1 /*
2 * Copyright 2020 Broadcom
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT brcm_iproc_pax_dma_v2
8
9 #include <arch/cpu.h>
10 #include <cache.h>
11 #include <errno.h>
12 #include <init.h>
13 #include <kernel.h>
14 #include <linker/sections.h>
15 #include <soc.h>
16 #include <string.h>
17 #include <toolchain.h>
18 #include <zephyr/types.h>
19 #include <drivers/dma.h>
20 #include <drivers/pcie/endpoint/pcie_ep.h>
21 #include "dma_iproc_pax_v2.h"
22
23 #define LOG_LEVEL CONFIG_DMA_LOG_LEVEL
24 #include <logging/log.h>
25 LOG_MODULE_REGISTER(dma_iproc_pax_v2);
26
27 #define PAX_DMA_DEV_NAME(dev) ((dev)->name)
28
29 #define PAX_DMA_DEV_CFG(dev) \
30 ((struct dma_iproc_pax_cfg *)(dev)->config)
31
32 #define PAX_DMA_DEV_DATA(dev) \
33 ((struct dma_iproc_pax_data *)(dev)->data)
34
35 /* Driver runtime data for PAX DMA and RM */
36 static struct dma_iproc_pax_data pax_dma_data;
37
38 /**
39 * @brief Opaque/packet id allocator, range 0 to 31
40 */
reset_pkt_id(struct dma_iproc_pax_ring_data * ring)41 static inline uint32_t reset_pkt_id(struct dma_iproc_pax_ring_data *ring)
42 {
43 return ring->pkt_id = 0x0;
44 }
45
alloc_pkt_id(struct dma_iproc_pax_ring_data * ring)46 static inline uint32_t alloc_pkt_id(struct dma_iproc_pax_ring_data *ring)
47 {
48 ring->pkt_id = (ring->pkt_id + 1) % 32;
49 return ring->pkt_id;
50 }
51
curr_pkt_id(struct dma_iproc_pax_ring_data * ring)52 static inline uint32_t curr_pkt_id(struct dma_iproc_pax_ring_data *ring)
53 {
54 return ring->pkt_id;
55 }
56
curr_toggle_val(struct dma_iproc_pax_ring_data * ring)57 static inline uint32_t curr_toggle_val(struct dma_iproc_pax_ring_data *ring)
58 {
59 return ring->curr.toggle;
60 }
61
62 /**
63 * @brief Populate header descriptor
64 */
rm_write_header_desc(void * desc,uint32_t toggle,uint32_t opq,uint32_t bdcount,uint64_t pci_addr)65 static inline void rm_write_header_desc(void *desc, uint32_t toggle,
66 uint32_t opq, uint32_t bdcount,
67 uint64_t pci_addr)
68 {
69 struct rm_header *r = (struct rm_header *)desc;
70
71 r->opq = opq;
72 r->bdf = 0x0;
73 r->res1 = 0x0;
74 /* DMA descriptor count init vlaue */
75 r->bdcount = bdcount;
76 r->prot = 0x0;
77 r->res2 = 0x0;
78 /* No packet extension, start and end set to '1' */
79 r->start = 1;
80 r->end = 1;
81 /* RM header type */
82 r->type = PAX_DMA_TYPE_RM_HEADER;
83 r->pcie_addr_msb = PAX_DMA_PCI_ADDR_HI_MSB8(pci_addr);
84 r->res3 = 0x0;
85 r->res4 = 0x0;
86 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
87 r->toggle = toggle;
88 #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
89 r->toggle = 0;
90 #endif
91 }
92
93 /**
94 * @brief Populate pcie descriptor
95 */
rm_write_pcie_desc(void * desc,uint32_t toggle,uint64_t pci_addr)96 static inline void rm_write_pcie_desc(void *desc,
97 uint32_t toggle,
98 uint64_t pci_addr)
99 {
100 struct pcie_desc *pcie = (struct pcie_desc *)desc;
101
102 pcie->pcie_addr_lsb = pci_addr;
103 pcie->res1 = 0x0;
104 /* PCIE header type */
105 pcie->type = PAX_DMA_TYPE_PCIE_DESC;
106 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
107 pcie->toggle = toggle;
108 #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
109 pcie->toggle = 0;
110 #endif
111 }
112
113 /**
114 * @brief Populate src/destionation descriptor
115 */
rm_write_src_dst_desc(void * desc_ptr,bool is_mega,uint32_t toggle,uint64_t axi_addr,uint32_t size,enum pax_dma_dir direction)116 static inline void rm_write_src_dst_desc(void *desc_ptr,
117 bool is_mega,
118 uint32_t toggle,
119 uint64_t axi_addr,
120 uint32_t size,
121 enum pax_dma_dir direction)
122 {
123 struct src_dst_desc *desc;
124
125 desc = (struct src_dst_desc *)desc_ptr;
126 desc->axi_addr = axi_addr;
127 desc->length = size;
128 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
129 desc->toggle = toggle;
130 #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
131 desc->toggle = 0;
132 #endif
133
134 if (direction == CARD_TO_HOST) {
135 desc->type = is_mega ?
136 PAX_DMA_TYPE_MEGA_SRC_DESC : PAX_DMA_TYPE_SRC_DESC;
137 } else {
138 desc->type = is_mega ?
139 PAX_DMA_TYPE_MEGA_DST_DESC : PAX_DMA_TYPE_DST_DESC;
140 }
141 }
142
143 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
init_toggle(void * desc,uint32_t toggle)144 static void init_toggle(void *desc, uint32_t toggle)
145 {
146 struct rm_header *r = (struct rm_header *)desc;
147
148 r->toggle = toggle;
149 }
150 #endif
151
152 /**
153 * @brief Return current descriptor memory address and
154 * increment to point to next descriptor memory address.
