1 /*
2 * Copyright (c) 2017 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7
8 #include <zephyr/kernel.h>
9 #include <string.h>
10 #include <zephyr/sys/math_extras.h>
11 #include <zephyr/sys/rb.h>
12 #include <zephyr/kernel_structs.h>
13 #include <zephyr/sys/sys_io.h>
14 #include <ksched.h>
15 #include <zephyr/syscall.h>
16 #include <zephyr/internal/syscall_handler.h>
17 #include <zephyr/device.h>
18 #include <zephyr/init.h>
19 #include <stdbool.h>
20 #include <zephyr/app_memory/app_memdomain.h>
21 #include <zephyr/sys/libc-hooks.h>
22 #include <zephyr/sys/mutex.h>
23 #include <zephyr/sys/util.h>
24 #include <inttypes.h>
25 #include <zephyr/linker/linker-defs.h>
26
27 #ifdef Z_LIBC_PARTITION_EXISTS
28 K_APPMEM_PARTITION_DEFINE(z_libc_partition);
29 #endif /* Z_LIBC_PARTITION_EXISTS */
30
31 /* TODO: Find a better place to put this. Since we pull the entire
32 * lib..__modules__crypto__mbedtls.a globals into app shared memory
33 * section, we can't put this in zephyr_init.c of the mbedtls module.
34 */
35 #ifdef CONFIG_MBEDTLS
36 K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition);
37 #endif /* CONFIG_MBEDTLS */
38
39 #include <zephyr/logging/log.h>
40 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
41
42 /* The originally synchronization strategy made heavy use of recursive
43 * irq_locking, which ports poorly to spinlocks which are
44 * non-recursive. Rather than try to redesign as part of
45 * spinlockification, this uses multiple locks to preserve the
46 * original semantics exactly. The locks are named for the data they
47 * protect where possible, or just for the code that uses them where
48 * not.
49 */
50 #ifdef CONFIG_DYNAMIC_OBJECTS
51 static struct k_spinlock lists_lock; /* kobj dlist */
52 static struct k_spinlock objfree_lock; /* k_object_free */
53
54 #ifdef CONFIG_GEN_PRIV_STACKS
55 /* On ARM & ARC MPU & RISC-V PMP we may have two different alignment requirement
56 * when dynamically allocating thread stacks, one for the privileged
57 * stack and other for the user stack, so we need to account the
58 * worst alignment scenario and reserve space for that.
59 */
60 #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU) || defined(CONFIG_RISCV_PMP)
61 #define STACK_ELEMENT_DATA_SIZE(size) \
62 (sizeof(struct z_stack_data) + CONFIG_PRIVILEGED_STACK_SIZE + \
63 Z_THREAD_STACK_OBJ_ALIGN(size) + K_THREAD_STACK_LEN(size))
64 #else
65 #define STACK_ELEMENT_DATA_SIZE(size) (sizeof(struct z_stack_data) + \
66 K_THREAD_STACK_LEN(size))
67 #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU || CONFIG_RISCV_PMP */
68 #else
69 #define STACK_ELEMENT_DATA_SIZE(size) K_THREAD_STACK_LEN(size)
70 #endif /* CONFIG_GEN_PRIV_STACKS */
71
72 #endif /* CONFIG_DYNAMIC_OBJECTS */
73 static struct k_spinlock obj_lock; /* kobj struct data */
74
75 #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * BITS_PER_BYTE)
76
77 #ifdef CONFIG_DYNAMIC_OBJECTS
78 extern uint8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES];
79 #endif /* CONFIG_DYNAMIC_OBJECTS */
80
81 static void clear_perms_cb(struct k_object *ko, void *ctx_ptr);
82
otype_to_str(enum k_objects otype)83 const char *otype_to_str(enum k_objects otype)
84 {
85 const char *ret;
86 /* -fdata-sections doesn't work right except in very recent
87 * GCC and these literal strings would appear in the binary even if
88 * otype_to_str was omitted by the linker
89 */
90 #ifdef CONFIG_LOG
91 switch (otype) {
92 /* otype-to-str.h is generated automatically during build by
93 * gen_kobject_list.py
94 */
95 case K_OBJ_ANY:
96 ret = "generic";
97 break;
98 #include <zephyr/otype-to-str.h>
99 default:
100 ret = "?";
101 break;
102 }
103 #else
104 ARG_UNUSED(otype);
105 ret = NULL;
106 #endif /* CONFIG_LOG */
107 return ret;
108 }
109
110 struct perm_ctx {
111 int parent_id;
112 int child_id;
113 struct k_thread *parent;
114 };
115
116 #ifdef CONFIG_GEN_PRIV_STACKS
117 /* See write_gperf_table() in scripts/build/gen_kobject_list.py. The privilege
118 * mode stacks are allocated as an array. The base of the array is
119 * aligned to Z_PRIVILEGE_STACK_ALIGN, and all members must be as well.
