1 /*
2  * Copyright (c) 2010-2014 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Kernel thread support
10  *
11  * This module provides general purpose thread support.
12  */
13 
14 #include <kernel.h>
15 #include <spinlock.h>
16 #include <sys/math_extras.h>
17 #include <sys_clock.h>
18 #include <ksched.h>
19 #include <wait_q.h>
20 #include <syscall_handler.h>
21 #include <kernel_internal.h>
22 #include <kswap.h>
23 #include <init.h>
24 #include <tracing/tracing.h>
25 #include <string.h>
26 #include <stdbool.h>
27 #include <irq_offload.h>
28 #include <sys/check.h>
29 #include <random/rand32.h>
30 #include <sys/atomic.h>
31 #include <logging/log.h>
32 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
33 
34 #ifdef CONFIG_THREAD_RUNTIME_STATS
35 k_thread_runtime_stats_t threads_runtime_stats;
36 #endif
37 
38 #ifdef CONFIG_THREAD_MONITOR
39 /* This lock protects the linked list of active threads; i.e. the
40  * initial _kernel.threads pointer and the linked list made up of
41  * thread->next_thread (until NULL)
42  */
43 static struct k_spinlock z_thread_monitor_lock;
44 #endif /* CONFIG_THREAD_MONITOR */
45 
46 #define _FOREACH_STATIC_THREAD(thread_data)              \
47 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)
48 
k_thread_foreach(k_thread_user_cb_t user_cb,void * user_data)49 void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
50 {
51 #if defined(CONFIG_THREAD_MONITOR)
52 	struct k_thread *thread;
53 	k_spinlock_key_t key;
54 
55 	__ASSERT(user_cb != NULL, "user_cb can not be NULL");
56 
57 	/*
58 	 * Lock is needed to make sure that the _kernel.threads is not being
59 	 * modified by the user_cb either directly or indirectly.
60 	 * The indirect ways are through calling k_thread_create and
61 	 * k_thread_abort from user_cb.
62 	 */
63 	key = k_spin_lock(&z_thread_monitor_lock);
64 
65 	SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach);
66 
67 	for (thread = _kernel.threads; thread; thread = thread->next_thread) {
68 		user_cb(thread, user_data);
69 	}
70 
71 	SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach);
72 
73 	k_spin_unlock(&z_thread_monitor_lock, key);
74 #endif
75 }
76 
k_thread_foreach_unlocked(k_thread_user_cb_t user_cb,void * user_data)77 void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
78 {
79 #if defined(CONFIG_THREAD_MONITOR)
80 	struct k_thread *thread;
81 	k_spinlock_key_t key;
82 
83 	__ASSERT(user_cb != NULL, "user_cb can not be NULL");
84 
85 	key = k_spin_lock(&z_thread_monitor_lock);
86 
87 	SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach_unlocked);
88 
89 	for (thread = _kernel.threads; thread; thread = thread->next_thread) {
90 		k_spin_unlock(&z_thread_monitor_lock, key);
91 		user_cb(thread, user_data);
92 		key = k_spin_lock(&z_thread_monitor_lock);
93 	}
94 
95 	SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach_unlocked);
96 
97 	k_spin_unlock(&z_thread_monitor_lock, key);
98 #endif
99 }
100 
k_is_in_isr(void)101 bool k_is_in_isr(void)
102 {
103 	return arch_is_in_isr();
104 }
105 
106 /*
107  * This function tags the current thread as essential to system operation.
108  * Exceptions raised by this thread will be treated as a fatal system error.
109  */
z_thread_essential_set(void)110 void z_thread_essential_set(void)
111 {
112 	_current->base.user_options |= K_ESSENTIAL;
113 }
114 
115 /*
116  * This function tags the current thread as not essential to system operation.
117  * Exceptions raised by this thread may be recoverable.
118  * (This is the default tag for a thread.)
119  */
z_thread_essential_clear(void)120 void z_thread_essential_clear(void)
121 {
122 	_current->base.user_options &= ~K_ESSENTIAL;
123 }
124 
125 /*
126  * This routine indicates if the current thread is an essential system thread.
127  *
128  * Returns true if current thread is essential, false if it is not.
129  */
z_is_thread_essential(void)130 bool z_is_thread_essential(void)
131 {
132 	return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL;
133 }
134 
135 #ifdef CONFIG_THREAD_CUSTOM_DATA
z_impl_k_thread_custom_data_set(void * value)136 void z_impl_k_thread_custom_data_set(void *value)
137 {
138 	_current->custom_data = value;
139 }
140 
141 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_custom_data_set(void * data)142 static inline void z_vrfy_k_thread_custom_data_set(void *data)
143 {
144 	z_impl_k_thread_custom_data_set(data);
145 }
146 #include <syscalls/k_thread_custom_data_set_mrsh.c>
147 #endif
148 
z_impl_k_thread_custom_data_get(void)149 void *z_impl_k_thread_custom_data_get(void)
150 {
151 	return _current->custom_data;
152 }
153 
154 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_custom_data_get(void)155 static inline void *z_vrfy_k_thread_custom_data_get(void)
156 {
157 	return z_impl_k_thread_custom_data_get();
158 }
159 #include <syscalls/k_thread_custom_data_get_mrsh.c>
160 
161 #endif /* CONFIG_USERSPACE */
162 #endif /* CONFIG_THREAD_CUSTOM_DATA */
163 
164 #if defined(CONFIG_THREAD_MONITOR)
165 /*
166  * Remove a thread from the kernel's list of active threads.
