_FEATURE_DSPI_CHIP_SELECT_COUNT) {
601 LOG_ERR("Slave %d is greater than %d",
602 spi_cfg->slave, FSL_FEATURE_DSPI_CHIP_SELECT_COUNT);
603 return -EINVAL;
604 }
605
606 word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
607 if (word_size > FSL_FEATURE_DSPI_MAX_DATA_WIDTH) {
608 LOG_ERR("Word size %d is greater than %d",
609 word_size, FSL_FEATURE_DSPI_MAX_DATA_WIDTH);
610 return -EINVAL;
611 }
612
613 ctar_config->bitsPerFrame = word_size;
614
615 ctar_config->cpol =
616 (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
617 ? kDSPI_ClockPolarityActiveLow
618 : kDSPI_ClockPolarityActiveHigh;
619
620 ctar_config->cpha =
621 (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
622 ? kDSPI_ClockPhaseSecondEdge
623 : kDSPI_ClockPhaseFirstEdge;
624
625 ctar_config->direction =
626 (spi_cfg->operation & SPI_TRANSFER_LSB)
627 ? kDSPI_LsbFirst
628 : kDSPI_MsbFirst;
629
630 ctar_config->baudRate = spi_cfg->frequency;
631
632 ctar_config->pcsToSckDelayInNanoSec = config->pcs_sck_delay;
633 ctar_config->lastSckToPcsDelayInNanoSec = config->sck_pcs_delay;
634 ctar_config->betweenTransferDelayInNanoSec = config->transfer_delay;
635
636 if (!device_is_ready(config->clock_dev)) {
637 LOG_ERR("clock control device not ready");
638 return -ENODEV;
639 }
640
641 if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
642 &clock_freq)) {
643 return -EINVAL;
644 }
645
646 LOG_DBG("clock_freq is %d", clock_freq);
647
648 DSPI_MasterInit(base, &master_config, clock_freq);
649
650 #ifdef CONFIG_DSPI_MCUX_EDMA
651 DSPI_StopTransfer(base);
652 DSPI_FlushFifo(base, true, true);
653 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
654 /* record frame_size setting for DMA */
655 data->frame_size = word_size;
656 /* keep the pcs settings */
657 data->which_pcs = 1U << spi_cfg->slave;
658 #ifdef CONFIG_MCUX_DSPI_EDMA_SHUFFLE_DATA
659 mcux_init_inner_buffer_with_cmd(dev, 0);
660 #endif
661 #else
662 DSPI_MasterTransferCreateHandle(base, &data->handle,
663 spi_mcux_master_transfer_callback,
664 data);
665
666 DSPI_SetDummyData(base, 0);
667 #endif
668
669 data->ctx.config = spi_cfg;
670
671 return 0;
672 }
673
transceive(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,bool asynchronous,spi_callback_t cb,void * userdata)674 static int transceive(const struct device *dev,
675 const struct spi_config *spi_cfg,
676 const struct spi_buf_set *tx_bufs,
677 const struct spi_buf_set *rx_bufs,
678 bool asynchronous,
679 spi_callback_t cb,
680 void *userdata)
681 {
682 struct spi_mcux_data *data = dev->data;
683 int ret;
684 #ifdef CONFIG_DSPI_MCUX_EDMA
685 const struct spi_mcux_config *config = dev->config;
686 SPI_Type *base = config->base;
687 #endif
688
689 spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
690
691 ret = spi_mcux_configure(dev, spi_cfg);
692 if (ret) {
693 goto out;
694 }
695
696 spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
697
698 spi_context_cs_control(&data->ctx, true);
699
700 #ifdef CONFIG_DSPI_MCUX_EDMA
701 DSPI_StopTransfer(base);
702 DSPI_FlushFifo(base, true, true);
703 DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
704 /* setup the tx buffer with end */
705 mcux_init_inner_buffer_with_cmd(dev, 0);
706 mcux_spi_context_data_update(dev);
707 if (config->is_dma_chn_shared) {
708 data->transfer_len = data->frame_size >> 3;
709 } else {
710 data->transfer_len = data->ctx.tx_len > data->ctx.rx_len ?
