1 /*
2  * Copyright (c) 2016-2019 Nordic Semiconductor ASA
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @brief Driver for Nordic Semiconductor nRF5X UART
9  */
10 
11 #include <zephyr/drivers/pinctrl.h>
12 #include <zephyr/drivers/uart.h>
13 #include <zephyr/pm/device.h>
14 #include <zephyr/irq.h>
15 #include <soc.h>
16 #include <hal/nrf_uart.h>
17 
18 /*
19  * Extract information from devicetree.
20  *
21  * This driver only supports one instance of this IP block, so the
22  * instance number is always 0.
23  */
24 #define DT_DRV_COMPAT	nordic_nrf_uart
25 
26 #define PROP(prop)	DT_INST_PROP(0, prop)
27 #define HAS_PROP(prop)	DT_INST_NODE_HAS_PROP(0, prop)
28 
29 #define BAUDRATE	PROP(current_speed)
30 
31 #define DISABLE_RX	PROP(disable_rx)
32 #define HW_FLOW_CONTROL_AVAILABLE	PROP(hw_flow_control)
33 
34 #define IRQN		DT_INST_IRQN(0)
35 #define IRQ_PRIO	DT_INST_IRQ(0, priority)
36 
37 static NRF_UART_Type *const uart0_addr = (NRF_UART_Type *)DT_INST_REG_ADDR(0);
38 
39 struct uart_nrfx_config {
40 	const struct pinctrl_dev_config *pcfg;
41 };
42 
43 /* Device data structure */
44 struct uart_nrfx_data {
45 	struct uart_config uart_config;
46 };
47 
48 #ifdef CONFIG_UART_0_ASYNC
49 static struct {
50 	uart_callback_t callback;
51 	void *user_data;
52 
53 	uint8_t *rx_buffer;
54 	uint8_t *rx_secondary_buffer;
55 	size_t rx_buffer_length;
56 	size_t rx_secondary_buffer_length;
57 	volatile size_t rx_counter;
58 	volatile size_t rx_offset;
59 	int32_t rx_timeout;
60 	struct k_timer rx_timeout_timer;
61 	bool rx_enabled;
62 
63 	bool tx_abort;
64 	const uint8_t *volatile tx_buffer;
65 	/* note: this is aliased with atomic_t in uart_nrfx_poll_out() */
66 	unsigned long tx_buffer_length;
67 	volatile size_t tx_counter;
68 #if HW_FLOW_CONTROL_AVAILABLE
69 	int32_t tx_timeout;
70 	struct k_timer tx_timeout_timer;
71 #endif
72 } uart0_cb;
73 #endif /* CONFIG_UART_0_ASYNC */
74 
75 #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
76 
77 static uart_irq_callback_user_data_t irq_callback; /**< Callback function pointer */
78 static void *irq_cb_data; /**< Callback function arg */
79 
80 /* Variable used to override the state of the TXDRDY event in the initial state
81  * of the driver. This event is not set by the hardware until a first byte is
82  * sent, and we want to use it as an indication if the transmitter is ready
83  * to accept a new byte.
84  */
85 static volatile uint8_t uart_sw_event_txdrdy;
86 static volatile bool disable_tx_irq;
87 
88 #endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */
89 
event_txdrdy_check(void)90 static bool event_txdrdy_check(void)
91 {
92 	return (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)
93 #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
94 		|| uart_sw_event_txdrdy
95 #endif
96 	       );
97 }
98 
event_txdrdy_clear(void)99 static void event_txdrdy_clear(void)
100 {
101 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
102 #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
103 	uart_sw_event_txdrdy = 0U;
104 #endif
105 }
106 
107 
108 /**
109  * @brief Set the baud rate
110  *
111  * This routine set the given baud rate for the UART.
112  *
113  * @param dev UART device struct
114  * @param baudrate Baud rate
115  *
116  * @retval 0 on success.
117  * @retval -EINVAL for invalid baudrate.
118  */
119 
baudrate_set(const struct device * dev,uint32_t baudrate)120 static int baudrate_set(const struct device *dev, uint32_t baudrate)
121 {
122 	nrf_uart_baudrate_t nrf_baudrate; /* calculated baudrate divisor */
123 
124 	switch (baudrate) {
125 	case 300:
126 		/* value not supported by Nordic HAL */
127 		nrf_baudrate = 0x00014000;
128 		break;
129 	case 600:
130 		/* value not supported by Nordic HAL */
131 		nrf_baudrate = 0x00027000;
132 		break;
133 	case 1200:
134 		nrf_baudrate = NRF_UART_BAUDRATE_1200;
135 		break;
136 	case 2400:
137 		nrf_baudrate = NRF_UART_BAUDRATE_2400;
138 		break;
139 	case 4800:
140 		nrf_baudrate = NRF_UART_BAUDRATE_4800;
141 		break;
142 	case 9600:
143 		nrf_baudrate = NRF_UART_BAUDRATE_9600;
144 		break;
145 	case 14400:
146 		nrf_baudrate = NRF_UART_BAUDRATE_14400;
147 		break;
148 	case 19200:
149 		nrf_baudrate = NRF_UART_BAUDRATE_19200;
150 		break;
151 	case 28800:
152 		nrf_baudrate = NRF_UART_BAUDRATE_28800;
153 		break;
154 #if defined(UART_BAUDRATE_BAUDRATE_Baud31250)
155 	case 31250:
156 		nrf_baudrate = NRF_UART_BAUDRATE_31250;
157 		break;
158 #endif
159 	case 38400:
160 		nrf_baudrate = NRF_UART_BAUDRATE_38400;
161 		break;
162 #if defined(UART_BAUDRATE_BAUDRATE_Baud56000)
163 	case 56000:
164 		nrf_baudrate = NRF_UART_BAUDRATE_56000;
165 		break;
166 #endif
167 	case 57600:
168 		nrf_baudrate = NRF_UART_BAUDRATE_57600;
169 		break;
170 	case 76800:
171 		nrf_baudrate = NRF_UART_BAUDRATE_76800;
172 		break;
173 	case 115200:
174 		nrf_baudrate = NRF_UART_BAUDRATE_115200;
175 		break;
176 	case 230400:
177 		nrf_baudrate = NRF_UART_BAUDRATE_230400;
178 		break;
179 	case 250000:
180 		nrf_baudrate = NRF_UART_BAUDRATE_250000;
181 		break;
182 	case 460800:
183 		nrf_baudrate = NRF_UART_BAUDRATE_460800;
184 		break;
185 	case 921600:
186 		nrf_baudrate = NRF_UART_BAUDRATE_921600;
187 		break;
188 	case 1000000:
189 		nrf_baudrate = NRF_UART_BAUDRATE_1000000;
190 		break;
191 	default:
192 		return -EINVAL;
193 	}
194 
195 	nrf_uart_baudrate_set(uart0_addr, nrf_baudrate);
196 
197 	return 0;
198 }
199 
200 /**
201  * @brief Poll the device for input.