167  */
z_thread_monitor_exit(struct k_thread * thread)168 void z_thread_monitor_exit(struct k_thread *thread)
169 {
170 	k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
171 
172 	if (thread == _kernel.threads) {
173 		_kernel.threads = _kernel.threads->next_thread;
174 	} else {
175 		struct k_thread *prev_thread;
176 
177 		prev_thread = _kernel.threads;
178 		while ((prev_thread != NULL) &&
179 			(thread != prev_thread->next_thread)) {
180 			prev_thread = prev_thread->next_thread;
181 		}
182 		if (prev_thread != NULL) {
183 			prev_thread->next_thread = thread->next_thread;
184 		}
185 	}
186 
187 	k_spin_unlock(&z_thread_monitor_lock, key);
188 }
189 #endif
190 
z_impl_k_thread_name_set(struct k_thread * thread,const char * value)191 int z_impl_k_thread_name_set(struct k_thread *thread, const char *value)
192 {
193 #ifdef CONFIG_THREAD_NAME
194 	if (thread == NULL) {
195 		thread = _current;
196 	}
197 
198 	strncpy(thread->name, value, CONFIG_THREAD_MAX_NAME_LEN);
199 	thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
200 
201 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0);
202 
203 	return 0;
204 #else
205 	ARG_UNUSED(thread);
206 	ARG_UNUSED(value);
207 
208 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS);
209 
210 	return -ENOSYS;
211 #endif /* CONFIG_THREAD_NAME */
212 }
213 
214 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_name_set(struct k_thread * thread,const char * str)215 static inline int z_vrfy_k_thread_name_set(struct k_thread *thread, const char *str)
216 {
217 #ifdef CONFIG_THREAD_NAME
218 	char name[CONFIG_THREAD_MAX_NAME_LEN];
219 
220 	if (thread != NULL) {
221 		if (Z_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) {
222 			return -EINVAL;
223 		}
224 	}
225 
226 	/* In theory we could copy directly into thread->name, but
227 	 * the current z_vrfy / z_impl split does not provide a
228 	 * means of doing so.
229 	 */
230 	if (z_user_string_copy(name, (char *)str, sizeof(name)) != 0) {
231 		return -EFAULT;
232 	}
233 
234 	return z_impl_k_thread_name_set(thread, name);
235 #else
236 	return -ENOSYS;
237 #endif /* CONFIG_THREAD_NAME */
238 }
239 #include <syscalls/k_thread_name_set_mrsh.c>
240 #endif /* CONFIG_USERSPACE */
241 
k_thread_name_get(struct k_thread * thread)242 const char *k_thread_name_get(struct k_thread *thread)
243 {
244 #ifdef CONFIG_THREAD_NAME
245 	return (const char *)thread->name;
246 #else
247 	ARG_UNUSED(thread);
248 	return NULL;
249 #endif /* CONFIG_THREAD_NAME */
250 }
251 
z_impl_k_thread_name_copy(k_tid_t thread,char * buf,size_t size)252 int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
253 {
254 #ifdef CONFIG_THREAD_NAME
255 	strncpy(buf, thread->name, size);
256 	return 0;
257 #else
258 	ARG_UNUSED(thread);
259 	ARG_UNUSED(buf);
260 	ARG_UNUSED(size);
261 	return -ENOSYS;
262 #endif /* CONFIG_THREAD_NAME */
263 }
264 
k_thread_state_str(k_tid_t thread_id)265 const char *k_thread_state_str(k_tid_t thread_id)
266 {
267 	switch (thread_id->base.thread_state) {
268 	case 0:
269 		return "";
270 	case _THREAD_DUMMY:
271 		return "dummy";
272 	case _THREAD_PENDING:
273 		return "pending";
274 	case _THREAD_PRESTART:
275 		return "prestart";
276 	case _THREAD_DEAD:
277 		return "dead";
278 	case _THREAD_SUSPENDED:
279 		return "suspended";
280 	case _THREAD_ABORTING:
281 		return "aborting";
282 	case _THREAD_QUEUED:
283 		return "queued";
284 	default:
285 	/* Add a break, some day when another case gets added at the end,
286 	 * this bit of defensive programming will be useful
287 	 */
288 		break;
289 	}
290 	return "unknown";
291 }
292 
293 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_name_copy(k_tid_t thread,char * buf,size_t size)294 static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