155 */
get_curr_desc_addr(struct dma_iproc_pax_ring_data * ring)156 static inline void *get_curr_desc_addr(struct dma_iproc_pax_ring_data *ring)
157 {
158 struct next_ptr_desc *nxt;
159 uintptr_t curr;
160
161 curr = (uintptr_t)ring->curr.write_ptr;
162 /* if hit next table ptr, skip to next location, flip toggle */
163 nxt = (struct next_ptr_desc *)curr;
164 if (nxt->type == PAX_DMA_TYPE_NEXT_PTR) {
165 LOG_DBG("hit next_ptr@0x%lx %d, next_table@0x%lx\n",
166 curr, nxt->toggle, (uintptr_t)nxt->addr);
167 uintptr_t last = (uintptr_t)ring->bd +
168 PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS;
169 nxt->toggle = ring->curr.toggle;
170 ring->curr.toggle = (ring->curr.toggle == 0) ? 1 : 0;
171 /* move to next addr, wrap around if hits end */
172 curr += PAX_DMA_RM_DESC_BDWIDTH;
173 if (curr == last) {
174 curr = (uintptr_t)ring->bd;
175 LOG_DBG("hit end of desc:0x%lx, wrap to 0x%lx\n",
176 last, curr);
177 }
178 ring->descs_inflight++;
179 }
180
181 ring->curr.write_ptr = (void *)(curr + PAX_DMA_RM_DESC_BDWIDTH);
182 ring->descs_inflight++;
183
184 return (void *)curr;
185 }
186
187 /**
188 * @brief Populate next ptr descriptor
189 */
rm_write_next_table_desc(void * desc,void * next_ptr,uint32_t toggle)190 static void rm_write_next_table_desc(void *desc, void *next_ptr,
191 uint32_t toggle)
192 {
193 struct next_ptr_desc *nxt = (struct next_ptr_desc *)desc;
194
195 nxt->addr = (uintptr_t)next_ptr;
196 nxt->type = PAX_DMA_TYPE_NEXT_PTR;
197 nxt->toggle = toggle;
198 }
199
prepare_ring(struct dma_iproc_pax_ring_data * ring)200 static void prepare_ring(struct dma_iproc_pax_ring_data *ring)
201 {
202 uintptr_t curr, next, last;
203 int buff_count = PAX_DMA_NUM_BD_BUFFS;
204 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
205 uint32_t toggle;
206 #endif
207
208 /* zero out descriptor area */
209 memset(ring->bd, 0x0, PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS);
210 memset(ring->cmpl, 0x0, PAX_DMA_RM_CMPL_RING_SIZE);
211
212 /* start with first buffer, valid toggle is 0x1 */
213 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
214 toggle = 0x1;
215 #endif
216 curr = (uintptr_t)ring->bd;
217 next = curr + PAX_DMA_RM_DESC_RING_SIZE;
218 last = curr + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS;
219 do {
220 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
221 init_toggle((void *)curr, toggle);
222 /* Place next_table desc as last BD entry on each buffer */
223 rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr),
224 (void *)next, toggle);
225 #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
226 /* Place next_table desc as last BD entry on each buffer */
227 rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr),
228 (void *)next, 0);
229 #endif
230
231 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
232 /* valid toggle flips for each buffer */
233 toggle = toggle ? 0x0 : 0x1;
234 #endif
235 curr += PAX_DMA_RM_DESC_RING_SIZE;
236 next += PAX_DMA_RM_DESC_RING_SIZE;
237 /* last entry, chain back to first buffer */
238 if (next == last) {
239 next = (uintptr_t)ring->bd;
240 }
241
242 } while (--buff_count);
243
244 dma_mb();
245
246 /* start programming from first RM header */
247 ring->curr.write_ptr = ring->bd;
248 /* valid toggle starts with 1 after reset */
249 ring->curr.toggle = 1;
250 /* completion read offset */
251 ring->curr.cmpl_rd_offs = 0;
252 /* inflight descs */
253 ring->descs_inflight = 0;
254
255 /* init sync data for the ring */
256 ring->curr.sync_data.signature = PAX_DMA_WRITE_SYNC_SIGNATURE;
257 ring->curr.sync_data.ring = ring->idx;
258 /* pkt id for active dma xfer */
259 ring->curr.sync_data.opaque = 0x0;
260 /* pkt count for active dma xfer */
261 ring->curr.sync_data.total_pkts = 0x0;
262 }
263
init_rm(struct dma_iproc_pax_data * pd)264 static int init_rm(struct dma_iproc_pax_data *pd)
265 {
266 int ret = -ETIMEDOUT, timeout = 1000;
267
268 k_mutex_lock(&pd->dma_lock, K_FOREVER);
269 /* Wait for Ring Manager ready */
270 do {
271 LOG_DBG("Waiting for RM HW init\n");
272 if ((sys_read32(RM_COMM_REG(pd, RM_COMM_MAIN_HW_INIT_DONE)) &
273 RM_COMM_MAIN_HW_INIT_DONE_MASK)) {
274 ret = 0;
275 break;
276 }
277 k_sleep(K_MSEC(1));
278 } while (--timeout);
279 k_mutex_unlock(&pd->dma_lock);
280
281 if (!timeout) {
282 LOG_WRN("RM HW Init timedout!\n");
283 } else {
284 LOG_INF("PAX DMA RM HW Init Done\n");
285 }
286
287 return ret;
288 }
289
rm_cfg_start(struct dma_iproc_pax_data * pd)290 static void rm_cfg_start(struct dma_iproc_pax_data *pd)
291 {
292 uint32_t val;
293
294 k_mutex_lock(&pd->dma_lock, K_FOREVER);
295
296 /* set config done 0, enable toggle mode */
297 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
298 val &= ~RM_COMM_CONTROL_CONFIG_DONE;
299 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
300
301 val &= ~(RM_COMM_CONTROL_MODE_MASK << RM_COMM_CONTROL_MODE_SHIFT);
302
303 #ifdef CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
304 val |= (RM_COMM_CONTROL_MODE_DOORBELL <<
305 RM_COMM_CONTROL_MODE_SHIFT);
306 #elif CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
307 val |= (RM_COMM_CONTROL_MODE_ALL_BD_TOGGLE <<
308 RM_COMM_CONTROL_MODE_SHIFT);
309 #endif
310 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
311 sys_write32(RM_COMM_MSI_DISABLE_MASK,
