1 /*
2 * Copyright (c) 2018-2023 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <pthread.h>
8 #include <semaphore.h>
9 #include <time.h>
10
11 #include <zephyr/sys/util.h>
12 #include <zephyr/ztest.h>
13
14 #define DETACH_THR_ID 2
15
16 #define N_THR_E 3
17 #define N_THR_T 4
18 #define BOUNCES 64
19 #define ONE_SECOND 1
20
21 /* Macros to test invalid states */
22 #define PTHREAD_CANCEL_INVALID -1
23 #define SCHED_INVALID -1
24 #define PRIO_INVALID -1
25 #define PTHREAD_INVALID -1
26
27 static void *thread_top_exec(void *p1);
28 static void *thread_top_term(void *p1);
29
30 static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
31 static pthread_cond_t cvar0 = PTHREAD_COND_INITIALIZER;
32 static pthread_cond_t cvar1 = PTHREAD_COND_INITIALIZER;
33 static pthread_barrier_t barrier;
34
35 static sem_t main_sem;
36
37 static int bounce_failed;
38 static int bounce_done[N_THR_E];
39
40 static int curr_bounce_thread;
41
42 static int barrier_failed;
43 static int barrier_done[N_THR_E];
44 static int barrier_return[N_THR_E];
45
46 /* First phase bounces execution between two threads using a condition
47 * variable, continuously testing that no other thread is mucking with
48 * the protected state. This ends with all threads going back to
49 * sleep on the condition variable and being woken by main() for the
50 * second phase.
51 *
52 * Second phase simply lines up all the threads on a barrier, verifies
53 * that none run until the last one enters, and that all run after the
54 * exit.
55 *
56 * Test success is signaled to main() using a traditional semaphore.
57 */
58
thread_top_exec(void * p1)59 static void *thread_top_exec(void *p1)
60 {
61 int i, j, id = (int)POINTER_TO_INT(p1);
62 int policy;
63 struct sched_param schedparam;
64
65 pthread_getschedparam(pthread_self(), &policy, &schedparam);
66 printk("Thread %d starting with scheduling policy %d & priority %d\n", id, policy,
67 schedparam.sched_priority);
68 /* Try a double-lock here to exercise the failing case of
69 * trylock. We don't support RECURSIVE locks, so this is
70 * guaranteed to fail.
71 */
72 pthread_mutex_lock(&lock);
73
74 if (!pthread_mutex_trylock(&lock)) {
75 printk("pthread_mutex_trylock inexplicably succeeded\n");
76 bounce_failed = 1;
77 }
78
79 pthread_mutex_unlock(&lock);
80
81 for (i = 0; i < BOUNCES; i++) {
82
83 pthread_mutex_lock(&lock);
84
85 /* Wait for the current owner to signal us, unless we
86 * are the very first thread, in which case we need to
87 * wait a bit to be sure the other threads get
88 * scheduled and wait on cvar0.
89 */
90 if (!(id == 0 && i == 0)) {
91 zassert_equal(0, pthread_cond_wait(&cvar0, &lock), "");
92 } else {
93 pthread_mutex_unlock(&lock);
94 usleep(USEC_PER_MSEC * 500U);
95 pthread_mutex_lock(&lock);
96 }
97
98 /* Claim ownership, then try really hard to give someone
99 * else a shot at hitting this if they are racing.