295 					    char *buf, size_t size)
296 {
297 #ifdef CONFIG_THREAD_NAME
298 	size_t len;
299 	struct z_object *ko = z_object_find(thread);
300 
301 	/* Special case: we allow reading the names of initialized threads
302 	 * even if we don't have permission on them
303 	 */
304 	if (thread == NULL || ko->type != K_OBJ_THREAD ||
305 	    (ko->flags & K_OBJ_FLAG_INITIALIZED) == 0) {
306 		return -EINVAL;
307 	}
308 	if (Z_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
309 		return -EFAULT;
310 	}
311 	len = strlen(thread->name);
312 	if (len + 1 > size) {
313 		return -ENOSPC;
314 	}
315 
316 	return z_user_to_copy((void *)buf, thread->name, len + 1);
317 #else
318 	ARG_UNUSED(thread);
319 	ARG_UNUSED(buf);
320 	ARG_UNUSED(size);
321 	return -ENOSYS;
322 #endif /* CONFIG_THREAD_NAME */
323 }
324 #include <syscalls/k_thread_name_copy_mrsh.c>
325 #endif /* CONFIG_USERSPACE */
326 
327 
328 #ifdef CONFIG_MULTITHREADING
329 #ifdef CONFIG_STACK_SENTINEL
330 /* Check that the stack sentinel is still present
331  *
332  * The stack sentinel feature writes a magic value to the lowest 4 bytes of
333  * the thread's stack when the thread is initialized. This value gets checked
334  * in a few places:
335  *
336  * 1) In k_yield() if the current thread is not swapped out
337  * 2) After servicing a non-nested interrupt
338  * 3) In z_swap(), check the sentinel in the outgoing thread
339  *
340  * Item 2 requires support in arch/ code.
341  *
342  * If the check fails, the thread will be terminated appropriately through
343  * the system fatal error handler.
344  */
z_check_stack_sentinel(void)345 void z_check_stack_sentinel(void)
346 {
347 	uint32_t *stack;
348 
349 	if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
350 		return;
351 	}
352 
353 	stack = (uint32_t *)_current->stack_info.start;
354 	if (*stack != STACK_SENTINEL) {
355 		/* Restore it so further checks don't trigger this same error */
356 		*stack = STACK_SENTINEL;
357 		z_except_reason(K_ERR_STACK_CHK_FAIL);
358 	}
359 }
360 #endif /* CONFIG_STACK_SENTINEL */
361 
z_impl_k_thread_start(struct k_thread * thread)362 void z_impl_k_thread_start(struct k_thread *thread)
363 {
364 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread);
365 
366 	z_sched_start(thread);
367 }
368 
369 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_start(struct k_thread * thread)370 static inline void z_vrfy_k_thread_start(struct k_thread *thread)
371 {
372 	Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
373 	return z_impl_k_thread_start(thread);
374 }
375 #include <syscalls/k_thread_start_mrsh.c>
376 #endif
377 #endif
378 
379 #ifdef CONFIG_MULTITHREADING
schedule_new_thread(struct k_thread * thread,k_timeout_t delay)380 static void schedule_new_thread(struct k_thread *thread, k_timeout_t delay)
381 {
382 #ifdef CONFIG_SYS_CLOCK_EXISTS
383 	if (K_TIMEOUT_EQ(delay, K_NO_WAIT)) {
384 		k_thread_start(thread);
385 	} else {
386 		z_add_thread_timeout(thread, delay);
387 	}
388 #else
389 	ARG_UNUSED(delay);
390 	k_thread_start(thread);
391 #endif
392 }
393 #endif
394 
395 #if CONFIG_STACK_POINTER_RANDOM
396 int z_stack_adjust_initialized;
397 
random_offset(size_t stack_size)398 static size_t random_offset(size_t stack_size)
399 {
400 	size_t random_val;
401 
402 	if (!z_stack_adjust_initialized) {
403 		z_early_boot_rand_get((uint8_t *)&random_val, sizeof(random_val));
404 	} else {
405 		sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
406 	}
407 
408 	/* Don't need to worry about alignment of the size here,
409 	 * arch_new_thread() is required to do it.
410 	 *
411 	 * FIXME: Not the best way to get a random number in a range.