202  *
203  * @param dev UART device struct
204  * @param c Pointer to character
205  *
206  * @return 0 if a character arrived, -1 if the input buffer if empty.
207  */
208 
uart_nrfx_poll_in(const struct device * dev,unsigned char * c)209 static int uart_nrfx_poll_in(const struct device *dev, unsigned char *c)
210 {
211 	if (!nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) {
212 		return -1;
213 	}
214 
215 	/* Clear the interrupt */
216 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
217 
218 	/* got a character */
219 	*c = nrf_uart_rxd_get(uart0_addr);
220 
221 	return 0;
222 }
223 
224 #ifdef CONFIG_UART_0_ASYNC
225 static void uart_nrfx_isr(const struct device *dev);
226 #endif
227 
228 /**
229  * @brief Output a character in polled mode.
230  *
231  * @param dev UART device struct
232  * @param c Character to send
233  */
uart_nrfx_poll_out(const struct device * dev,unsigned char c)234 static void uart_nrfx_poll_out(const struct device *dev, unsigned char c)
235 {
236 	atomic_t *lock;
237 #ifdef CONFIG_UART_0_ASYNC
238 	while (uart0_cb.tx_buffer) {
239 		/* If there is ongoing asynchronous transmission, and we are in
240 		 * ISR, then call uart interrupt routine, otherwise
241 		 * busy wait until transmission is finished.
242 		 */
243 		if (k_is_in_isr()) {
244 			uart_nrfx_isr(dev);
245 		}
246 	}
247 	/* Use tx_buffer_length as lock, this way uart_nrfx_tx will
248 	 * return -EBUSY during poll_out.
249 	 */
250 	lock = &uart0_cb.tx_buffer_length;
251 #else
252 	static atomic_val_t poll_out_lock;
253 
254 	lock = &poll_out_lock;
255 #endif
256 
257 	if (!k_is_in_isr()) {
258 		uint8_t safety_cnt = 100;
259 
260 		while (atomic_cas((atomic_t *) lock,
261 				  (atomic_val_t) 0,
262 				  (atomic_val_t) 1) == false) {
263 			if (IS_ENABLED(CONFIG_MULTITHREADING)) {
264 				/* k_sleep allows other threads to execute and finish
265 				 * their transactions.
266 				 */
267 				k_msleep(1);
268 			} else {
269 				k_busy_wait(1000);
270 			}
271 			if (--safety_cnt == 0) {
272 				break;
273 			}
274 		}
275 	} else {
276 		*lock = 1;
277 	}
278 	/* Reset the transmitter ready state. */
279 	event_txdrdy_clear();
280 
281 	/* Activate the transmitter. */
282 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX);
283 
284 	/* Send the provided character. */
285 	nrf_uart_txd_set(uart0_addr, (uint8_t)c);
286 
287 	/* Wait until the transmitter is ready, i.e. the character is sent. */
288 	int res;
289 
290 	NRFX_WAIT_FOR(event_txdrdy_check(), 1000, 1, res);
291 
292 	/* Deactivate the transmitter so that it does not needlessly
293 	 * consume power.