312 RM_COMM_REG(pd, RM_COMM_MSI_DISABLE));
313
314 val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_READ_BURST_THRESHOLD));
315 val &= ~(RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_MASK <<
316 RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT);
317 val |= RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT_VAL <<
318 RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT;
319 sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_READ_BURST_THRESHOLD));
320
321 val = sys_read32(RM_COMM_REG(pd, RM_COMM_FIFO_FULL_THRESHOLD));
322 val &= ~(RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_MASK <<
323 RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_SHIFT);
324 val |= RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_VAL <<
325 RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_SHIFT;
326
327 val &= ~(RM_COMM_BD_FIFO_FULL_THRESHOLD_MASK <<
328 RM_COMM_BD_FIFO_FULL_THRESHOLD_SHIFT);
329 val |= RM_COMM_BD_FIFO_FULL_THRESHOLD_VAL <<
330 RM_COMM_BD_FIFO_FULL_THRESHOLD_SHIFT;
331 sys_write32(val, RM_COMM_REG(pd, RM_COMM_FIFO_FULL_THRESHOLD));
332
333 /* Enable Line interrupt */
334 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
335 val |= RM_COMM_CONTROL_LINE_INTR_EN;
336 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
337
338 /* Enable AE_TIMEOUT */
339 sys_write32(RM_COMM_AE_TIMEOUT_VAL,
340 RM_COMM_REG(pd, RM_COMM_AE_TIMEOUT));
341 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
342 val |= RM_COMM_CONTROL_AE_TIMEOUT_EN;
343 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
344
345 /* AE (Acceleration Engine) grouping to group '0' */
346 val = sys_read32(RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
347 val &= ~RM_AE_CTRL_AE_GROUP_MASK;
348 sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
349 val |= RM_AE_CONTROL_ACTIVE;
350 sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL));
351
352 /* AXI read/write channel enable */
353 val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_CONTROL));
354 val |= (RM_COMM_AXI_CONTROL_RD_CH_EN | RM_COMM_AXI_CONTROL_WR_CH_EN);
355 sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_CONTROL));
356
357 /* Tune RM control programming for 4 rings */
358 sys_write32(RM_COMM_TIMER_CONTROL0_VAL,
359 RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_0));
360 sys_write32(RM_COMM_TIMER_CONTROL1_VAL,
361 RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_1));
362 val = sys_read32(RM_COMM_REG(pd, RM_COMM_BURST_LENGTH));
363 val |= RM_COMM_BD_FETCH_CACHE_ALIGNED_DISABLED;
364 val |= RM_COMM_VALUE_FOR_DDR_ADDR_GEN_VAL <<
365 RM_COMM_VALUE_FOR_DDR_ADDR_GEN_SHIFT;
366 val |= RM_COMM_VALUE_FOR_TOGGLE_VAL << RM_COMM_VALUE_FOR_TOGGLE_SHIFT;
367 sys_write32(val, RM_COMM_REG(pd, RM_COMM_BURST_LENGTH));
368
369 val = sys_read32(RM_COMM_REG(pd, RM_COMM_BD_FETCH_MODE_CONTROL));
370 val |= RM_COMM_DISABLE_GRP_BD_FIFO_FLOW_CONTROL_FOR_PKT_ALIGNMENT;
371 val |= RM_COMM_DISABLE_PKT_ALIGNMENT_BD_FIFO_FLOW_CONTROL;
372 sys_write32(val, RM_COMM_REG(pd, RM_COMM_BD_FETCH_MODE_CONTROL));
373
374 /* Set Sequence max count to the max supported value */
375 val = sys_read32(RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT));
376 val = (val | RING_MASK_SEQ_MAX_COUNT_MASK);
377 sys_write32(val, RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT));
378
379 k_mutex_unlock(&pd->dma_lock);
380 }
381
rm_ring_clear_stats(struct dma_iproc_pax_data * pd,enum ring_idx idx)382 static void rm_ring_clear_stats(struct dma_iproc_pax_data *pd,
383 enum ring_idx idx)
384 {
385 /* Read ring Tx, Rx, and Outstanding counts to clear */
386 sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_LS));
387 sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_MS));
388 sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_LS));
389 sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_MS));
390 sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND));
391 }
392
rm_cfg_finish(struct dma_iproc_pax_data * pd)393 static void rm_cfg_finish(struct dma_iproc_pax_data *pd)
394 {
395 uint32_t val;
396
397 k_mutex_lock(&pd->dma_lock, K_FOREVER);
398
399 /* set Ring config done */
400 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
401 val |= RM_COMM_CONTROL_CONFIG_DONE;
402 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
403
404 k_mutex_unlock(&pd->dma_lock);
405 }
406
write_doorbell(struct dma_iproc_pax_data * pd,enum ring_idx idx)407 static inline void write_doorbell(struct dma_iproc_pax_data *pd,
408 enum ring_idx idx)
409 {
410 struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
411
412 sys_write32(ring->descs_inflight,
413 RM_RING_REG(pd, idx, RING_DOORBELL_BD_WRITE_COUNT));
414 ring->descs_inflight = 0;
415 }
416
set_ring_active(struct dma_iproc_pax_data * pd,enum ring_idx idx,bool active)417 static inline void set_ring_active(struct dma_iproc_pax_data *pd,
418 enum ring_idx idx,
419 bool active)
420 {
421 uint32_t val;
422
423 val = sys_read32(RM_RING_REG(pd, idx, RING_CONTROL));
424 if (active)
425 val |= RING_CONTROL_ACTIVE;
426 else
427 val &= ~RING_CONTROL_ACTIVE;
428 sys_write32(val, RM_RING_REG(pd, idx, RING_CONTROL));
429 }
430
init_ring(struct dma_iproc_pax_data * pd,enum ring_idx idx)431 static int init_ring(struct dma_iproc_pax_data *pd, enum ring_idx idx)