412 	 * See #6493
413 	 */
414 	const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
415 
416 	if (unlikely(fuzz * 2 > stack_size)) {
417 		return 0;
418 	}
419 
420 	return fuzz;
421 }
422 #if defined(CONFIG_STACK_GROWS_UP)
423 	/* This is so rare not bothering for now */
424 #error "Stack pointer randomization not implemented for upward growing stacks"
425 #endif /* CONFIG_STACK_GROWS_UP */
426 #endif /* CONFIG_STACK_POINTER_RANDOM */
427 
setup_thread_stack(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size)428 static char *setup_thread_stack(struct k_thread *new_thread,
429 				k_thread_stack_t *stack, size_t stack_size)
430 {
431 	size_t stack_obj_size, stack_buf_size;
432 	char *stack_ptr, *stack_buf_start;
433 	size_t delta = 0;
434 
435 #ifdef CONFIG_USERSPACE
436 	if (z_stack_is_user_capable(stack)) {
437 		stack_obj_size = Z_THREAD_STACK_SIZE_ADJUST(stack_size);
438 		stack_buf_start = Z_THREAD_STACK_BUFFER(stack);
439 		stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED;
440 	} else
441 #endif
442 	{
443 		/* Object cannot host a user mode thread */
444 		stack_obj_size = Z_KERNEL_STACK_SIZE_ADJUST(stack_size);
445 		stack_buf_start = Z_KERNEL_STACK_BUFFER(stack);
446 		stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED;
447 	}
448 
449 	/* Initial stack pointer at the high end of the stack object, may
450 	 * be reduced later in this function by TLS or random offset
451 	 */
452 	stack_ptr = (char *)stack + stack_obj_size;
453 
454 	LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p "
455 		" buf_size %zu stack_ptr=%p",
456 		stack, new_thread, stack_obj_size, stack_buf_start,
457 		stack_buf_size, stack_ptr);
458 
459 #ifdef CONFIG_INIT_STACKS
460 	memset(stack_buf_start, 0xaa, stack_buf_size);
461 #endif
462 #ifdef CONFIG_STACK_SENTINEL
463 	/* Put the stack sentinel at the lowest 4 bytes of the stack area.
464 	 * We periodically check that it's still present and kill the thread
465 	 * if it isn't.
466 	 */
467 	*((uint32_t *)stack_buf_start) = STACK_SENTINEL;
468 #endif /* CONFIG_STACK_SENTINEL */
469 #ifdef CONFIG_THREAD_LOCAL_STORAGE
470 	/* TLS is always last within the stack buffer */
471 	delta += arch_tls_stack_setup(new_thread, stack_ptr);
472 #endif /* CONFIG_THREAD_LOCAL_STORAGE */
473 #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
474 	size_t tls_size = sizeof(struct _thread_userspace_local_data);
475 
476 	/* reserve space on highest memory of stack buffer for local data */
477 	delta += tls_size;
478 	new_thread->userspace_local_data =
479 		(struct _thread_userspace_local_data *)(stack_ptr - delta);
480 #endif
481 #if CONFIG_STACK_POINTER_RANDOM
482 	delta += random_offset(stack_buf_size);
483 #endif
484 	delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN);
485 #ifdef CONFIG_THREAD_STACK_INFO
486 	/* Initial values. Arches which implement MPU guards that "borrow"
487 	 * memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED)
488 	 * will need to appropriately update this.
489 	 *
490 	 * The bounds tracked here correspond to the area of the stack object
491 	 * that the thread can access, which includes TLS.
492 	 */
493 	new_thread->stack_info.start = (uintptr_t)stack_buf_start;
494 	new_thread->stack_info.size = stack_buf_size;
495 	new_thread->stack_info.delta = delta;
496 #endif
497 	stack_ptr -= delta;
498 
499 	return stack_ptr;
500 }
501 
502 #define THREAD_COOKIE	0x1337C0D3
503 
504 /*
505  * The provided stack_size value is presumed to be either the result of
506  * K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance
507  * of K_THREAD_STACK_DEFINE() which defined 'stack'.
508  */
z_setup_new_thread(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size,k_thread_entry_t entry,void * p1,void * p2,void * p3,int prio,uint32_t options,const char * name)509 char *z_setup_new_thread(struct k_thread *new_thread,
510 			 k_thread_stack_t *stack, size_t stack_size,
511 			 k_thread_entry_t entry,
512 			 void *p1, void *p2, void *p3,
513 			 int prio, uint32_t options, const char *name)
514 {
515 	char *stack_ptr;
516 
517 	Z_ASSERT_VALID_PRIO(prio, entry);
518 
519 #ifdef CONFIG_USERSPACE
520 	__ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack),
521 		 "user thread %p with kernel-only stack %p",
522 		 new_thread, stack);
523 	z_object_init(new_thread);
524 	z_object_init(stack);
525 	new_thread->stack_obj = stack;
526 	new_thread->syscall_frame = NULL;
527 
528 	/* Any given thread has access to itself */
529 	k_object_access_grant(new_thread, new_thread);
530 #endif
531 	z_waitq_init(&new_thread->join_queue);
532 
533 	/* Initialize various struct k_thread members */
534 	z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options);
535 	stack_ptr = setup_thread_stack(new_thread, stack, stack_size);
536 
537 #ifdef CONFIG_KERNEL_COHERENCE
538 	/* Check that the thread object is safe, but that the stack is
539 	 * still cached!