294 	 */
295 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
296 
297 	/* Release the lock. */
298 	*lock = 0;
299 }
300 
301 /** Console I/O function */
uart_nrfx_err_check(const struct device * dev)302 static int uart_nrfx_err_check(const struct device *dev)
303 {
304 	/* register bitfields maps to the defines in uart.h */
305 	return nrf_uart_errorsrc_get_and_clear(uart0_addr);
306 }
307 
uart_nrfx_configure(const struct device * dev,const struct uart_config * cfg)308 static int uart_nrfx_configure(const struct device *dev,
309 			       const struct uart_config *cfg)
310 {
311 	struct uart_nrfx_data *data = dev->data;
312 	nrf_uart_config_t uart_cfg;
313 
314 #if defined(UART_CONFIG_STOP_Msk)
315 	switch (cfg->stop_bits) {
316 	case UART_CFG_STOP_BITS_1:
317 		uart_cfg.stop = NRF_UART_STOP_ONE;
318 		break;
319 	case UART_CFG_STOP_BITS_2:
320 		uart_cfg.stop = NRF_UART_STOP_TWO;
321 		break;
322 	default:
323 		return -ENOTSUP;
324 	}
325 #else
326 	if (cfg->stop_bits != UART_CFG_STOP_BITS_1) {
327 		return -ENOTSUP;
328 	}
329 #endif
330 
331 	if (cfg->data_bits != UART_CFG_DATA_BITS_8) {
332 		return -ENOTSUP;
333 	}
334 
335 	switch (cfg->flow_ctrl) {
336 	case UART_CFG_FLOW_CTRL_NONE:
337 		uart_cfg.hwfc = NRF_UART_HWFC_DISABLED;
338 		break;
339 	case UART_CFG_FLOW_CTRL_RTS_CTS:
340 		if (HW_FLOW_CONTROL_AVAILABLE) {
341 			uart_cfg.hwfc = NRF_UART_HWFC_ENABLED;
342 		} else {
343 			return -ENOTSUP;
344 		}
345 		break;
346 	default:
347 		return -ENOTSUP;
348 	}
349 
350 #if defined(UART_CONFIG_PARITYTYPE_Msk)
351 	uart_cfg.paritytype = NRF_UART_PARITYTYPE_EVEN;
352 #endif
353 	switch (cfg->parity) {
354 	case UART_CFG_PARITY_NONE:
355 		uart_cfg.parity = NRF_UART_PARITY_EXCLUDED;
356 		break;
357 	case UART_CFG_PARITY_EVEN:
358 		uart_cfg.parity = NRF_UART_PARITY_INCLUDED;
359 		break;
360 #if defined(UART_CONFIG_PARITYTYPE_Msk)
361 	case UART_CFG_PARITY_ODD:
362 		uart_cfg.parity = NRF_UART_PARITY_INCLUDED;
363 		uart_cfg.paritytype = NRF_UART_PARITYTYPE_ODD;
364 		break;
365 #endif
366 	default:
367 		return -ENOTSUP;
368 	}
369 
370 	if (baudrate_set(dev, cfg->baudrate) != 0) {
371 		return -ENOTSUP;
372 	}
373 
374 	nrf_uart_configure(uart0_addr, &uart_cfg);
375 
376 	data->uart_config = *cfg;
377 
378 	return 0;
379 }
380 
381 #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
uart_nrfx_config_get(const struct device * dev,struct uart_config * cfg)382 static int uart_nrfx_config_get(const struct device *dev,
383 				struct uart_config *cfg)
384 {
385 	struct uart_nrfx_data *data = dev->data;
386 
387 	*cfg = data->uart_config;
388 	return 0;
389 }
390 #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
391 
392 #ifdef CONFIG_UART_0_ASYNC
393 
user_callback(const struct device * dev,struct uart_event * event)394 static void user_callback(const struct device *dev, struct uart_event *event)
395 {
396 	if (uart0_cb.callback) {
397 		uart0_cb.callback(dev, event, uart0_cb.user_data);
398 	}
399 }
400 
uart_nrfx_callback_set(const struct device * dev,uart_callback_t callback,void * user_data)401 static int uart_nrfx_callback_set(const struct device *dev,
402 				  uart_callback_t callback,
403 				  void *user_data)
404 {
405 	uart0_cb.callback = callback;
406 	uart0_cb.user_data = user_data;
407 
408 	return 0;
409 }
410 
uart_nrfx_tx(const struct device * dev,const uint8_t * buf,size_t len,int32_t timeout)411 static int uart_nrfx_tx(const struct device *dev, const uint8_t *buf,
412 			size_t len,
413 			int32_t timeout)
414 {
415 	if (atomic_cas((atomic_t *) &uart0_cb.tx_buffer_length,
416 		       (atomic_val_t) 0,
417 		       (atomic_val_t) len) == false) {
418 		return -EBUSY;
419 	}
420 
421 	uart0_cb.tx_buffer = buf;
422 #if	HW_FLOW_CONTROL_AVAILABLE
423 	uart0_cb.tx_timeout = timeout;
424 #endif
425 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
426 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX);
427 	nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
428 
429 	uint8_t txd = uart0_cb.tx_buffer[uart0_cb.tx_counter];
430 
431 	nrf_uart_txd_set(uart0_addr, txd);
432 
433 	return 0;
434 }
435 
uart_nrfx_tx_abort(const struct device * dev)436 static int uart_nrfx_tx_abort(const struct device *dev)
