1 /*
2  * Copyright (c) 2017 Linaro Ltd.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Software driven 'bit-banging' library for I2C
10  *
11  * This code implements the I2C single master protocol in software by directly
12  * manipulating the levels of the SCL and SDA lines of an I2C bus. It supports
13  * the Standard-mode and Fast-mode speeds and doesn't support optional
14  * protocol feature like 10-bit addresses or clock stretching.
15  *
16  * Timings and protocol are based Rev. 6 of the I2C specification:
17  * http://www.nxp.com/documents/user_manual/UM10204.pdf
18  */
19 
20 #include <errno.h>
21 #include <kernel.h>
22 #include <drivers/i2c.h>
23 #include "i2c_bitbang.h"
24 
25 /*
26  * Indexes into delay table for each part of I2C timing waveform we are
27  * interested in. In practice, for Standard and Fast modes, there are only two
28  * different numerical values (T_LOW and T_HIGH) so we alias the others to
29  * these. (Actually, we're simplifying a little, T_SU_STA could be T_HIGH on
30  * Fast mode)
31  */
32 #define T_LOW		0
33 #define T_HIGH		1
34 #define T_SU_STA	T_LOW
35 #define T_HD_STA	T_HIGH
36 #define T_SU_STP	T_HIGH
37 #define T_BUF		T_LOW
38 
39 #define NS_TO_SYS_CLOCK_HW_CYCLES(ns) \
40 	((uint64_t)sys_clock_hw_cycles_per_sec() * (ns) / NSEC_PER_SEC + 1)
41 
i2c_bitbang_configure(struct i2c_bitbang * context,uint32_t dev_config)42 int i2c_bitbang_configure(struct i2c_bitbang *context, uint32_t dev_config)
43 {
44 	/* Check for features we don't support */
45 	if (I2C_ADDR_10_BITS & dev_config) {
46 		return -ENOTSUP;
47 	}
48 
49 	/* Setup speed to use */
50 	switch (I2C_SPEED_GET(dev_config)) {
51 	case I2C_SPEED_STANDARD:
52 		context->delays[T_LOW]  = NS_TO_SYS_CLOCK_HW_CYCLES(4700);
53 		context->delays[T_HIGH] = NS_TO_SYS_CLOCK_HW_CYCLES(4000);
54 		break;
55 	case I2C_SPEED_FAST:
56 		context->delays[T_LOW]  = NS_TO_SYS_CLOCK_HW_CYCLES(1300);
57 		context->delays[T_HIGH] = NS_TO_SYS_CLOCK_HW_CYCLES(600);
58 		break;
59 	default:
60 		return -ENOTSUP;
61 	}
62 
63 	return 0;
64 }
65 
i2c_set_scl(struct i2c_bitbang * context,int state)66 static void i2c_set_scl(struct i2c_bitbang *context, int state)
67 {
68 	context->io->set_scl(context->io_context, state);
69 }
70 
i2c_set_sda(struct i2c_bitbang * context,int state)71 static void i2c_set_sda(struct i2c_bitbang *context, int state)
72 {
73 	context->io->set_sda(context->io_context, state);
74 }
75 
i2c_get_sda(struct i2c_bitbang * context)76 static int i2c_get_sda(struct i2c_bitbang *context)
77 {
78 	return context->io->get_sda(context->io_context);
79 }
80 
i2c_delay(unsigned int cycles_to_wait)81 static void i2c_delay(unsigned int cycles_to_wait)
82 {
83 	uint32_t start = k_cycle_get_32();
84 
85 	/* Wait until the given number of cycles have passed */
86 	while (k_cycle_get_32() - start < cycles_to_wait) {
87 	}
88 }
89 
i2c_start(struct i2c_bitbang * context)90 static void i2c_start(struct i2c_bitbang *context)
91 {
92 	if (!i2c_get_sda(context)) {
93 		/*
94 		 * SDA is already low, so we need to do something to make it
95 		 * high. Try pulsing clock low to get slave to release SDA.