100 */
101 curr_bounce_thread = id;
102 for (j = 0; j < 1000; j++) {
103 if (curr_bounce_thread != id) {
104 printk("Racing bounce threads\n");
105 bounce_failed = 1;
106 sem_post(&main_sem);
107 pthread_mutex_unlock(&lock);
108 return NULL;
109 }
110 sched_yield();
111 }
112
113 /* Next one's turn, go back to the top and wait. */
114 pthread_cond_signal(&cvar0);
115 pthread_mutex_unlock(&lock);
116 }
117
118 /* Signal we are complete to main(), then let it wake us up. Note
119 * that we are using the same mutex with both cvar0 and cvar1,
120 * which is non-standard but kosher per POSIX (and it works fine
121 * in our implementation
122 */
123 pthread_mutex_lock(&lock);
124 bounce_done[id] = 1;
125 sem_post(&main_sem);
126 pthread_cond_wait(&cvar1, &lock);
127 pthread_mutex_unlock(&lock);
128
129 /* Now just wait on the barrier. Make sure no one else finished
130 * before we wait on it, then signal that we're done
131 */
132 for (i = 0; i < N_THR_E; i++) {
133 if (barrier_done[i]) {
134 printk("Barrier exited early\n");
135 barrier_failed = 1;
136 sem_post(&main_sem);
137 }
138 }
139 barrier_return[id] = pthread_barrier_wait(&barrier);
140 barrier_done[id] = 1;
141 sem_post(&main_sem);
142 pthread_exit(p1);
143
144 return NULL;
145 }
146
timedjoin_thread(void * p1)147 static void *timedjoin_thread(void *p1)
148 {
149 int sleep_duration_ms = POINTER_TO_INT(p1);
150
151 usleep(USEC_PER_MSEC * sleep_duration_ms);
152 return NULL;
153 }
154
bounce_test_done(void)155 static int bounce_test_done(void)
156 {
157 int i;
158
159 if (bounce_failed) {
160 return 1;
161 }
162
163 for (i = 0; i < N_THR_E; i++) {
164 if (!bounce_done[i]) {
165 return 0;
166 }
167 }
168
169 return 1;
170 }
171
barrier_test_done(void)172 static int barrier_test_done(void)
173 {
174 int i;
175
176 if (barrier_failed) {
177 return 1;
178 }
179
180 for (i = 0; i < N_THR_E; i++) {
181 if (!barrier_done[i]) {
182 return 0;
183 }
184 }
185
186 return 1;
187 }
188
thread_top_term(void * p1)189 static void *thread_top_term(void *p1)
190 {
191 pthread_t self;
192 int policy, ret;
193 int id = POINTER_TO_INT(p1);
194 struct sched_param param, getschedparam;
195
196 param.sched_priority = N_THR_T - id;
197
198 self = pthread_self();
199
200 /* Change priority of thread */
201 zassert_false(pthread_setschedparam(self, SCHED_RR, ¶m),
202 "Unable to set thread priority!");
203
204 zassert_false(pthread_getschedparam(self, &policy, &getschedparam),
205 "Unable to get thread priority!");
206
207 printk("Thread %d starting with a priority of %d\n", id, getschedparam.sched_priority);
208
209 if (id % 2) {
210 ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
211 zassert_false(ret, "Unable to set cancel state!");
212 }
213
214 if (id >= DETACH_THR_ID) {
215 zassert_ok(pthread_detach(self), "failed to set detach state");
216 zassert_equal(pthread_detach(self), EINVAL, "re-detached thread!");
217 }
218
219 printk("Cancelling thread %d\n", id);
220 pthread_cancel(self);
221 printk("Thread %d could not be cancelled\n", id);
222 sleep(ONE_SECOND);
223 pthread_exit(p1);
224 return NULL;
225 }
226
227 /* Test the internal priority conversion functions */
228 int zephyr_to_posix_priority(int z_prio, int *policy);
229 int posix_to_zephyr_priority(int priority, int policy);
ZTEST(pthread,test_pthread_priority_conversion)230 ZTEST(pthread, test_pthread_priority_conversion)
231 {
232 /*
233 * ZEPHYR [-CONFIG_NUM_COOP_PRIORITIES, -1]
234 * TO
235 * POSIX(FIFO) [0, CONFIG_NUM_COOP_PRIORITIES - 1]
236 */
237 for (int z_prio = -CONFIG_NUM_COOP_PRIORITIES, prio = CONFIG_NUM_COOP_PRIORITIES - 1,
238 p_prio, policy;
239 z_prio <= -1; z_prio++, prio--) {
240 p_prio = zephyr_to_posix_priority(z_prio, &policy);
241 zassert_equal(policy, SCHED_FIFO);
242 zassert_equal(p_prio, prio, "%d %d\n", p_prio, prio);
243 zassert_equal(z_prio, posix_to_zephyr_priority(p_prio, SCHED_FIFO));
244 }
245
246 /*
247 * ZEPHYR [0, CONFIG_NUM_PREEMPT_PRIORITIES - 1]
248 * TO
249 * POSIX(RR) [0, CONFIG_NUM_PREEMPT_PRIORITIES - 1]
250 */
251 for (int z_prio = 0, prio = CONFIG_NUM_PREEMPT_PRIORITIES - 1, p_prio, policy;
252 z_prio < CONFIG_NUM_PREEMPT_PRIORITIES; z_prio++, prio--) {
253 p_prio = zephyr_to_posix_priority(z_prio, &policy);
254 zassert_equal(policy, SCHED_RR);
255 zassert_equal(p_prio, prio, "%d %d\n", p_prio, prio);
256 zassert_equal(z_prio, posix_to_zephyr_priority(p_prio, SCHED_RR));
257 }
258 }
259
ZTEST(pthread,test_pthread_execution)260 ZTEST(pthread, test_pthread_execution)
261 {
262 int i, ret;
263 pthread_t newthread[N_THR_E];
264 void *retval;
265 int serial_threads = 0;
266 static const char thr_name[] = "thread name";
267 char thr_name_buf[CONFIG_THREAD_MAX_NAME_LEN];
268
269 /*
270 * initialize barriers the standard way after deprecating
271 * PTHREAD_BARRIER_DEFINE().