540 	 */
541 	__ASSERT_NO_MSG(arch_mem_coherent(new_thread));
542 	__ASSERT_NO_MSG(!arch_mem_coherent(stack));
543 #endif
544 
545 	arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3);
546 
547 	/* static threads overwrite it afterwards with real value */
548 	new_thread->init_data = NULL;
549 
550 #ifdef CONFIG_USE_SWITCH
551 	/* switch_handle must be non-null except when inside z_swap()
552 	 * for synchronization reasons.  Historically some notional
553 	 * USE_SWITCH architectures have actually ignored the field
554 	 */
555 	__ASSERT(new_thread->switch_handle != NULL,
556 		 "arch layer failed to initialize switch_handle");
557 #endif
558 #ifdef CONFIG_THREAD_CUSTOM_DATA
559 	/* Initialize custom data field (value is opaque to kernel) */
560 	new_thread->custom_data = NULL;
561 #endif
562 #ifdef CONFIG_THREAD_MONITOR
563 	new_thread->entry.pEntry = entry;
564 	new_thread->entry.parameter1 = p1;
565 	new_thread->entry.parameter2 = p2;
566 	new_thread->entry.parameter3 = p3;
567 
568 	k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
569 
570 	new_thread->next_thread = _kernel.threads;
571 	_kernel.threads = new_thread;
572 	k_spin_unlock(&z_thread_monitor_lock, key);
573 #endif
574 #ifdef CONFIG_THREAD_NAME
575 	if (name != NULL) {
576 		strncpy(new_thread->name, name,
577 			CONFIG_THREAD_MAX_NAME_LEN - 1);
578 		/* Ensure NULL termination, truncate if longer */
579 		new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
580 	} else {
581 		new_thread->name[0] = '\0';
582 	}
583 #endif
584 #ifdef CONFIG_SCHED_CPU_MASK
585 	new_thread->base.cpu_mask = -1;
586 #endif
587 #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
588 	/* _current may be null if the dummy thread is not used */
589 	if (!_current) {
590 		new_thread->resource_pool = NULL;
591 		return stack_ptr;
592 	}
593 #endif
594 #ifdef CONFIG_USERSPACE
595 	z_mem_domain_init_thread(new_thread);
596 
597 	if ((options & K_INHERIT_PERMS) != 0U) {
598 		z_thread_perms_inherit(_current, new_thread);
599 	}
600 #endif
601 #ifdef CONFIG_SCHED_DEADLINE
602 	new_thread->base.prio_deadline = 0;
603 #endif
604 	new_thread->resource_pool = _current->resource_pool;
605 
606 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread);
607 
608 #ifdef CONFIG_THREAD_RUNTIME_STATS
609 	memset(&new_thread->rt_stats, 0, sizeof(new_thread->rt_stats));
610 #endif
611 
612 	return stack_ptr;
613 }
614 
615 #ifdef CONFIG_MULTITHREADING
z_impl_k_thread_create(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size,k_thread_entry_t entry,void * p1,void * p2,void * p3,int prio,uint32_t options,k_timeout_t delay)616 k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
617 			      k_thread_stack_t *stack,
618 			      size_t stack_size, k_thread_entry_t entry,
619 			      void *p1, void *p2, void *p3,
620 			      int prio, uint32_t options, k_timeout_t delay)
621 {
622 	__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");
623 
624 	z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
625 			  prio, options, NULL);
626 
627 	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
628 		schedule_new_thread(new_thread, delay);
629 	}
630 
631 	return new_thread;
632 }
633 
634 
635 #ifdef CONFIG_USERSPACE
z_stack_is_user_capable(k_thread_stack_t * stack)636 bool z_stack_is_user_capable(k_thread_stack_t *stack)
637 {
638 	return z_object_find(stack) != NULL;
639 }
640 
z_vrfy_k_thread_create(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size,k_thread_entry_t entry,void * p1,void * p2,void * p3,int prio,uint32_t options,k_timeout_t delay)641 k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
642 			       k_thread_stack_t *stack,
643 			       size_t stack_size, k_thread_entry_t entry,
644 			       void *p1, void *p2, void *p3,
645 			       int prio, uint32_t options, k_timeout_t delay)
646 {
647 	size_t total_size, stack_obj_size;
648 	struct z_object *stack_object;
649 
650 	/* The thread and stack objects *must* be in an uninitialized state */
651 	Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
652 
653 	/* No need to check z_stack_is_user_capable(), it won't be in the
654 	 * object table if it isn't
655 	 */
656 	stack_object = z_object_find(stack);
657 	Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack,
658 						K_OBJ_THREAD_STACK_ELEMENT,
659 						_OBJ_INIT_FALSE) == 0,
660 				    "bad stack object"));
661 
662 	/* Verify that the stack size passed in is OK by computing the total
663 	 * size and comparing it with the size value in the object metadata
664 	 */
665 	Z_OOPS(Z_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
666 						       stack_size, &total_size),
667 				    "stack size overflow (%zu+%zu)",
668 				    stack_size,
669 				    K_THREAD_STACK_RESERVED));
670 
671 	/* Testing less-than-or-equal since additional room may have been
672 	 * allocated for alignment constraints
673 	 */
674 #ifdef CONFIG_GEN_PRIV_STACKS