437 {
438 	if (uart0_cb.tx_buffer_length == 0) {
439 		return -EINVAL;
440 	}
441 #if	HW_FLOW_CONTROL_AVAILABLE
442 	if (uart0_cb.tx_timeout != SYS_FOREVER_US) {
443 		k_timer_stop(&uart0_cb.tx_timeout_timer);
444 	}
445 #endif
446 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
447 
448 	struct uart_event evt = {
449 		.type = UART_TX_ABORTED,
450 		.data.tx.buf = uart0_cb.tx_buffer,
451 		.data.tx.len = uart0_cb.tx_counter
452 	};
453 
454 	uart0_cb.tx_buffer_length = 0;
455 	uart0_cb.tx_counter = 0;
456 
457 	user_callback(dev, &evt);
458 
459 	return 0;
460 }
461 
uart_nrfx_rx_enable(const struct device * dev,uint8_t * buf,size_t len,int32_t timeout)462 static int uart_nrfx_rx_enable(const struct device *dev, uint8_t *buf,
463 			       size_t len,
464 			       int32_t timeout)
465 {
466 	if (DISABLE_RX) {
467 		__ASSERT(false, "TX only UART instance");
468 		return -ENOTSUP;
469 	}
470 
471 	if (uart0_cb.rx_buffer_length != 0) {
472 		return -EBUSY;
473 	}
474 
475 	uart0_cb.rx_enabled = 1;
476 	uart0_cb.rx_buffer = buf;
477 	uart0_cb.rx_buffer_length = len;
478 	uart0_cb.rx_counter = 0;
479 	uart0_cb.rx_secondary_buffer_length = 0;
480 	uart0_cb.rx_timeout = timeout;
481 
482 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR);
483 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
484 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXTO);
485 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTRX);
486 	nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_RXDRDY |
487 					NRF_UART_INT_MASK_ERROR |
488 					NRF_UART_INT_MASK_RXTO);
489 
490 	return 0;
491 }
492 
uart_nrfx_rx_buf_rsp(const struct device * dev,uint8_t * buf,size_t len)493 static int uart_nrfx_rx_buf_rsp(const struct device *dev, uint8_t *buf,
494 				size_t len)
495 {
496 	int err;
497 	unsigned int key = irq_lock();
498 
499 	if (!uart0_cb.rx_enabled) {
500 		err = -EACCES;
501 	} else if (uart0_cb.rx_secondary_buffer_length != 0) {
502 		err = -EBUSY;
503 	} else {
504 		uart0_cb.rx_secondary_buffer = buf;
505 		uart0_cb.rx_secondary_buffer_length = len;
506 		err = 0;
507 	}
508 
509 	irq_unlock(key);
510 
511 	return err;
512 }
513 
uart_nrfx_rx_disable(const struct device * dev)514 static int uart_nrfx_rx_disable(const struct device *dev)
515 {
516 	if (uart0_cb.rx_buffer_length == 0) {
517 		return -EFAULT;
518 	}
519 
520 	uart0_cb.rx_enabled = 0;
521 	if (uart0_cb.rx_timeout != SYS_FOREVER_US) {
522 		k_timer_stop(&uart0_cb.rx_timeout_timer);
523 	}
524 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPRX);
525 
526 	return 0;
527 }
528 
rx_rdy_evt(const struct device * dev)529 static void rx_rdy_evt(const struct device *dev)
530 {
531 	struct uart_event event;
532 	size_t rx_cnt = uart0_cb.rx_counter;
533 
534 	event.type = UART_RX_RDY;
535 	event.data.rx.buf = uart0_cb.rx_buffer;
536 	event.data.rx.len = rx_cnt - uart0_cb.rx_offset;
537 	event.data.rx.offset = uart0_cb.rx_offset;
538 
539 	uart0_cb.rx_offset = rx_cnt;
540 
541 	user_callback(dev, &event);
542 }
543 
buf_released_evt(const struct device * dev)544 static void buf_released_evt(const struct device *dev)
545 {
546 	struct uart_event event = {
547 		.type = UART_RX_BUF_RELEASED,
548 		.data.rx_buf.buf = uart0_cb.rx_buffer
549 	};
550 	user_callback(dev, &event);
551 }
552 
rx_disabled_evt(const struct device * dev)553 static void rx_disabled_evt(const struct device *dev)
554 {
555 	struct uart_event event = {
556 		.type = UART_RX_DISABLED
557 	};
558 	user_callback(dev, &event);
559 }
560 
rx_reset_state(void)561 static void rx_reset_state(void)
562 {
563 	nrf_uart_int_disable(uart0_addr,
564 			     NRF_UART_INT_MASK_RXDRDY |
565 			     NRF_UART_INT_MASK_ERROR |
566 			     NRF_UART_INT_MASK_RXTO);
567 	uart0_cb.rx_buffer_length = 0;
568 	uart0_cb.rx_enabled = 0;
569 	uart0_cb.rx_counter = 0;
570 	uart0_cb.rx_offset = 0;
571 	uart0_cb.rx_secondary_buffer_length = 0;
572 }
573 
rx_isr(const struct device * dev)574 static void rx_isr(const struct device *dev)
575 {
576 	struct uart_event event;
577 
578 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
579 
580 	if (!uart0_cb.rx_buffer_length || !uart0_cb.rx_enabled) {