432 {
433 uint32_t val;
434 uintptr_t desc = (uintptr_t)pd->ring[idx].bd;
435 uintptr_t cmpl = (uintptr_t)pd->ring[idx].cmpl;
436 int timeout = 5000, ret = 0;
437
438 k_mutex_lock(&pd->dma_lock, K_FOREVER);
439
440 /* Read cmpl write ptr incase previous dma stopped */
441 sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR));
442
443 /* Inactivate ring */
444 sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL));
445
446 /* set Ring config done */
447 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
448 val |= RM_COMM_CONTROL_CONFIG_DONE;
449 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
450 /* Flush ring before loading new descriptor */
451 sys_write32(RING_CONTROL_FLUSH, RM_RING_REG(pd, idx,
452 RING_CONTROL));
453 do {
454 if (sys_read32(RM_RING_REG(pd, idx, RING_FLUSH_DONE)) &
455 RING_FLUSH_DONE_MASK)
456 break;
457 k_busy_wait(1);
458 } while (--timeout);
459
460 if (!timeout) {
461 LOG_WRN("Ring %d flush timedout!\n", idx);
462 ret = -ETIMEDOUT;
463 goto err;
464 }
465
466 /* clear ring after flush */
467 sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL));
468
469 /* Clear Ring config done */
470 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL));
471 val &= ~(RM_COMM_CONTROL_CONFIG_DONE);
472 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL));
473 /* ring group id set to '0' */
474 val = sys_read32(RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx)));
475 val &= ~RING_COMM_CTRL_AE_GROUP_MASK;
476 sys_write32(val, RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx)));
477
478 /* DDR update control, set timeout value */
479 val = RING_DDR_CONTROL_COUNT(RING_DDR_CONTROL_COUNT_VAL) |
480 RING_DDR_CONTROL_TIMER(RING_DDR_CONTROL_TIMER_VAL) |
481 RING_DDR_CONTROL_ENABLE;
482
483 sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL));
484 /* Disable Ring MSI Timeout */
485 sys_write32(RING_DISABLE_MSI_TIMEOUT_VALUE,
486 RM_RING_REG(pd, idx, RING_DISABLE_MSI_TIMEOUT));
487
488 /* BD and CMPL desc queue start address */
489 sys_write32((uint32_t)desc, RM_RING_REG(pd, idx, RING_BD_START_ADDR));
490 sys_write32((uint32_t)cmpl, RM_RING_REG(pd, idx, RING_CMPL_START_ADDR));
491 val = sys_read32(RM_RING_REG(pd, idx, RING_BD_READ_PTR));
492
493 /* keep ring inactive after init to avoid BD poll */
494 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
495 set_ring_active(pd, idx, false);
496 #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
497 set_ring_active(pd, idx, true);
498 #endif
499
500 #if !defined(CONFIG_DMA_IPROC_PAX_POLL_MODE)
501 /* Enable ring completion interrupt */
502 sys_write32(0x0, RM_RING_REG(pd, idx,
503 RING_COMPLETION_INTERRUPT_STAT_MASK));
504 #endif
505 rm_ring_clear_stats(pd, idx);
506 err:
507 k_mutex_unlock(&pd->dma_lock);
508
509 return ret;
510 }
511
poll_on_write_sync(const struct device * dev,struct dma_iproc_pax_ring_data * ring)512 static int poll_on_write_sync(const struct device *dev,
513 struct dma_iproc_pax_ring_data *ring)
514 {
515 struct dma_iproc_pax_cfg *cfg = PAX_DMA_DEV_CFG(dev);
516 const struct device *pcidev;
517 struct dma_iproc_pax_write_sync_data sync_rd, *recv, *sent;
518 uint64_t pci_addr;
519 uint32_t *pci32, *axi32;
520 uint32_t zero_init = 0, timeout = PAX_DMA_MAX_SYNC_WAIT;
521 int ret;
522
523 pcidev = device_get_binding(cfg->pcie_dev_name);
524 if (!pcidev) {
525 LOG_ERR("Cannot get pcie device\n");
526 return -EINVAL;
527 }
528
529 recv = &sync_rd;
530 sent = &(ring->curr.sync_data);
531 /* form host pci sync address */
532 pci32 = (uint32_t *)&pci_addr;
533 pci32[0] = ring->sync_pci.addr_lo;
534 pci32[1] = ring->sync_pci.addr_hi;
535 axi32 = (uint32_t *)&sync_rd;
536
537 do {
538 ret = pcie_ep_xfer_data_memcpy(pcidev, pci_addr,
539 (uintptr_t *)axi32, 4,
540 PCIE_OB_LOWMEM, HOST_TO_DEVICE);
541
542 if (memcmp((void *)recv, (void *)sent, 4) == 0) {
543 /* clear the sync word */
544 ret = pcie_ep_xfer_data_memcpy(pcidev, pci_addr,
545 (uintptr_t *)&zero_init,
546 4, PCIE_OB_LOWMEM,
547 DEVICE_TO_HOST);
548 dma_mb();
549 ret = 0;
550 break;
551 }
552 k_busy_wait(1);
553 } while (--timeout);
554
555 if (!timeout) {
556 LOG_ERR("[ring %d]: not recvd write sync!\n", ring->idx);
557 ret = -ETIMEDOUT;
558 }
559
560 return ret;
561 }
562
process_cmpl_event(const struct device * dev,enum ring_idx idx,uint32_t pl_len)563 static int process_cmpl_event(const struct device *dev,
564 enum ring_idx idx, uint32_t pl_len)
565 {
566 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
567 uint32_t wr_offs, rd_offs, ret = 0;
568 struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
569 struct cmpl_pkt *c;
570 uint32_t is_outstanding;
571
572 /* cmpl read offset, unprocessed cmpl location */
573 rd_offs = ring->curr.cmpl_rd_offs;
574
575 wr_offs = sys_read32(RM_RING_REG(pd, idx,
576 RING_CMPL_WRITE_PTR));
577
578 /* Update read ptr to "processed" */
579 ring->curr.cmpl_rd_offs = wr_offs;
580
581 /*
582 * Ensure consistency of completion descriptor
583 * The completion desc is updated by RM via AXI stream
584 * CPU need to ensure the memory operations are completed
585 * before reading cmpl area, by a "dsb"
586 * If Dcache enabled, need to invalidate the cachelines to
587 * read updated cmpl desc. The cache API also issues dsb.