711 data->ctx.rx_len :
712 data->ctx.tx_len;
713 }
714 data->tx_transfer_count = 0;
715 data->rx_transfer_count = 0;
716 configure_dma(dev);
717 #endif
718
719 ret = spi_mcux_transfer_next_packet(dev);
720 if (ret) {
721 goto out;
722 }
723
724 ret = spi_context_wait_for_completion(&data->ctx);
725 out:
726 spi_context_release(&data->ctx, ret);
727
728 return ret;
729 }
730
spi_mcux_transceive(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)731 static int spi_mcux_transceive(const struct device *dev,
732 const struct spi_config *spi_cfg,
733 const struct spi_buf_set *tx_bufs,
734 const struct spi_buf_set *rx_bufs)
735 {
736 return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
737 }
738
739 #ifdef CONFIG_SPI_ASYNC
spi_mcux_transceive_async(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,spi_callback_t cb,void * userdata)740 static int spi_mcux_transceive_async(const struct device *dev,
741 const struct spi_config *spi_cfg,
742 const struct spi_buf_set *tx_bufs,
743 const struct spi_buf_set *rx_bufs,
744 spi_callback_t cb,
745 void *userdata)
746 {
747 return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
748 }
749 #endif /* CONFIG_SPI_ASYNC */
750
spi_mcux_release(const struct device * dev,const struct spi_config * spi_cfg)751 static int spi_mcux_release(const struct device *dev,
752 const struct spi_config *spi_cfg)
753 {
754 struct spi_mcux_data *data = dev->data;
755
756 spi_context_unlock_unconditionally(&data->ctx);
757
758 return 0;
759 }
760
spi_mcux_init(const struct device * dev)761 static int spi_mcux_init(const struct device *dev)
762 {
763 int err;
764 struct spi_mcux_data *data = dev->data;
765 const struct spi_mcux_config *config = dev->config;
766
767 #ifdef CONFIG_DSPI_MCUX_EDMA
768 enum dma_channel_filter spi_filter = DMA_CHANNEL_NORMAL;
769 const struct device *dma_dev;
770
771 dma_dev = data->rx_dma_config.dma_dev;
772 data->rx_dma_config.dma_channel =
773 dma_request_channel(dma_dev, (void *)&spi_filter);
774 dma_dev = data->tx_dma_config.dma_dev;
775 data->tx_dma_config.dma_channel =
776 dma_request_channel(dma_dev, (void *)&spi_filter);
777 #else
778 config->irq_config_func(dev);
779 #endif
780 err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
781 if (err != 0) {
782 return err;
783 }
784
785 data->dev = dev;
786
787 err = spi_context_cs_configure_all(&data->ctx);
788 if (err < 0) {
789 return err;
790 }
791
792 spi_context_unlock_unconditionally(&data->ctx);
793
794 return 0;
795 }
796
797 static const struct spi_driver_api spi_mcux_driver_api = {
798 .transceive = spi_mcux_transceive,
799 #ifdef CONFIG_SPI_ASYNC
800 .transceive_async = spi_mcux_transceive_async,
801 #endif
802 .release = spi_mcux_release,
803 };
804
805
806 /* if a then b otherwise return 1 */
807 #define _UTIL_AND2(a, b) COND_CODE_1(UTIL_BOOL(a), (b), (1))
808
809 #ifdef CONFIG_DSPI_MCUX_EDMA
810
811 #define TX_BUFFER(id) \
812 static uint32_t \
813 edma_tx_buffer_##id[CONFIG_MCUX_DSPI_BUFFER_SIZE >> 2]; \
814 static struct spi_buf spi_edma_tx_buffer_##id = { \
815 .buf = edma_tx_buffer_##id, \
816 .len = CONFIG_MCUX_DSPI_BUFFER_SIZE, \
817 }
818
819 #define RX_BUFFER(id) \
820 static uint32_t \
821 edma_rx_buffer_##id[CONFIG_MCUX_DSPI_BUFFER_SIZE >> 2]; \
822 static struct spi_buf spi_edma_rx_buffer_##id = { \
823 .buf = edma_rx_buffer_##id, \
824 .len = CONFIG_MCUX_DSPI_BUFFER_SIZE, \
825 }
826
827 #define TX_DMA_CONFIG(id) \
828 .inner_tx_buffer = &spi_edma_tx_buffer_##id, \