96 		 */
97 		i2c_set_scl(context, 0);
98 		i2c_delay(context->delays[T_LOW]);
99 		i2c_set_scl(context, 1);
100 		i2c_delay(context->delays[T_SU_STA]);
101 	}
102 	i2c_set_sda(context, 0);
103 	i2c_delay(context->delays[T_HD_STA]);
104 
105 	i2c_set_scl(context, 0);
106 	i2c_delay(context->delays[T_LOW]);
107 }
108 
i2c_repeated_start(struct i2c_bitbang * context)109 static void i2c_repeated_start(struct i2c_bitbang *context)
110 {
111 	i2c_set_sda(context, 1);
112 	i2c_set_scl(context, 1);
113 	i2c_delay(context->delays[T_HIGH]);
114 
115 	i2c_delay(context->delays[T_SU_STA]);
116 	i2c_start(context);
117 }
118 
i2c_stop(struct i2c_bitbang * context)119 static void i2c_stop(struct i2c_bitbang *context)
120 {
121 	i2c_set_sda(context, 0);
122 	i2c_delay(context->delays[T_LOW]);
123 
124 	i2c_set_scl(context, 1);
125 	i2c_delay(context->delays[T_HIGH]);
126 
127 	i2c_delay(context->delays[T_SU_STP]);
128 	i2c_set_sda(context, 1);
129 	i2c_delay(context->delays[T_BUF]); /* In case we start again too soon */
130 }
131 
i2c_write_bit(struct i2c_bitbang * context,int bit)132 static void i2c_write_bit(struct i2c_bitbang *context, int bit)
133 {
134 	/* SDA hold time is zero, so no need for a delay here */
135 	i2c_set_sda(context, bit);
136 	i2c_set_scl(context, 1);
137 	i2c_delay(context->delays[T_HIGH]);
138 	i2c_set_scl(context, 0);
139 	i2c_delay(context->delays[T_LOW]);
140 }
141 
i2c_read_bit(struct i2c_bitbang * context)142 static bool i2c_read_bit(struct i2c_bitbang *context)
143 {
144 	bool bit;
145 
146 	/* SDA hold time is zero, so no need for a delay here */
147 	i2c_set_sda(context, 1); /* Stop driving low, so slave has control */
148 
149 	i2c_set_scl(context, 1);
150 	i2c_delay(context->delays[T_HIGH]);
151 
152 	bit = i2c_get_sda(context);
153 
154 	i2c_set_scl(context, 0);
155 	i2c_delay(context->delays[T_LOW]);
156 	return bit;
157 }
158 
i2c_write_byte(struct i2c_bitbang * context,uint8_t byte)159 static bool i2c_write_byte(struct i2c_bitbang *context, uint8_t byte)
160 {
161 	uint8_t mask = 1 << 7;
162 
163 	do {
164 		i2c_write_bit(context, byte & mask);
165 	} while (mask >>= 1);
166 
167 	/* Return inverted ACK bit, i.e. 'true' for ACK, 'false' for NACK */
168 	return !i2c_read_bit(context);
169 }
170 
i2c_read_byte(struct i2c_bitbang * context)171 static uint8_t i2c_read_byte(struct i2c_bitbang *context)
172 {
173 	unsigned int byte = 1U;
174 
175 	do {
176 		byte <<= 1;
177 		byte |= i2c_read_bit(context);
178 	} while (!(byte & (1 << 8)));
179 
180 	return byte;
181 }
182 
i2c_bitbang_transfer(struct i2c_bitbang * context,struct i2c_msg * msgs,uint8_t num_msgs,uint16_t slave_address)183 int i2c_bitbang_transfer(struct i2c_bitbang *context,
184 			   struct i2c_msg *msgs, uint8_t num_msgs,
185 			   uint16_t slave_address)
186 {
187 	uint8_t *buf, *buf_end;
188 	unsigned int flags;
189 	int result = -EIO;
190 
191 	if (!num_msgs) {
192 		return 0;
193 	}
194 
195 	/* We want an initial Start condition */
196 	flags = I2C_MSG_RESTART;
197 
198 	/* Make sure we're in a good state so slave recognises the Start */
199 	i2c_set_scl(context, 1);
200 	flags |= I2C_MSG_STOP;