581 		/* Byte received when receiving is disabled - data lost. */
582 		nrf_uart_rxd_get(uart0_addr);
583 	} else {
584 		if (uart0_cb.rx_counter == 0 &&
585 		    uart0_cb.rx_secondary_buffer_length == 0) {
586 			event.type = UART_RX_BUF_REQUEST;
587 			user_callback(dev, &event);
588 		}
589 		uart0_cb.rx_buffer[uart0_cb.rx_counter] =
590 			nrf_uart_rxd_get(uart0_addr);
591 		uart0_cb.rx_counter++;
592 		if (uart0_cb.rx_timeout == 0) {
593 			rx_rdy_evt(dev);
594 		} else if (uart0_cb.rx_timeout != SYS_FOREVER_US) {
595 			k_timer_start(&uart0_cb.rx_timeout_timer,
596 				      K_USEC(uart0_cb.rx_timeout),
597 				      K_NO_WAIT);
598 		}
599 	}
600 
601 	if (uart0_cb.rx_buffer_length == uart0_cb.rx_counter) {
602 		if (uart0_cb.rx_timeout != SYS_FOREVER_US) {
603 			k_timer_stop(&uart0_cb.rx_timeout_timer);
604 		}
605 		rx_rdy_evt(dev);
606 
607 		unsigned int key = irq_lock();
608 
609 		if (uart0_cb.rx_secondary_buffer_length == 0) {
610 			uart0_cb.rx_enabled = 0;
611 		}
612 		irq_unlock(key);
613 
614 		if (uart0_cb.rx_secondary_buffer_length) {
615 			buf_released_evt(dev);
616 			/* Switch to secondary buffer. */
617 			uart0_cb.rx_buffer_length =
618 				uart0_cb.rx_secondary_buffer_length;
619 			uart0_cb.rx_buffer = uart0_cb.rx_secondary_buffer;
620 			uart0_cb.rx_secondary_buffer_length = 0;
621 			uart0_cb.rx_counter = 0;
622 			uart0_cb.rx_offset = 0;
623 
624 			event.type = UART_RX_BUF_REQUEST;
625 			user_callback(dev, &event);
626 		} else {
627 			uart_nrfx_rx_disable(dev);
628 		}
629 	}
630 }
631 
tx_isr(const struct device * dev)632 static void tx_isr(const struct device *dev)
633 {
634 	uart0_cb.tx_counter++;
635 	if (uart0_cb.tx_counter < uart0_cb.tx_buffer_length &&
636 	    !uart0_cb.tx_abort) {
637 #if	HW_FLOW_CONTROL_AVAILABLE
638 		if (uart0_cb.tx_timeout != SYS_FOREVER_US) {
639 			k_timer_start(&uart0_cb.tx_timeout_timer,
640 				      K_USEC(uart0_cb.tx_timeout),
641 				      K_NO_WAIT);
642 		}
643 #endif
644 		nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
645 
646 		uint8_t txd = uart0_cb.tx_buffer[uart0_cb.tx_counter];
647 
648 		nrf_uart_txd_set(uart0_addr, txd);
649 	} else {
650 #if	HW_FLOW_CONTROL_AVAILABLE
651 
652 		if (uart0_cb.tx_timeout != SYS_FOREVER_US) {
653 			k_timer_stop(&uart0_cb.tx_timeout_timer);
654 		}
655 #endif
656 		nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
657 		struct uart_event event = {
658 			.type = UART_TX_DONE,
659 			.data.tx.buf = uart0_cb.tx_buffer,
660 			.data.tx.len = uart0_cb.tx_counter
661 		};
662 		nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_TXDRDY);
663 		uart0_cb.tx_buffer_length = 0;
664 		uart0_cb.tx_counter = 0;
665 		uart0_cb.tx_buffer = NULL;
666 
667 		nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
668 		user_callback(dev, &event);
669 	}
670 }
671 
672 #define UART_ERROR_FROM_MASK(mask) \
673 	(mask & NRF_UART_ERROR_OVERRUN_MASK ? UART_ERROR_OVERRUN	\
674 	 : mask & NRF_UART_ERROR_PARITY_MASK ? UART_ERROR_PARITY	\
675 	 : mask & NRF_UART_ERROR_FRAMING_MASK ? UART_ERROR_FRAMING	\
676 	 : mask & NRF_UART_ERROR_BREAK_MASK ? UART_BREAK		\
677 	 : 0)
678 
error_isr(const struct device * dev)679 static void error_isr(const struct device *dev)
680 {
681 	if (uart0_cb.rx_timeout != SYS_FOREVER_US) {
682 		k_timer_stop(&uart0_cb.rx_timeout_timer);
683 	}
684 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR);
685 
686 	if (!uart0_cb.rx_enabled) {
687 		nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPRX);
688 	}
689 	struct uart_event event = {
690 		.type = UART_RX_STOPPED,
691 		.data.rx_stop.reason =
692 			UART_ERROR_FROM_MASK(
693 				nrf_uart_errorsrc_get_and_clear(uart0_addr)),
694 		.data.rx_stop.data.len = uart0_cb.rx_counter
695 					 - uart0_cb.rx_offset,
696 		.data.rx_stop.data.offset = uart0_cb.rx_offset,
697 		.data.rx_stop.data.buf = uart0_cb.rx_buffer
698 	};
699 
700 	user_callback(dev, &event);
701 	/* Abort transfer. */
702 	uart_nrfx_rx_disable(dev);
703 }
704 
705 /*
706  * In nRF hardware RX timeout can occur only after stopping the peripheral,
707  * it is used as a sign that peripheral has finished its operation and is
708  * disabled.