829 .tx_dma_config = { \
830 .dma_dev = \
831 DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx)), \
832 .dma_cfg = { \
833 .source_burst_length = 4, \
834 .dest_burst_length = 4, \
835 .source_data_size = 4, \
836 .dest_data_size = 4, \
837 .dma_callback = dma_callback, \
838 .complete_callback_en = 1, \
839 .error_callback_en = 1, \
840 .block_count = 1, \
841 .head_block = &spi_mcux_data_##id.tx_dma_block, \
842 .channel_direction = MEMORY_TO_PERIPHERAL, \
843 .dma_slot = DT_INST_DMAS_CELL_BY_NAME( \
844 id, tx, source), \
845 }, \
846 },
847
848 #define RX_DMA_CONFIG(id) \
849 .inner_rx_buffer = &spi_edma_rx_buffer_##id, \
850 .rx_dma_config = { \
851 .dma_dev = \
852 DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx)), \
853 .dma_cfg = { \
854 .source_burst_length = 2, \
855 .dest_burst_length = 2, \
856 .source_data_size = 2, \
857 .dest_data_size = 2, \
858 .dma_callback = dma_callback, \
859 .complete_callback_en = 1, \
860 .error_callback_en = 1, \
861 .block_count = \
862 _UTIL_AND2(DT_INST_NODE_HAS_PROP( \
863 id, nxp_rx_tx_chn_share), 2), \
864 .head_block = &spi_mcux_data_##id.rx_dma_block, \
865 .channel_direction = PERIPHERAL_TO_MEMORY, \
866 .dma_slot = DT_INST_DMAS_CELL_BY_NAME( \
867 id, rx, source), \
868 }, \
869 },
870 #else
871 #define TX_BUFFER(id)
872 #define RX_BUFFER(id)
873 #define TX_DMA_CONFIG(id)
874 #define RX_DMA_CONFIG(id)
875
876 #endif
877
878 #define SPI_MCUX_DSPI_DEVICE(id) \
879 PINCTRL_DT_INST_DEFINE(id); \
880 static void spi_mcux_config_func_##id(const struct device *dev);\
881 TX_BUFFER(id); \
882 RX_BUFFER(id); \
883 static struct spi_mcux_data spi_mcux_data_##id = { \
884 SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx), \
885 SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx), \
886 SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \
887 TX_DMA_CONFIG(id) RX_DMA_CONFIG(id) \
888 }; \
889 static const struct spi_mcux_config spi_mcux_config_##id = { \
890 .base = (SPI_Type *)DT_INST_REG_ADDR(id), \
891 .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
892 .clock_subsys = \
893 (clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name), \
894 .irq_config_func = spi_mcux_config_func_##id, \
895 .pcs_sck_delay = \
896 DT_INST_PROP_OR(id, pcs_sck_delay, 0), \
897 .sck_pcs_delay = \
898 DT_INST_PROP_OR(id, sck_pcs_delay, 0), \
899 .transfer_delay = \
900 DT_INST_PROP_OR(id, transfer_delay, 0), \
901 .which_ctar = \
902 DT_INST_PROP_OR(id, ctar, 0), \
903 .samplePoint = \
904 DT_INST_PROP_OR(id, sample_point, 0), \
905 .enable_continuous_sck = \
906 DT_INST_PROP(id, continuous_sck), \
907 .enable_rxfifo_overwrite = \
908 DT_INST_PROP(id, rx_fifo_overwrite), \
909 .enable_modified_timing_format = \
910 DT_INST_PROP(id, modified_timing_format), \
911 .is_dma_chn_shared = \
912 DT_INST_PROP(id, nxp_rx_tx_chn_share), \
913 .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \
914 }; \
915 DEVICE_DT_INST_DEFINE(id, \
916 &spi_mcux_init, \
917 NULL, \
918 &spi_mcux_data_##id, \
919 &spi_mcux_config_##id, \
920 POST_KERNEL, \
921 CONFIG_SPI_INIT_PRIORITY, \
922 &spi_mcux_driver_api); \
923 static void spi_mcux_config_func_##id(const struct device *dev) \
924 { \
925 IRQ_CONNECT(DT_INST_IRQN(id), \
926 DT_INST_IRQ(id, priority), \
927 spi_mcux_isr, DEVICE_DT_INST_GET(id), \
928 0); \
929 irq_enable(DT_INST_IRQN(id)); \
930 }
931
932 DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_DSPI_DEVICE)
933