675 	stack_obj_size = stack_object->data.stack_data->size;
676 #else
677 	stack_obj_size = stack_object->data.stack_size;
678 #endif
679 	Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
680 				    "stack size %zu is too big, max is %zu",
681 				    total_size, stack_obj_size));
682 
683 	/* User threads may only create other user threads and they can't
684 	 * be marked as essential
685 	 */
686 	Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER));
687 	Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
688 
689 	/* Check validity of prio argument; must be the same or worse priority
690 	 * than the caller
691 	 */
692 	Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
693 	Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
694 							_current->base.prio)));
695 
696 	z_setup_new_thread(new_thread, stack, stack_size,
697 			   entry, p1, p2, p3, prio, options, NULL);
698 
699 	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
700 		schedule_new_thread(new_thread, delay);
701 	}
702 
703 	return new_thread;
704 }
705 #include <syscalls/k_thread_create_mrsh.c>
706 #endif /* CONFIG_USERSPACE */
707 #endif /* CONFIG_MULTITHREADING */
708 
709 #ifdef CONFIG_MULTITHREADING
710 #ifdef CONFIG_USERSPACE
711 
grant_static_access(void)712 static void grant_static_access(void)
713 {
714 	STRUCT_SECTION_FOREACH(z_object_assignment, pos) {
715 		for (int i = 0; pos->objects[i] != NULL; i++) {
716 			k_object_access_grant(pos->objects[i],
717 					      pos->thread);
718 		}
719 	}
720 }
721 #endif /* CONFIG_USERSPACE */
722 
z_init_static_threads(void)723 void z_init_static_threads(void)
724 {
725 	_FOREACH_STATIC_THREAD(thread_data) {
726 		z_setup_new_thread(
727 			thread_data->init_thread,
728 			thread_data->init_stack,
729 			thread_data->init_stack_size,
730 			thread_data->init_entry,
731 			thread_data->init_p1,
732 			thread_data->init_p2,
733 			thread_data->init_p3,
734 			thread_data->init_prio,
735 			thread_data->init_options,
736 			thread_data->init_name);
737 
738 		thread_data->init_thread->init_data = thread_data;
739 	}
740 
741 #ifdef CONFIG_USERSPACE
742 	grant_static_access();
743 #endif
744 
745 	/*
746 	 * Non-legacy static threads may be started immediately or
747 	 * after a previously specified delay. Even though the
748 	 * scheduler is locked, ticks can still be delivered and
749 	 * processed. Take a sched lock to prevent them from running
750 	 * until they are all started.
751 	 *
752 	 * Note that static threads defined using the legacy API have a
753 	 * delay of K_FOREVER.
754 	 */
755 	k_sched_lock();
756 	_FOREACH_STATIC_THREAD(thread_data) {
757 		if (thread_data->init_delay != K_TICKS_FOREVER) {
758 			schedule_new_thread(thread_data->init_thread,
759 					    K_MSEC(thread_data->init_delay));
760 		}
761 	}
762 	k_sched_unlock();
763 }
764 #endif
765 
z_init_thread_base(struct _thread_base * thread_base,int priority,uint32_t initial_state,unsigned int options)766 void z_init_thread_base(struct _thread_base *thread_base, int priority,
767 		       uint32_t initial_state, unsigned int options)
768 {
769 	/* k_q_node is initialized upon first insertion in a list */
770 	thread_base->pended_on = NULL;
771 	thread_base->user_options = (uint8_t)options;
772 	thread_base->thread_state = (uint8_t)initial_state;
773 
774 	thread_base->prio = priority;
775 
776 	thread_base->sched_locked = 0U;
777 
778 #ifdef CONFIG_SMP
779 	thread_base->is_idle = 0;
780 #endif
781 
782 	/* swap_data does not need to be initialized */
783 
784 	z_init_thread_timeout(thread_base);
785 }
786 
k_thread_user_mode_enter(k_thread_entry_t entry,void * p1,void * p2,void * p3)787 FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
788 					    void *p1, void *p2, void *p3)
789 {
790 	SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter);
791 
792 	_current->base.user_options |= K_USER;
793 	z_thread_essential_clear();
794 #ifdef CONFIG_THREAD_MONITOR
795 	_current->entry.pEntry = entry;
796 	_current->entry.parameter1 = p1;
797 	_current->entry.parameter2 = p2;
798 	_current->entry.parameter3 = p3;
799 #endif
800 #ifdef CONFIG_USERSPACE
801 	__ASSERT(z_stack_is_user_capable(_current->stack_obj),
802 		 "dropping to user mode with kernel-only stack object");
803 #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
804 	memset(_current->userspace_local_data, 0,
805 	       sizeof(struct _thread_userspace_local_data));
806 #endif
807 #ifdef CONFIG_THREAD_LOCAL_STORAGE
808 	arch_tls_stack_setup(_current,
809 			     (char *)(_current->stack_info.start +
810 				      _current->stack_info.size));
811 #endif
812 	arch_user_mode_enter(entry, p1, p2, p3);
813 #else
814 	/* XXX In this case we do not reset the stack */
815 	z_thread_entry(entry, p1, p2, p3);
816 #endif
817 }
818 
819 /* These spinlock assertion predicates are defined here because having
820  * them in spinlock.h is a giant header ordering headache.