272 */
273 zassert_ok(pthread_barrier_init(&barrier, NULL, N_THR_E));
274
275 sem_init(&main_sem, 0, 1);
276
277 /* TESTPOINT: Try getting name of NULL thread (aka uninitialized
278 * thread var).
279 */
280 ret = pthread_getname_np(PTHREAD_INVALID, thr_name_buf, sizeof(thr_name_buf));
281 zassert_equal(ret, ESRCH, "uninitialized getname!");
282
283 for (i = 0; i < N_THR_E; i++) {
284 ret = pthread_create(&newthread[i], NULL, thread_top_exec, INT_TO_POINTER(i));
285 }
286
287 /* TESTPOINT: Try setting name of NULL thread (aka uninitialized
288 * thread var).
289 */
290 ret = pthread_setname_np(PTHREAD_INVALID, thr_name);
291 zassert_equal(ret, ESRCH, "uninitialized setname!");
292
293 /* TESTPOINT: Try getting thread name with no buffer */
294 ret = pthread_getname_np(newthread[0], NULL, sizeof(thr_name_buf));
295 zassert_equal(ret, EINVAL, "uninitialized getname!");
296
297 /* TESTPOINT: Try setting thread name with no buffer */
298 ret = pthread_setname_np(newthread[0], NULL);
299 zassert_equal(ret, EINVAL, "uninitialized setname!");
300
301 /* TESTPOINT: Try setting thread name */
302 ret = pthread_setname_np(newthread[0], thr_name);
303 zassert_false(ret, "Set thread name failed!");
304
305 /* TESTPOINT: Try getting thread name */
306 ret = pthread_getname_np(newthread[0], thr_name_buf, sizeof(thr_name_buf));
307 zassert_false(ret, "Get thread name failed!");
308
309 /* TESTPOINT: Thread names match */
310 ret = strncmp(thr_name, thr_name_buf, MIN(strlen(thr_name), strlen(thr_name_buf)));
311 zassert_false(ret, "Thread names don't match!");
312
313 while (!bounce_test_done()) {
314 sem_wait(&main_sem);
315 }
316
317 /* TESTPOINT: Check if bounce test passes */
318 zassert_false(bounce_failed, "Bounce test failed");
319
320 printk("Bounce test OK\n");
321
322 /* Wake up the worker threads */
323 pthread_mutex_lock(&lock);
324 pthread_cond_broadcast(&cvar1);
325 pthread_mutex_unlock(&lock);
326
327 while (!barrier_test_done()) {
328 sem_wait(&main_sem);
329 }
330
331 /* TESTPOINT: Check if barrier test passes */
332 zassert_false(barrier_failed, "Barrier test failed");
333
334 for (i = 0; i < N_THR_E; i++) {
335 pthread_join(newthread[i], &retval);
336 }
337
338 for (i = 0; i < N_THR_E; i++) {
339 if (barrier_return[i] == PTHREAD_BARRIER_SERIAL_THREAD) {
340 ++serial_threads;
341 }
342 }
343
344 /* TESTPOINT: Check only one PTHREAD_BARRIER_SERIAL_THREAD returned. */
345 zassert_true(serial_threads == 1, "Bungled barrier return value(s)");
346
347 printk("Barrier test OK\n");
348 }
349
ZTEST(pthread,test_pthread_termination)350 ZTEST(pthread, test_pthread_termination)
351 {
352 int32_t i, ret;
353 pthread_t newthread[N_THR_T] = {0};
354 void *retval;
355
356 /* Creating 4 threads */
357 for (i = 0; i < N_THR_T; i++) {
358 zassert_ok(pthread_create(&newthread[i], NULL, thread_top_term, INT_TO_POINTER(i)));
359 }
360
361 /* TESTPOINT: Try setting invalid cancel state to current thread */
362 ret = pthread_setcancelstate(PTHREAD_CANCEL_INVALID, NULL);
363 zassert_equal(ret, EINVAL, "invalid cancel state set!");
364
365 for (i = 0; i < N_THR_T; i++) {
366 if (i < DETACH_THR_ID) {
367 zassert_ok(pthread_join(newthread[i], &retval));
368 }
369 }
370