201 
202 	do {
203 		/* Stop flag from previous message? */
204 		if (flags & I2C_MSG_STOP) {
205 			i2c_stop(context);
206 		}
207 
208 		/* Forget old flags except start flag */
209 		flags &= I2C_MSG_RESTART;
210 
211 		/* Start condition? */
212 		if (flags & I2C_MSG_RESTART) {
213 			i2c_start(context);
214 		} else if (msgs->flags & I2C_MSG_RESTART) {
215 			i2c_repeated_start(context);
216 		}
217 
218 		/* Get flags for new message */
219 		flags |= msgs->flags;
220 
221 		/* Send address after any Start condition */
222 		if (flags & I2C_MSG_RESTART) {
223 			unsigned int byte0 = slave_address << 1;
224 
225 			byte0 |= (flags & I2C_MSG_RW_MASK) == I2C_MSG_READ;
226 			if (!i2c_write_byte(context, byte0)) {
227 				goto finish; /* No ACK received */
228 			}
229 			flags &= ~I2C_MSG_RESTART;
230 		}
231 
232 		/* Transfer data */
233 		buf = msgs->buf;
234 		buf_end = buf + msgs->len;
235 		if ((flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
236 			/* Read */
237 			while (buf < buf_end) {
238 				*buf++ = i2c_read_byte(context);
239 				/* ACK the byte, except for the last one */
240 				i2c_write_bit(context, buf == buf_end);
241 			}
242 		} else {
243 			/* Write */
244 			while (buf < buf_end) {
245 				if (!i2c_write_byte(context, *buf++)) {
246 					goto finish; /* No ACK received */
247 				}
248 			}
249 		}
250 
251 		/* Next message */
252 		msgs++;
253 		num_msgs--;
254 	} while (num_msgs);
255 
256 	/* Complete without error */
257 	result = 0;
258 finish:
259 	i2c_stop(context);
260 
261 	return result;
262 }
263 
i2c_bitbang_recover_bus(struct i2c_bitbang * context)264 int i2c_bitbang_recover_bus(struct i2c_bitbang *context)
265 {
266 	int i;
267 
268 	/*
269 	 * The I2C-bus specification and user manual (NXP UM10204
270 	 * rev. 6, section 3.1.16) suggests the master emit 9 SCL
271 	 * clock pulses to recover the bus.
272 	 *
273 	 * The Linux kernel I2C bitbang recovery functionality issues
274 	 * a START condition followed by 9 STOP conditions.
275 	 *
276 	 * Other I2C slave devices (e.g. Microchip ATSHA204a) suggest
277 	 * issuing a START condition followed by 9 SCL clock pulses
278 	 * with SDA held high/floating, a REPEATED START condition,
279 	 * and a STOP condition.
280 	 *
281 	 * The latter is what is implemented here.
282 	 */
283 
284 	/* Start condition */
285 	i2c_start(context);
286 
287 	/* 9 cycles of SCL with SDA held high */
288 	for (i = 0; i < 9; i++) {
289 		i2c_write_bit(context, 1);
290 	}
291 
292 	/* Another start condition followed by a stop condition */
293 	i2c_repeated_start(context);
294 	i2c_stop(context);
295 
296 	/* Check if bus is clear */
297 	if (i2c_get_sda(context)) {
298 		return 0;
299 	} else {
300 		return -EBUSY;
301 	}
302 }
303 
i2c_bitbang_init(struct i2c_bitbang * context,const struct i2c_bitbang_io * io,void * io_context)304 void i2c_bitbang_init(struct i2c_bitbang *context,
305 			const struct i2c_bitbang_io *io, void *io_context)
306 {
307 	context->io = io;
308 	context->io_context = io_context;
309 	i2c_bitbang_configure(context, I2C_SPEED_STANDARD << I2C_SPEED_SHIFT);
310 }
311