588 */
589 dma_mb();
590
591 /* Decode cmpl pkt id to verify */
592 c = (struct cmpl_pkt *)((uintptr_t)ring->cmpl +
593 PAX_DMA_CMPL_DESC_SIZE * PAX_DMA_CURR_CMPL_IDX(wr_offs));
594
595 LOG_DBG("RING%d WR_PTR:%d opq:%d, rm_status:%x dma_status:%x\n",
596 idx, wr_offs, c->opq, c->rm_status, c->dma_status);
597
598 is_outstanding = sys_read32(RM_RING_REG(pd, idx,
599 RING_NUM_REQ_OUTSTAND));
600 if ((ring->curr.opq != c->opq) && (is_outstanding != 0)) {
601 LOG_ERR("RING%d: pkt id should be %d, rcvd %d outst=%d\n",
602 idx, ring->curr.opq, c->opq, is_outstanding);
603 ret = -EIO;
604 }
605 /* check for completion AE timeout */
606 if (c->rm_status == RM_COMPLETION_AE_TIMEOUT) {
607 LOG_ERR("RING%d WR_PTR:%d rm_status:%x AE Timeout!\n",
608 idx, wr_offs, c->rm_status);
609 /* TBD: Issue full card reset to restore operations */
610 LOG_ERR("Needs Card Reset to recover!\n");
611 ret = -ETIMEDOUT;
612 }
613
614 if (ring->dma_callback) {
615 ring->dma_callback(dev, ring->callback_arg, idx, ret);
616 }
617
618 /* clear total packet count and non header bd count */
619 ring->total_pkt_count = 0;
620
621 return ret;
622 }
623
624 #ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE
peek_ring_cmpl(const struct device * dev,enum ring_idx idx,uint32_t pl_len)625 static int peek_ring_cmpl(const struct device *dev,
626 enum ring_idx idx, uint32_t pl_len)
627 {
628 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
629 uint32_t wr_offs, rd_offs, timeout = PAX_DMA_MAX_POLL_WAIT;
630 struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]);
631
632 /* cmpl read offset, unprocessed cmpl location */
633 rd_offs = ring->curr.cmpl_rd_offs;
634
635 /* poll write_ptr until cmpl received for all buffers */
636 do {
637 wr_offs = sys_read32(RM_RING_REG(pd, idx,
638 RING_CMPL_WRITE_PTR));
639 if (PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs) >= pl_len)
640 break;
641 k_busy_wait(1);
642 } while (--timeout);
643
644 if (timeout == 0) {
645 LOG_ERR("RING%d timeout, rcvd %d, expected %d!\n",
646 idx, PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs), pl_len);
647 /* More debug info on current dma instance */
648 LOG_ERR("WR_PTR:%x RD_PTR%x\n", wr_offs, rd_offs);
649 return -ETIMEDOUT;
650 }
651
652 return process_cmpl_event(dev, idx, pl_len);
653 }
654 #else
rm_isr(void * arg)655 static void rm_isr(void *arg)
656 {
657 uint32_t status, err_stat, idx;
658 const struct device *dev = arg;
659 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
660
661 err_stat =
662 sys_read32(RM_COMM_REG(pd,
663 RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_MASK));
664 sys_write32(err_stat,
665 RM_COMM_REG(pd,
666 RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_CLEAR));
667
668 /* alert waiting thread to process, for each completed ring */
669 for (idx = PAX_DMA_RING0; idx < PAX_DMA_RINGS_MAX; idx++) {
670 status =
671 sys_read32(RM_RING_REG(pd, idx,
672 RING_COMPLETION_INTERRUPT_STAT));
673 sys_write32(status,
674 RM_RING_REG(pd, idx,
675 RING_COMPLETION_INTERRUPT_STAT_CLEAR));
676 if (status & 0x1) {
677 k_sem_give(&pd->ring[idx].alert);
678 }
679 }
680 }
681 #endif
682
dma_iproc_pax_init(const struct device * dev)683 static int dma_iproc_pax_init(const struct device *dev)
684 {
685 struct dma_iproc_pax_cfg *cfg = PAX_DMA_DEV_CFG(dev);
686 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
687 int r;
688 uintptr_t mem_aligned;
689
690 pd->dma_base = cfg->dma_base;
691 pd->rm_comm_base = cfg->rm_comm_base;
692 pd->used_rings = (cfg->use_rings < PAX_DMA_RINGS_MAX) ?