371 /* TESTPOINT: Test for deadlock */
372 ret = pthread_join(pthread_self(), &retval);
373 zassert_equal(ret, EDEADLK, "thread joined with self inexplicably!");
374
375 /* TESTPOINT: Try canceling a terminated thread */
376 ret = pthread_cancel(newthread[0]);
377 zassert_equal(ret, ESRCH, "cancelled a terminated thread!");
378 }
379
ZTEST(pthread,test_pthread_tryjoin)380 ZTEST(pthread, test_pthread_tryjoin)
381 {
382 pthread_t th = {0};
383 int sleep_duration_ms = 200;
384 void *retval;
385
386 /* Creating a thread that exits after 200ms*/
387 zassert_ok(pthread_create(&th, NULL, timedjoin_thread, INT_TO_POINTER(sleep_duration_ms)));
388
389 /* Attempting to join, when thread is still running, should fail */
390 usleep(USEC_PER_MSEC * sleep_duration_ms / 2);
391 zassert_equal(pthread_tryjoin_np(th, &retval), EBUSY);
392
393 /* Sleep so thread will exit */
394 usleep(USEC_PER_MSEC * sleep_duration_ms);
395
396 /* Attempting to join without blocking should succeed now */
397 zassert_ok(pthread_tryjoin_np(th, &retval));
398 }
399
ZTEST(pthread,test_pthread_timedjoin)400 ZTEST(pthread, test_pthread_timedjoin)
401 {
402 pthread_t th = {0};
403 int sleep_duration_ms = 200;
404 void *ret;
405 struct timespec not_done;
406 struct timespec done;
407 struct timespec invalid[] = {
408 {.tv_nsec = -1},
409 {.tv_nsec = NSEC_PER_SEC},
410 };
411
412 /* setup timespecs when the thread is still running and when it is done */
413 clock_gettime(CLOCK_REALTIME, ¬_done);
414 clock_gettime(CLOCK_REALTIME, &done);
415 not_done.tv_nsec += sleep_duration_ms / 2 * NSEC_PER_MSEC;
416 done.tv_nsec += sleep_duration_ms * 1.5 * NSEC_PER_MSEC;
417 while (not_done.tv_nsec >= NSEC_PER_SEC) {
418 not_done.tv_sec++;
419 not_done.tv_nsec -= NSEC_PER_SEC;
420 }
421 while (done.tv_nsec >= NSEC_PER_SEC) {
422 done.tv_sec++;
423 done.tv_nsec -= NSEC_PER_SEC;
424 }
425
426 /* Creating a thread that exits after 200ms*/
427 zassert_ok(pthread_create(&th, NULL, timedjoin_thread, INT_TO_POINTER(sleep_duration_ms)));
428
429 /* pthread_timedjoin-np must return EINVAL for invalid struct timespecs */
430 zassert_equal(pthread_timedjoin_np(th, &ret, NULL), EINVAL);
431 for (size_t i = 0; i < ARRAY_SIZE(invalid); ++i) {
432 zassert_equal(pthread_timedjoin_np(th, &ret, &invalid[i]), EINVAL);
433 }
434
435 /* Attempting to join with a timeout, when the thread is still running should fail */
436 zassert_equal(pthread_timedjoin_np(th, &ret, ¬_done), ETIMEDOUT);
437
438 /* Attempting to join with a timeout, when the thread is done, should succeed */
439 zassert_ok(pthread_timedjoin_np(th, &ret, &done));
440 }
441
create_thread1(void * p1)442 static void *create_thread1(void *p1)
443 {
444 /* do nothing */
445 return NULL;
446 }
447
ZTEST(pthread,test_pthread_descriptor_leak)448 ZTEST(pthread, test_pthread_descriptor_leak)
449 {
450 pthread_t pthread1;
451
452 /* If we are leaking descriptors, then this loop will never complete */
453 for (size_t i = 0; i < CONFIG_POSIX_THREAD_THREADS_MAX * 2; ++i) {
454 zassert_ok(pthread_create(&pthread1, NULL, create_thread1, NULL),
455 "unable to create thread %zu", i);
456 zassert_ok(pthread_join(pthread1, NULL), "unable to join thread %zu", i);
457 }
458 }
459