709  */
rxto_isr(const struct device * dev)710 static void rxto_isr(const struct device *dev)
711 {
712 	nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXTO);
713 
714 	/* Send rxrdy if there is any data pending. */
715 	if (uart0_cb.rx_counter - uart0_cb.rx_offset) {
716 		rx_rdy_evt(dev);
717 	}
718 
719 	buf_released_evt(dev);
720 	if (uart0_cb.rx_secondary_buffer_length) {
721 		uart0_cb.rx_buffer = uart0_cb.rx_secondary_buffer;
722 		buf_released_evt(dev);
723 	}
724 
725 	rx_reset_state();
726 	rx_disabled_evt(dev);
727 }
728 
uart_nrfx_isr(const struct device * uart)729 void uart_nrfx_isr(const struct device *uart)
730 {
731 	if (nrf_uart_int_enable_check(uart0_addr, NRF_UART_INT_MASK_ERROR) &&
732 	    nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_ERROR)) {
733 		error_isr(uart);
734 	} else if (nrf_uart_int_enable_check(uart0_addr,
735 					     NRF_UART_INT_MASK_RXDRDY) &&
736 		   nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) {
737 		rx_isr(uart);
738 	}
739 
740 	if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)
741 	    && nrf_uart_int_enable_check(uart0_addr,
742 					 NRF_UART_INT_MASK_TXDRDY)) {
743 		tx_isr(uart);
744 	}
745 
746 	if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXTO)) {
747 		rxto_isr(uart);
748 	}
749 }
750 
rx_timeout(struct k_timer * timer)751 static void rx_timeout(struct k_timer *timer)
752 {
753 	rx_rdy_evt(DEVICE_DT_INST_GET(0));
754 }
755 
756 #if HW_FLOW_CONTROL_AVAILABLE
tx_timeout(struct k_timer * timer)757 static void tx_timeout(struct k_timer *timer)
758 {
759 	struct uart_event evt;
760 
761 	if (uart0_cb.tx_timeout != SYS_FOREVER_US) {
762 		k_timer_stop(&uart0_cb.tx_timeout_timer);
763 	}
764 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
765 	evt.type = UART_TX_ABORTED;
766 	evt.data.tx.buf = uart0_cb.tx_buffer;
767 	evt.data.tx.len = uart0_cb.tx_buffer_length;
768 	uart0_cb.tx_buffer_length = 0;
769 	uart0_cb.tx_counter = 0;
770 	user_callback(DEVICE_DT_INST_GET(0), &evt);
771 }
772 #endif
773 
774 #endif /* CONFIG_UART_0_ASYNC */
775 
776 
777 #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
778 
779 /** Interrupt driven FIFO fill function */
uart_nrfx_fifo_fill(const struct device * dev,const uint8_t * tx_data,int len)780 static int uart_nrfx_fifo_fill(const struct device *dev,
781 			       const uint8_t *tx_data,
782 			       int len)
783 {
784 	uint8_t num_tx = 0U;
785 
786 	while ((len - num_tx > 0) &&
787 	       event_txdrdy_check()) {
788 
789 		/* Clear the interrupt */
790 		event_txdrdy_clear();
791 
792 		/* Send a character */
793 		nrf_uart_txd_set(uart0_addr, (uint8_t)tx_data[num_tx++]);
794 	}
795 
796 	return (int)num_tx;
797 }
798 
799 /** Interrupt driven FIFO read function */
uart_nrfx_fifo_read(const struct device * dev,uint8_t * rx_data,const int size)800 static int uart_nrfx_fifo_read(const struct device *dev,
801 			       uint8_t *rx_data,
802 			       const int size)
803 {
804 	uint8_t num_rx = 0U;
805 
806 	while ((size - num_rx > 0) &&
807 	       nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY)) {
808 		/* Clear the interrupt */
809 		nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
810 
811 		/* Receive a character */
812 		rx_data[num_rx++] = (uint8_t)nrf_uart_rxd_get(uart0_addr);
813 	}
814 
815 	return num_rx;
816 }
817 
818 /** Interrupt driven transfer enabling function */
uart_nrfx_irq_tx_enable(const struct device * dev)819 static void uart_nrfx_irq_tx_enable(const struct device *dev)
820 {
821 	uint32_t key;
822 
823 	disable_tx_irq = false;
824 
825 	/* Indicate that this device started a transaction that should not be
826 	 * interrupted by putting the SoC into the deep sleep mode.
827 	 */
828 	pm_device_busy_set(dev);
829 
830 	/* Activate the transmitter. */
831 	nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTTX);
832 
833 	nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
834 
835 	/* Critical section is used to avoid any UART related interrupt which
836 	 * can occur after the if statement and before call of the function
837 	 * forcing an interrupt.
838 	 */
839 	key = irq_lock();
840 	if (uart_sw_event_txdrdy) {
841 		/* Due to HW limitation first TXDRDY interrupt shall be
842 		 * triggered by the software.
843 		 */
844 		NVIC_SetPendingIRQ(IRQN);
845 	}
846 	irq_unlock(key);
847 }
848 
849 /** Interrupt driven transfer disabling function */
uart_nrfx_irq_tx_disable(const struct device * dev)850 static void uart_nrfx_irq_tx_disable(const struct device *dev)
851 {
852 	/* Disable TX interrupt in uart_nrfx_isr() when transmission is done. */
853 	disable_tx_irq = true;
854 }
855 
856 /** Interrupt driven receiver enabling function */
uart_nrfx_irq_rx_enable(const struct device * dev)857 static void uart_nrfx_irq_rx_enable(const struct device *dev)
858 {
859 	nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_RXDRDY);
860 }
861 
862 /** Interrupt driven receiver disabling function */
uart_nrfx_irq_rx_disable(const struct device * dev)863 static void uart_nrfx_irq_rx_disable(const struct device *dev)
864 {
865 	nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_RXDRDY);
866 }
867 
868 /** Interrupt driven transfer empty function */
uart_nrfx_irq_tx_ready_complete(const struct device * dev)869 static int uart_nrfx_irq_tx_ready_complete(const struct device *dev)
870 {
871 	/* Signal TX readiness only when the TX interrupt is enabled and there
872 	 * is no pending request to disable it. Note that this function may get
873 	 * called after the TX interrupt is requested to be disabled but before
874 	 * the disabling is actually performed (in the IRQ handler).