693 cfg->use_rings : PAX_DMA_RINGS_MAX;
694
695 /* dma/rm access lock */
696 k_mutex_init(&pd->dma_lock);
697
698 /* Ring Manager H/W init */
699 if (init_rm(pd)) {
700 return -ETIMEDOUT;
701 }
702
703 /* common rm config */
704 rm_cfg_start(pd);
705
706 /* individual ring config */
707 for (r = 0; r < pd->used_rings; r++) {
708 /* per-ring mutex lock */
709 k_mutex_init(&pd->ring[r].lock);
710 /* Init alerts */
711 k_sem_init(&pd->ring[r].alert, 0, 1);
712
713 pd->ring[r].idx = r;
714 pd->ring[r].ring_base = cfg->rm_base +
715 PAX_DMA_RING_ADDR_OFFSET(r);
716 LOG_DBG("RING%d,VERSION:0x%x\n", pd->ring[r].idx,
717 sys_read32(RM_RING_REG(pd, r, RING_VER)));
718
719 /* Allocate for 2 BD buffers + cmpl buffer + sync location */
720 pd->ring[r].ring_mem = (void *)((uintptr_t)cfg->bd_memory_base +
721 r * PAX_DMA_PER_RING_ALLOC_SIZE);
722 if (!pd->ring[r].ring_mem) {
723 LOG_ERR("RING%d failed to alloc desc memory!\n", r);
724 return -ENOMEM;
725 }
726 /* Find 8K aligned address within allocated region */
727 mem_aligned = ((uintptr_t)pd->ring[r].ring_mem +
728 PAX_DMA_RING_ALIGN - 1) &
729 ~(PAX_DMA_RING_ALIGN - 1);
730
731 pd->ring[r].cmpl = (void *)mem_aligned;
732 pd->ring[r].bd = (void *)(mem_aligned +
733 PAX_DMA_RM_CMPL_RING_SIZE);
734 pd->ring[r].sync_loc = (void *)((uintptr_t)pd->ring[r].bd +
735 PAX_DMA_RM_DESC_RING_SIZE *
736 PAX_DMA_NUM_BD_BUFFS);
737
738 LOG_DBG("Ring%d,allocated Mem:0x%p Size %d\n",
739 pd->ring[r].idx,
740 pd->ring[r].ring_mem,
741 PAX_DMA_PER_RING_ALLOC_SIZE);
742 LOG_DBG("Ring%d,BD:0x%p, CMPL:0x%p, SYNC_LOC:0x%p\n",
743 pd->ring[r].idx,
744 pd->ring[r].bd,
745 pd->ring[r].cmpl,
746 pd->ring[r].sync_loc);
747
748 /* Prepare ring desc table */
749 prepare_ring(&(pd->ring[r]));
750
751 /* initialize ring */
752 init_ring(pd, r);
753 }
754
755 /* set ring config done */
756 rm_cfg_finish(pd);
757
758 #ifndef CONFIG_DMA_IPROC_PAX_POLL_MODE
759 /* Register and enable RM interrupt */
760 IRQ_CONNECT(DT_INST_IRQN(0),
761 DT_INST_IRQ(0, priority),
762 rm_isr,
763 DEVICE_DT_INST_GET(0),
764 0);
765 irq_enable(DT_INST_IRQN(0));
766 #else
767 LOG_INF("%s PAX DMA rings in poll mode!\n", PAX_DMA_DEV_NAME(dev));
768 #endif
769 LOG_INF("%s RM setup %d rings\n", PAX_DMA_DEV_NAME(dev),
770 pd->used_rings);
771
772 return 0;
773 }
774
dma_iproc_pax_gen_desc(struct dma_iproc_pax_ring_data * ring,bool is_mega,uint64_t pci_addr,uint64_t axi_addr,uint32_t length,enum pax_dma_dir dir,uint32_t * non_hdr_bd_count)775 static int dma_iproc_pax_gen_desc(struct dma_iproc_pax_ring_data *ring,
776 bool is_mega,
777 uint64_t pci_addr,
778 uint64_t axi_addr,
779 uint32_t length,
780 enum pax_dma_dir dir,
781 uint32_t *non_hdr_bd_count)
782 {
783 struct rm_header *hdr;
784
785 if (*non_hdr_bd_count == 0) {
786 /* Generate Header BD */
787 ring->current_hdr = (uintptr_t)get_curr_desc_addr(ring);
788 rm_write_header_desc((void *)ring->current_hdr,
789 curr_toggle_val(ring),
790 curr_pkt_id(ring),
791 PAX_DMA_RM_DESC_BDCOUNT,
792 pci_addr);
793 ring->total_pkt_count++;
794 }
795
796 rm_write_pcie_desc(get_curr_desc_addr(ring),
797 curr_toggle_val(ring), pci_addr);
798 *non_hdr_bd_count = *non_hdr_bd_count + 1;
799 rm_write_src_dst_desc(get_curr_desc_addr(ring),
800 is_mega, curr_toggle_val(ring),
801 axi_addr, length, dir);
802 *non_hdr_bd_count = *non_hdr_bd_count + 1;
803
804 /* Update Header BD with bd count */
805 hdr = (struct rm_header *)ring->current_hdr;
806 hdr->bdcount = *non_hdr_bd_count;
807 if (*non_hdr_bd_count == MAX_BD_COUNT_PER_HEADER) {
808 *non_hdr_bd_count = 0;
809 }
810
811 return 0;
812 }
813
dma_iproc_pax_gen_packets(const struct device * dev,struct dma_iproc_pax_ring_data * ring,uint32_t direction,struct dma_block_config * config,uint32_t * non_hdr_bd_count)814 static int dma_iproc_pax_gen_packets(const struct device *dev,
815 struct dma_iproc_pax_ring_data *ring,
816 uint32_t direction,
817 struct dma_block_config *config,
818 uint32_t *non_hdr_bd_count)
819 {
820 uint32_t outstanding, remaining_len;
821 uint32_t offset, curr, mega_len;
822 uint64_t axi_addr;
823 uint64_t pci_addr;
824 enum pax_dma_dir dir;
825
826 switch (direction) {
827 case MEMORY_TO_PERIPHERAL:
828 pci_addr = config->dest_address;
829 axi_addr = config->source_address;
830 dir = CARD_TO_HOST;
831 break;
832 case PERIPHERAL_TO_MEMORY:
833 axi_addr = config->dest_address;
834 pci_addr = config->source_address;
835 dir = HOST_TO_CARD;
836 break;
837 default:
838 LOG_ERR("not supported transfer direction");
839 return -EINVAL;
840 }
841
842 outstanding = config->block_size;
843 offset = 0;
844 while (outstanding) {
845 curr = MIN(outstanding, PAX_DMA_MAX_SZ_PER_BD);
846 mega_len = curr / PAX_DMA_MEGA_LENGTH_MULTIPLE;
847 remaining_len = curr % PAX_DMA_MEGA_LENGTH_MULTIPLE;
848 pci_addr = pci_addr + offset;
849 axi_addr = axi_addr + offset;