821  */
822 #ifdef CONFIG_SPIN_VALIDATE
z_spin_lock_valid(struct k_spinlock * l)823 bool z_spin_lock_valid(struct k_spinlock *l)
824 {
825 	uintptr_t thread_cpu = l->thread_cpu;
826 
827 	if (thread_cpu != 0U) {
828 		if ((thread_cpu & 3U) == _current_cpu->id) {
829 			return false;
830 		}
831 	}
832 	return true;
833 }
834 
z_spin_unlock_valid(struct k_spinlock * l)835 bool z_spin_unlock_valid(struct k_spinlock *l)
836 {
837 	if (l->thread_cpu != (_current_cpu->id | (uintptr_t)_current)) {
838 		return false;
839 	}
840 	l->thread_cpu = 0;
841 	return true;
842 }
843 
z_spin_lock_set_owner(struct k_spinlock * l)844 void z_spin_lock_set_owner(struct k_spinlock *l)
845 {
846 	l->thread_cpu = _current_cpu->id | (uintptr_t)_current;
847 }
848 
849 #ifdef CONFIG_KERNEL_COHERENCE
z_spin_lock_mem_coherent(struct k_spinlock * l)850 bool z_spin_lock_mem_coherent(struct k_spinlock *l)
851 {
852 	return arch_mem_coherent((void *)l);
853 }
854 #endif /* CONFIG_KERNEL_COHERENCE */
855 
856 #endif /* CONFIG_SPIN_VALIDATE */
857 
z_impl_k_float_disable(struct k_thread * thread)858 int z_impl_k_float_disable(struct k_thread *thread)
859 {
860 #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
861 	return arch_float_disable(thread);
862 #else
863 	return -ENOTSUP;
864 #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
865 }
866 
z_impl_k_float_enable(struct k_thread * thread,unsigned int options)867 int z_impl_k_float_enable(struct k_thread *thread, unsigned int options)
868 {
869 #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
870 	return arch_float_enable(thread, options);
871 #else
872 	return -ENOTSUP;
873 #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
874 }
875 
876 #ifdef CONFIG_USERSPACE
z_vrfy_k_float_disable(struct k_thread * thread)877 static inline int z_vrfy_k_float_disable(struct k_thread *thread)
878 {
879 	Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
880 	return z_impl_k_float_disable(thread);
881 }
882 #include <syscalls/k_float_disable_mrsh.c>
883 #endif /* CONFIG_USERSPACE */
884 
885 #ifdef CONFIG_IRQ_OFFLOAD
886 /* Make offload_sem visible outside under testing, in order to release
887  * it outside when error happened.
888  */
889 K_SEM_DEFINE(offload_sem, 1, 1);
890 
irq_offload(irq_offload_routine_t routine,const void * parameter)891 void irq_offload(irq_offload_routine_t routine, const void *parameter)
892 {
893 	k_sem_take(&offload_sem, K_FOREVER);
894 	arch_irq_offload(routine, parameter);
895 	k_sem_give(&offload_sem);
896 }
897 #endif
898 
899 #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
900 #ifdef CONFIG_STACK_GROWS_UP
901 #error "Unsupported configuration for stack analysis"
902 #endif
903 
z_impl_k_thread_stack_space_get(const struct k_thread * thread,size_t * unused_ptr)904 int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
905 				    size_t *unused_ptr)
906 {
907 	const uint8_t *start = (uint8_t *)thread->stack_info.start;
908 	size_t size = thread->stack_info.size;
909 	size_t unused = 0;
910 	const uint8_t *checked_stack = start;
911 	/* Take the address of any local variable as a shallow bound for the
912 	 * stack pointer.  Addresses above it are guaranteed to be
913 	 * accessible.
914 	 */
915 	const uint8_t *stack_pointer = (const uint8_t *)&start;
916 
917 	/* If we are currently running on the stack being analyzed, some
918 	 * memory management hardware will generate an exception if we
919 	 * read unused stack memory.
920 	 *
921 	 * This never happens when invoked from user mode, as user mode
922 	 * will always run this function on the privilege elevation stack.
923 	 */
924 	if ((stack_pointer > start) && (stack_pointer <= (start + size)) &&
925 	    IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
926 		/* TODO: We could add an arch_ API call to temporarily
927 		 * disable the stack checking in the CPU, but this would
928 		 * need to be properly managed wrt context switches/interrupts
929 		 */
930 		return -ENOTSUP;
931 	}
932 
933 	if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
934 		/* First 4 bytes of the stack buffer reserved for the
935 		 * sentinel value, it won't be 0xAAAAAAAA for thread
936 		 * stacks.
937 		 *
938 		 * FIXME: thread->stack_info.start ought to reflect
939 		 * this!