875 	 */
876 	return nrf_uart_int_enable_check(uart0_addr,
877 					 NRF_UART_INT_MASK_TXDRDY) &&
878 	       !disable_tx_irq &&
879 	       event_txdrdy_check();
880 }
881 
882 /** Interrupt driven receiver ready function */
uart_nrfx_irq_rx_ready(const struct device * dev)883 static int uart_nrfx_irq_rx_ready(const struct device *dev)
884 {
885 	return nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_RXDRDY);
886 }
887 
888 /** Interrupt driven error enabling function */
uart_nrfx_irq_err_enable(const struct device * dev)889 static void uart_nrfx_irq_err_enable(const struct device *dev)
890 {
891 	nrf_uart_int_enable(uart0_addr, NRF_UART_INT_MASK_ERROR);
892 }
893 
894 /** Interrupt driven error disabling function */
uart_nrfx_irq_err_disable(const struct device * dev)895 static void uart_nrfx_irq_err_disable(const struct device *dev)
896 {
897 	nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_ERROR);
898 }
899 
900 /** Interrupt driven pending status function */
uart_nrfx_irq_is_pending(const struct device * dev)901 static int uart_nrfx_irq_is_pending(const struct device *dev)
902 {
903 	return ((nrf_uart_int_enable_check(uart0_addr,
904 					   NRF_UART_INT_MASK_TXDRDY) &&
905 		 uart_nrfx_irq_tx_ready_complete(dev))
906 		||
907 		(nrf_uart_int_enable_check(uart0_addr,
908 					   NRF_UART_INT_MASK_RXDRDY) &&
909 		 uart_nrfx_irq_rx_ready(dev)));
910 }
911 
912 /** Interrupt driven interrupt update function */
uart_nrfx_irq_update(const struct device * dev)913 static int uart_nrfx_irq_update(const struct device *dev)
914 {
915 	return 1;
916 }
917 
918 /** Set the callback function */
uart_nrfx_irq_callback_set(const struct device * dev,uart_irq_callback_user_data_t cb,void * cb_data)919 static void uart_nrfx_irq_callback_set(const struct device *dev,
920 				       uart_irq_callback_user_data_t cb,
921 				       void *cb_data)
922 {
923 	(void)dev;
924 	irq_callback = cb;
925 	irq_cb_data = cb_data;
926 }
927 
928 /**
929  * @brief Interrupt service routine.
930  *
931  * This simply calls the callback function, if one exists.
932  *
933  * @param arg Argument to ISR.
934  */
uart_nrfx_isr(const struct device * dev)935 static void uart_nrfx_isr(const struct device *dev)
936 {
937 	if (disable_tx_irq &&
938 	    nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_TXDRDY)) {
939 		nrf_uart_int_disable(uart0_addr, NRF_UART_INT_MASK_TXDRDY);
940 
941 		/* Deactivate the transmitter so that it does not needlessly
942 		 * consume power.
943 		 */
944 		nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STOPTX);
945 
946 		/* The transaction is over. It is okay to enter the deep sleep
947 		 * mode if needed.
948 		 */
949 		pm_device_busy_clear(dev);
950 
951 		disable_tx_irq = false;
952 
953 		return;
954 	}
955 
956 	if (nrf_uart_event_check(uart0_addr, NRF_UART_EVENT_ERROR)) {
957 		nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_ERROR);
958 	}
959 
960 	if (irq_callback) {
961 		irq_callback(dev, irq_cb_data);
962 	}
963 }
964 #endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */
965 
966 /**
967  * @brief Initialize UART channel
968  *
969  * This routine is called to reset the chip in a quiescent state.
970  * It is assumed that this function is called only once per UART.
971  *
972  * @param dev UART device struct
973  *
974  * @return 0 on success
975  */
uart_nrfx_init(const struct device * dev)976 static int uart_nrfx_init(const struct device *dev)
977 {
978 	const struct uart_nrfx_config *config = dev->config;
979 	struct uart_nrfx_data *data = dev->data;
980 	int err;
981 
982 	nrf_uart_disable(uart0_addr);
983 
984 	err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
985 	if (err < 0) {
986 		return err;
987 	}
988 
989 	/* Set initial configuration */
990 	err = uart_nrfx_configure(dev, &data->uart_config);
991 	if (err) {
992 		return err;
993 	}
994 
995 	/* Enable the UART and activate its receiver. With the current API
996 	 * the receiver needs to be active all the time. The transmitter
997 	 * will be activated when there is something to send.
998 	 */
999 	nrf_uart_enable(uart0_addr);
1000 
1001 	if (!DISABLE_RX) {
1002 		nrf_uart_event_clear(uart0_addr, NRF_UART_EVENT_RXDRDY);
1003 
1004 		nrf_uart_task_trigger(uart0_addr, NRF_UART_TASK_STARTRX);
1005 	}
1006 
1007 #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
1008 	/* Simulate that the TXDRDY event is set, so that the transmitter status
1009 	 * is indicated correctly.
1010 	 */
1011 	uart_sw_event_txdrdy = 1U;
1012 #endif
1013 
1014 #if defined(CONFIG_UART_0_ASYNC) || defined(CONFIG_UART_0_INTERRUPT_DRIVEN)
1015 
1016 	IRQ_CONNECT(IRQN,
1017 		    IRQ_PRIO,
1018 		    uart_nrfx_isr,
1019 		    DEVICE_DT_INST_GET(0),
1020 		    0);
1021 	irq_enable(IRQN);
1022 #endif
1023 
1024 #ifdef CONFIG_UART_0_ASYNC
1025 	k_timer_init(&uart0_cb.rx_timeout_timer, rx_timeout, NULL);
1026 #if HW_FLOW_CONTROL_AVAILABLE
1027 	k_timer_init(&uart0_cb.tx_timeout_timer, tx_timeout, NULL);
1028 #endif
1029 #endif
1030 	return 0;
1031 }
1032 
1033 /* Common function: uart_nrfx_irq_tx_ready_complete is used for two API entries
1034  * because Nordic hardware does not distinguish between them.