850
851 if (mega_len) {
852 dma_iproc_pax_gen_desc(ring, true, pci_addr,
853 axi_addr, mega_len, dir,
854 non_hdr_bd_count);
855 offset = offset + mega_len *
856 PAX_DMA_MEGA_LENGTH_MULTIPLE;
857 }
858
859 if (remaining_len) {
860 pci_addr = pci_addr + offset;
861 axi_addr = axi_addr + offset;
862 dma_iproc_pax_gen_desc(ring, false, pci_addr, axi_addr,
863 remaining_len, dir,
864 non_hdr_bd_count);
865 offset = offset + remaining_len;
866 }
867
868 outstanding = outstanding - curr;
869 }
870
871 return 0;
872 }
873
874 #ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE
set_pkt_count(const struct device * dev,enum ring_idx idx,uint32_t pl_len)875 static void set_pkt_count(const struct device *dev,
876 enum ring_idx idx,
877 uint32_t pl_len)
878 {
879 /* Nothing needs to be programmed here in poll mode */
880 }
881
wait_for_pkt_completion(const struct device * dev,enum ring_idx idx,uint32_t pl_len)882 static int wait_for_pkt_completion(const struct device *dev,
883 enum ring_idx idx,
884 uint32_t pl_len)
885 {
886 /* poll for completion */
887 return peek_ring_cmpl(dev, idx, pl_len);
888 }
889 #else
set_pkt_count(const struct device * dev,enum ring_idx idx,uint32_t pl_len)890 static void set_pkt_count(const struct device *dev,
891 enum ring_idx idx,
892 uint32_t pl_len)
893 {
894 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
895 uint32_t val;
896
897 /* program packet count for interrupt assertion */
898 val = sys_read32(RM_RING_REG(pd, idx,
899 RING_CMPL_WR_PTR_DDR_CONTROL));
900 val &= ~RING_DDR_CONTROL_COUNT_MASK;
901 val |= RING_DDR_CONTROL_COUNT(pl_len);
902 sys_write32(val, RM_RING_REG(pd, idx,
903 RING_CMPL_WR_PTR_DDR_CONTROL));
904 }
905
wait_for_pkt_completion(const struct device * dev,enum ring_idx idx,uint32_t pl_len)906 static int wait_for_pkt_completion(const struct device *dev,
907 enum ring_idx idx,
908 uint32_t pl_len)
909 {
910 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
911 struct dma_iproc_pax_ring_data *ring;
912
913 ring = &(pd->ring[idx]);
914 /* wait for sg dma completion alert */
915 if (k_sem_take(&ring->alert, K_MSEC(PAX_DMA_TIMEOUT)) != 0) {
916 LOG_ERR("PAX DMA [ring %d] Timeout!\n", idx);
917 return -ETIMEDOUT;
918 }
919
920 return process_cmpl_event(dev, idx, pl_len);
921 }
922 #endif
923
dma_iproc_pax_process_dma_blocks(const struct device * dev,enum ring_idx idx,struct dma_config * config)924 static int dma_iproc_pax_process_dma_blocks(const struct device *dev,
925 enum ring_idx idx,
926 struct dma_config *config)
927 {
928 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
929 struct dma_iproc_pax_cfg *cfg = PAX_DMA_DEV_CFG(dev);
930 int ret = 0;
931 struct dma_iproc_pax_ring_data *ring;
932 uint32_t toggle_bit, non_hdr_bd_count = 0;
933 struct dma_block_config sync_pl;
934 struct dma_iproc_pax_addr64 sync;
935 struct dma_block_config *block_config = config->head_block;
936
937 if (block_config == NULL) {
938 LOG_ERR("head_block is NULL\n");
939 return -EINVAL;
940 }
941
942 ring = &(pd->ring[idx]);
943
944 /*
945 * Host sync buffer isn't ready at zephyr/driver init-time
946 * Read the host address location once at first DMA write
947 * on that ring.
948 */
949 if ((ring->sync_pci.addr_lo == 0x0) &&
950 (ring->sync_pci.addr_hi == 0x0)) {
951 /* populate sync data location */
952 LOG_DBG("sync addr loc 0x%x\n", cfg->scr_addr_loc);
953 sync.addr_lo = sys_read32(cfg->scr_addr_loc + 4);
954 sync.addr_hi = sys_read32(cfg->scr_addr_loc);
955 ring->sync_pci.addr_lo = sync.addr_lo + idx * 4;
956 ring->sync_pci.addr_hi = sync.addr_hi;
957 LOG_DBG("ring:%d,sync addr:0x%x.0x%x\n", idx,
958 ring->sync_pci.addr_hi,
959 ring->sync_pci.addr_lo);
960 }
961
962 /* account extra sync packet */
963 ring->curr.sync_data.opaque = ring->curr.opq;
964 ring->curr.sync_data.total_pkts = config->block_count;
965 memcpy((void *)ring->sync_loc,
966 (void *)&(ring->curr.sync_data), 4);
967 sync_pl.dest_address = ring->sync_pci.addr_lo |
968 (uint64_t)ring->sync_pci.addr_hi << 32;
969 sync_pl.source_address = (uintptr_t)ring->sync_loc;
970 sync_pl.block_size = 4; /* 4-bytes */
971
972 /* current toggle bit */
973 toggle_bit = ring->curr.toggle;
974 /* current opq value for cmpl check */
975 ring->curr.opq = curr_pkt_id(ring);
976
977 /* Form descriptors for total block counts */
978 while (block_config != NULL) {
979 ret = dma_iproc_pax_gen_packets(dev, ring,
980 config->channel_direction,
981 block_config,
982 &non_hdr_bd_count);
983 if (ret)
984 goto err;
985 block_config = block_config->next_block;
986 }
987
988 /*
989 * Write sync payload descriptors should go with separate RM header
990 * as RM implementation allows all the BD's in a header packet should
991 * have same data transfer direction. Setting non_hdr_bd_count to 0,
992 * helps generate separate packet.