ZTEST(pthread,test_pthread_equal)460 ZTEST(pthread, test_pthread_equal)
461 {
462 zassert_true(pthread_equal(pthread_self(), pthread_self()));
463 zassert_false(pthread_equal(pthread_self(), (pthread_t)4242));
464 }
465
cleanup_handler(void * arg)466 static void cleanup_handler(void *arg)
467 {
468 bool *boolp = (bool *)arg;
469
470 *boolp = true;
471 }
472
test_pthread_cleanup_entry(void * arg)473 static void *test_pthread_cleanup_entry(void *arg)
474 {
475 bool executed[2] = {0};
476
477 pthread_cleanup_push(cleanup_handler, &executed[0]);
478 pthread_cleanup_push(cleanup_handler, &executed[1]);
479 pthread_cleanup_pop(false);
480 pthread_cleanup_pop(true);
481
482 zassert_true(executed[0]);
483 zassert_false(executed[1]);
484
485 return NULL;
486 }
487
ZTEST(pthread,test_pthread_cleanup)488 ZTEST(pthread, test_pthread_cleanup)
489 {
490 pthread_t th;
491
492 zassert_ok(pthread_create(&th, NULL, test_pthread_cleanup_entry, NULL));
493 zassert_ok(pthread_join(th, NULL));
494 }
495
496 static bool testcancel_ignored;
497 static bool testcancel_failed;
498
test_pthread_cancel_fn(void * arg)499 static void *test_pthread_cancel_fn(void *arg)
500 {
501 zassert_ok(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL));
502
503 testcancel_ignored = false;
504
505 /* this should be ignored */
506 pthread_testcancel();
507
508 testcancel_ignored = true;
509
510 /* this will mark it pending */
511 zassert_ok(pthread_cancel(pthread_self()));
512
513 /* enable the thread to be cancelled */
514 zassert_ok(pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL));
515
516 testcancel_failed = false;
517
518 /* this should terminate the thread */
519 pthread_testcancel();
520
521 testcancel_failed = true;
522
523 return NULL;
524 }
525
ZTEST(pthread,test_pthread_testcancel)526 ZTEST(pthread, test_pthread_testcancel)
527 {
528 pthread_t th;
529
530 zassert_ok(pthread_create(&th, NULL, test_pthread_cancel_fn, NULL));
531 zassert_ok(pthread_join(th, NULL));
532 zassert_true(testcancel_ignored);
533 zassert_false(testcancel_failed);
534 }
535
test_pthread_setschedprio_fn(void * arg)536 static void *test_pthread_setschedprio_fn(void *arg)
537 {
538 int policy;
539 int prio = 0;
540 struct sched_param param;
541 pthread_t self = pthread_self();
542
543 zassert_equal(pthread_setschedprio(self, PRIO_INVALID), EINVAL, "EINVAL was expected");
544 zassert_equal(pthread_setschedprio(PTHREAD_INVALID, prio), ESRCH, "ESRCH was expected");
545
546 zassert_ok(pthread_setschedprio(self, prio));
547 param.sched_priority = ~prio;
548 zassert_ok(pthread_getschedparam(self, &policy, ¶m));
549 zassert_equal(param.sched_priority, prio, "Priority unchanged");
550
551 return NULL;
552 }
553
ZTEST(pthread,test_pthread_setschedprio)554 ZTEST(pthread, test_pthread_setschedprio)
555 {
556 pthread_t th;
557
558 zassert_ok(pthread_create(&th, NULL, test_pthread_setschedprio_fn, NULL));
559 zassert_ok(pthread_join(th, NULL));
560 }
561
before(void * arg)562 static void before(void *arg)
563 {
564 ARG_UNUSED(arg);
565
566 if (!IS_ENABLED(CONFIG_DYNAMIC_THREAD)) {
567 /* skip redundant testing if there is no thread pool / heap allocation */
568 ztest_test_skip();
569 }
570 }
571
572 ZTEST_SUITE(pthread, NULL, NULL, before, NULL, NULL);
573