1035  */
1036 static const struct uart_driver_api uart_nrfx_uart_driver_api = {
1037 #ifdef CONFIG_UART_0_ASYNC
1038 	.callback_set	  = uart_nrfx_callback_set,
1039 	.tx		  = uart_nrfx_tx,
1040 	.tx_abort	  = uart_nrfx_tx_abort,
1041 	.rx_enable	  = uart_nrfx_rx_enable,
1042 	.rx_buf_rsp	  = uart_nrfx_rx_buf_rsp,
1043 	.rx_disable	  = uart_nrfx_rx_disable,
1044 #endif /* CONFIG_UART_0_ASYNC */
1045 	.poll_in          = uart_nrfx_poll_in,
1046 	.poll_out         = uart_nrfx_poll_out,
1047 	.err_check        = uart_nrfx_err_check,
1048 #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
1049 	.configure        = uart_nrfx_configure,
1050 	.config_get       = uart_nrfx_config_get,
1051 #endif
1052 #ifdef CONFIG_UART_0_INTERRUPT_DRIVEN
1053 	.fifo_fill        = uart_nrfx_fifo_fill,
1054 	.fifo_read        = uart_nrfx_fifo_read,
1055 	.irq_tx_enable    = uart_nrfx_irq_tx_enable,
1056 	.irq_tx_disable   = uart_nrfx_irq_tx_disable,
1057 	.irq_tx_ready     = uart_nrfx_irq_tx_ready_complete,
1058 	.irq_rx_enable    = uart_nrfx_irq_rx_enable,
1059 	.irq_rx_disable   = uart_nrfx_irq_rx_disable,
1060 	.irq_tx_complete  = uart_nrfx_irq_tx_ready_complete,
1061 	.irq_rx_ready     = uart_nrfx_irq_rx_ready,
1062 	.irq_err_enable   = uart_nrfx_irq_err_enable,
1063 	.irq_err_disable  = uart_nrfx_irq_err_disable,
1064 	.irq_is_pending   = uart_nrfx_irq_is_pending,
1065 	.irq_update       = uart_nrfx_irq_update,
1066 	.irq_callback_set = uart_nrfx_irq_callback_set,
1067 #endif /* CONFIG_UART_0_INTERRUPT_DRIVEN */
1068 };
1069 
1070 #ifdef CONFIG_PM_DEVICE
uart_nrfx_pm_action(const struct device * dev,enum pm_device_action action)1071 static int uart_nrfx_pm_action(const struct device *dev,
1072 			       enum pm_device_action action)
1073 {
1074 	const struct uart_nrfx_config *config = dev->config;
1075 	int ret;
1076 
1077 	switch (action) {
1078 	case PM_DEVICE_ACTION_RESUME:
1079 		if (IS_ENABLED(CONFIG_UART_0_GPIO_MANAGEMENT)) {
1080 			ret = pinctrl_apply_state(config->pcfg,
1081 						  PINCTRL_STATE_DEFAULT);
1082 			if (ret < 0) {
1083 				return ret;
1084 			}
1085 		}
1086 
1087 		nrf_uart_enable(uart0_addr);
1088 		if (!DISABLE_RX) {
1089 			nrf_uart_task_trigger(uart0_addr,
1090 					      NRF_UART_TASK_STARTRX);
1091 		}
1092 		break;
1093 	case PM_DEVICE_ACTION_SUSPEND:
1094 		nrf_uart_disable(uart0_addr);
1095 
1096 		if (IS_ENABLED(CONFIG_UART_0_GPIO_MANAGEMENT)) {
1097 			ret = pinctrl_apply_state(config->pcfg,
1098 						  PINCTRL_STATE_SLEEP);
1099 			if (ret < 0) {
1100 				return ret;
1101 			}
1102 		}
1103 		break;
1104 	default:
1105 		return -ENOTSUP;
1106 	}
1107 
1108 	return 0;
1109 }
1110 #endif /* CONFIG_PM_DEVICE */
1111 
1112 PINCTRL_DT_INST_DEFINE(0);
1113 
1114 NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(DT_DRV_INST(0));
1115 
1116 static const struct uart_nrfx_config uart_nrfx_uart0_config = {
1117 	.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
1118 };
1119 
1120 static struct uart_nrfx_data uart_nrfx_uart0_data = {
1121 	.uart_config = {
1122 		.stop_bits = UART_CFG_STOP_BITS_1,
1123 		.data_bits = UART_CFG_DATA_BITS_8,
1124 		.baudrate  = BAUDRATE,
1125 #ifdef CONFIG_UART_0_NRF_PARITY_BIT
1126 		.parity    = UART_CFG_PARITY_EVEN,
1127 #else
1128 		.parity    = UART_CFG_PARITY_NONE,
1129 #endif /* CONFIG_UART_0_NRF_PARITY_BIT */
1130 		.flow_ctrl = PROP(hw_flow_control) ?
1131 			UART_CFG_FLOW_CTRL_RTS_CTS : UART_CFG_FLOW_CTRL_NONE,
1132 	}
1133 };
1134 
1135 PM_DEVICE_DT_INST_DEFINE(0, uart_nrfx_pm_action);
1136 
1137 DEVICE_DT_INST_DEFINE(0,
1138 	      uart_nrfx_init,
1139 	      PM_DEVICE_DT_INST_GET(0),
1140 	      &uart_nrfx_uart0_data,
1141 	      &uart_nrfx_uart0_config,
1142 	      /* Initialize UART device before UART console. */
1143 	      PRE_KERNEL_1,
1144 	      CONFIG_SERIAL_INIT_PRIORITY,
1145 	      &uart_nrfx_uart_driver_api);
1146