993 */
994 ring->non_hdr_bd_count = 0;
995 dma_iproc_pax_gen_packets(dev, ring, MEMORY_TO_PERIPHERAL, &sync_pl,
996 &non_hdr_bd_count);
997
998 alloc_pkt_id(ring);
999 err:
1000 return ret;
1001 }
1002
dma_iproc_pax_configure(const struct device * dev,uint32_t channel,struct dma_config * cfg)1003 static int dma_iproc_pax_configure(const struct device *dev, uint32_t channel,
1004 struct dma_config *cfg)
1005 {
1006 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
1007 struct dma_iproc_pax_ring_data *ring;
1008 int ret = 0;
1009
1010 if (channel >= PAX_DMA_RINGS_MAX) {
1011 LOG_ERR("Invalid ring/channel %d\n", channel);
1012 return -EINVAL;
1013 }
1014
1015 ring = &(pd->ring[channel]);
1016 k_mutex_lock(&ring->lock, K_FOREVER);
1017
1018 if (ring->ring_active) {
1019 ret = -EBUSY;
1020 goto err;
1021 }
1022
1023 if (cfg->block_count >= RM_V2_MAX_BLOCK_COUNT) {
1024 LOG_ERR("Dma block count[%d] supported exceeds limit[%d]\n",
1025 cfg->block_count, RM_V2_MAX_BLOCK_COUNT);
1026 ret = -ENOTSUP;
1027 goto err;
1028 }
1029
1030 ring->ring_active = 1;
1031 ret = dma_iproc_pax_process_dma_blocks(dev, channel, cfg);
1032
1033 if (ret) {
1034 ring->ring_active = 0;
1035 goto err;
1036 }
1037
1038 ring->dma_callback = cfg->dma_callback;
1039 ring->callback_arg = cfg->user_data;
1040 err:
1041 k_mutex_unlock(&ring->lock);
1042 return ret;
1043 }
1044
dma_iproc_pax_transfer_start(const struct device * dev,uint32_t channel)1045 static int dma_iproc_pax_transfer_start(const struct device *dev,
1046 uint32_t channel)
1047 {
1048 int ret = 0;
1049 struct dma_iproc_pax_data *pd = PAX_DMA_DEV_DATA(dev);
1050 struct dma_iproc_pax_ring_data *ring;
1051
1052 if (channel >= PAX_DMA_RINGS_MAX) {
1053 LOG_ERR("Invalid ring %d\n", channel);
1054 return -EINVAL;
1055 }
1056
1057 ring = &(pd->ring[channel]);
1058 set_pkt_count(dev, channel, ring->total_pkt_count);
1059
1060 #ifdef CONFIG_DMA_IPROC_PAX_DOORBELL_MODE
1061 write_doorbell(pd, channel);
1062 #elif CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
1063 /* activate the ring */
1064 set_ring_active(pd, channel, true);
1065 #endif
1066
1067 ret = wait_for_pkt_completion(dev, channel, ring->total_pkt_count);
1068 if (ret) {
1069 goto err_ret;
1070 }
1071
1072 ret = poll_on_write_sync(dev, ring);
1073
1074 err_ret:
1075 k_mutex_lock(&ring->lock, K_FOREVER);
1076 ring->ring_active = 0;
1077 k_mutex_unlock(&ring->lock);
1078
1079 #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE
1080 /* deactivate the ring until next active transfer */
1081 set_ring_active(pd, channel, false);
1082 #endif
1083 return ret;
1084 }
1085
dma_iproc_pax_transfer_stop(const struct device * dev,uint32_t channel)1086 static int dma_iproc_pax_transfer_stop(const struct device *dev,
1087 uint32_t channel)
1088 {
1089 return 0;
1090 }
1091
1092 static const struct dma_driver_api pax_dma_driver_api = {
1093 .config = dma_iproc_pax_configure,
1094 .start = dma_iproc_pax_transfer_start,
1095 .stop = dma_iproc_pax_transfer_stop,
1096 };
1097
1098 static const struct dma_iproc_pax_cfg pax_dma_cfg = {
1099 .dma_base = DT_INST_REG_ADDR_BY_NAME(0, dme_regs),
1100 .rm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_ring_regs),
1101 .rm_comm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_comm_regs),
1102 .use_rings = DT_INST_PROP(0, dma_channels),
1103 .bd_memory_base = (void *)DT_INST_PROP_BY_IDX(0, bd_memory, 0),
1104 .scr_addr_loc = DT_INST_PROP(0, scr_addr_loc),
1105 .pcie_dev_name = DT_INST_PROP_BY_PHANDLE(0, pcie_ep, label),
1106 };
1107
1108 DEVICE_DT_INST_DEFINE(0,
1109 &dma_iproc_pax_init,
1110 NULL,
1111 &pax_dma_data,
1112 &pax_dma_cfg,
1113 POST_KERNEL,
1114 CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
1115 &pax_dma_driver_api);
1116