940 		 */
941 		checked_stack += 4;
942 		size -= 4;
943 	}
944 
945 	for (size_t i = 0; i < size; i++) {
946 		if ((checked_stack[i]) == 0xaaU) {
947 			unused++;
948 		} else {
949 			break;
950 		}
951 	}
952 
953 	*unused_ptr = unused;
954 
955 	return 0;
956 }
957 
958 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_stack_space_get(const struct k_thread * thread,size_t * unused_ptr)959 int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
960 				    size_t *unused_ptr)
961 {
962 	size_t unused;
963 	int ret;
964 
965 	ret = Z_SYSCALL_OBJ(thread, K_OBJ_THREAD);
966 	CHECKIF(ret != 0) {
967 		return ret;
968 	}
969 
970 	ret = z_impl_k_thread_stack_space_get(thread, &unused);
971 	CHECKIF(ret != 0) {
972 		return ret;
973 	}
974 
975 	ret = z_user_to_copy(unused_ptr, &unused, sizeof(size_t));
976 	CHECKIF(ret != 0) {
977 		return ret;
978 	}
979 
980 	return 0;
981 }
982 #include <syscalls/k_thread_stack_space_get_mrsh.c>
983 #endif /* CONFIG_USERSPACE */
984 #endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */
985 
986 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_timeout_remaining_ticks(const struct k_thread * t)987 static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
988 						    const struct k_thread *t)
989 {
990 	Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD));
991 	return z_impl_k_thread_timeout_remaining_ticks(t);
992 }
993 #include <syscalls/k_thread_timeout_remaining_ticks_mrsh.c>
994 
z_vrfy_k_thread_timeout_expires_ticks(const struct k_thread * t)995 static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
996 						  const struct k_thread *t)
997 {
998 	Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD));
999 	return z_impl_k_thread_timeout_expires_ticks(t);
1000 }
1001 #include <syscalls/k_thread_timeout_expires_ticks_mrsh.c>
1002 #endif
1003 
1004 #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
z_thread_mark_switched_in(void)1005 void z_thread_mark_switched_in(void)
1006 {
1007 #ifdef CONFIG_TRACING
1008 	SYS_PORT_TRACING_FUNC(k_thread, switched_in);
1009 #endif
1010 
1011 #ifdef CONFIG_THREAD_RUNTIME_STATS
1012 	struct k_thread *thread;
1013 
1014 	thread = z_current_get();
1015 #ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
1016 	thread->rt_stats.last_switched_in = timing_counter_get();
1017 #else
1018 	thread->rt_stats.last_switched_in = k_cycle_get_32();
1019 #endif /* CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS */
1020 
1021 #endif /* CONFIG_THREAD_RUNTIME_STATS */
1022 }
1023 
z_thread_mark_switched_out(void)1024 void z_thread_mark_switched_out(void)
1025 {
1026 #ifdef CONFIG_THREAD_RUNTIME_STATS
1027 #ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
1028 	timing_t now;
1029 #else
1030 	uint32_t now;
1031 #endif /* CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS */
1032 
1033 	uint64_t diff;
1034 	struct k_thread *thread;
1035 
1036 	thread = z_current_get();
1037 
1038 	if (unlikely(thread->rt_stats.last_switched_in == 0)) {
1039 		/* Has not run before */
1040 		return;
1041 	}
1042 
1043 	if (unlikely(thread->base.thread_state == _THREAD_DUMMY)) {
1044 		/* dummy thread has no stat struct */
1045 		return;
1046 	}
1047 
1048 #ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
1049 	now = timing_counter_get();
1050 	diff = timing_cycles_get(&thread->rt_stats.last_switched_in, &now);
1051 #else
1052 	now = k_cycle_get_32();
1053 	diff = (uint64_t)(now - thread->rt_stats.last_switched_in);
1054 	thread->rt_stats.last_switched_in = 0;
1055 #endif /* CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS */
1056 
1057 	thread->rt_stats.stats.execution_cycles += diff;
1058 
1059 	threads_runtime_stats.execution_cycles += diff;
1060 #endif /* CONFIG_THREAD_RUNTIME_STATS */
1061 
1062 #ifdef CONFIG_TRACING
1063 	SYS_PORT_TRACING_FUNC(k_thread, switched_out);
1064 #endif
1065 }
1066 
1067 #ifdef CONFIG_THREAD_RUNTIME_STATS
k_thread_runtime_stats_get(k_tid_t thread,k_thread_runtime_stats_t * stats)1068 int k_thread_runtime_stats_get(k_tid_t thread,
1069 			       k_thread_runtime_stats_t *stats)
1070 {
1071 	if ((thread == NULL) || (stats == NULL)) {
1072 		return -EINVAL;
1073 	}
1074 
1075 	(void)memcpy(stats, &thread->rt_stats.stats,
1076 		     sizeof(thread->rt_stats.stats));
1077 
1078 	return 0;
1079 }
1080 
k_thread_runtime_stats_all_get(k_thread_runtime_stats_t * stats)1081 int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
1082 {
1083 	if (stats == NULL) {
1084 		return -EINVAL;
1085 	}
1086 
1087 	(void)memcpy(stats, &threads_runtime_stats,
1088 		     sizeof(threads_runtime_stats));
1089 
1090 	return 0;
1091 }
1092 #endif /* CONFIG_THREAD_RUNTIME_STATS */
1093 
1094 #endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
1095