120 */
z_priv_stack_find(k_thread_stack_t * stack)121 uint8_t *z_priv_stack_find(k_thread_stack_t *stack)
122 {
123 struct k_object *obj = k_object_find(stack);
124
125 __ASSERT(obj != NULL, "stack object not found");
126 __ASSERT(obj->type == K_OBJ_THREAD_STACK_ELEMENT,
127 "bad stack object");
128
129 return obj->data.stack_data->priv;
130 }
131 #endif /* CONFIG_GEN_PRIV_STACKS */
132
133 #ifdef CONFIG_DYNAMIC_OBJECTS
134
135 /*
136 * Note that dyn_obj->data is where the kernel object resides
137 * so it is the one that actually needs to be aligned.
138 * Due to the need to get the fields inside struct dyn_obj
139 * from kernel object pointers (i.e. from data[]), the offset
140 * from data[] needs to be fixed at build time. Therefore,
141 * data[] is declared with __aligned(), such that when dyn_obj
142 * is allocated with alignment, data[] is also aligned.
143 * Due to this requirement, data[] needs to be aligned with
144 * the maximum alignment needed for all kernel objects
145 * (hence the following DYN_OBJ_DATA_ALIGN).
146 */
147 #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT
148 #define DYN_OBJ_DATA_ALIGN_K_THREAD (ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT)
149 #else
150 #define DYN_OBJ_DATA_ALIGN_K_THREAD (sizeof(void *))
151 #endif /* ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT */
152
153 #ifdef CONFIG_DYNAMIC_THREAD_STACK_SIZE
154 #if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_PMP_STACK_GUARD)
155 #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
156 Z_THREAD_STACK_OBJ_ALIGN(CONFIG_DYNAMIC_THREAD_STACK_SIZE)
157 #else
158 #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
159 Z_THREAD_STACK_OBJ_ALIGN(CONFIG_PRIVILEGED_STACK_SIZE)
160 #endif /* CONFIG_MPU_STACK_GUARD || CONFIG_PMP_STACK_GUARD */
161 #else
162 #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
163 Z_THREAD_STACK_OBJ_ALIGN(ARCH_STACK_PTR_ALIGN)
164 #endif /* CONFIG_DYNAMIC_THREAD_STACK_SIZE */
165
166 #define DYN_OBJ_DATA_ALIGN \
167 MAX(DYN_OBJ_DATA_ALIGN_K_THREAD, (sizeof(void *)))
168
169 struct dyn_obj {
170 struct k_object kobj;
171 sys_dnode_t dobj_list;
172
173 /* The object itself */
174 void *data;
175 };
176
177 extern struct k_object *z_object_gperf_find(const void *obj);
178 extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
179 void *context);
180
181 /*
182 * Linked list of allocated kernel objects, for iteration over all allocated
183 * objects (and potentially deleting them during iteration).
184 */
185 static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);
186
187 /*
188 * TODO: Write some hash table code that will replace obj_list.
189 */
190
obj_size_get(enum k_objects otype)191 static size_t obj_size_get(enum k_objects otype)
192 {
193 size_t ret;
194
195 switch (otype) {
196 #include <zephyr/otype-to-size.h>
197 default:
198 ret = sizeof(const struct device);
199 break;
200 }
201
202 return ret;
203 }
204
obj_align_get(enum k_objects otype)205 static size_t obj_align_get(enum k_objects otype)
206 {
207 size_t ret;
208
209 switch (otype) {
210 case K_OBJ_THREAD:
211 #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT
212 ret = ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT;
213 #else
214 ret = __alignof(struct dyn_obj);
215 #endif /* ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT */
216 break;
217 default:
218 ret = __alignof(struct dyn_obj);
219 break;
220 }
221
222 return ret;
223 }
224
dyn_object_find(const void * obj)225 static struct dyn_obj *dyn_object_find(const void *obj)
226 {
227 struct dyn_obj *node;
228 k_spinlock_key_t key;
229
230 /* For any dynamically allocated kernel object, the object
231 * pointer is just a member of the containing struct dyn_obj,
232 * so just a little arithmetic is necessary to locate the
233 * corresponding struct rbnode
234 */
235 key = k_spin_lock(&lists_lock);
236
237 SYS_DLIST_FOR_EACH_CONTAINER(&obj_list, node, dobj_list) {
238 if (node->kobj.name == obj) {
239 goto end;
240 }
241 }
242
243 /* No object found */
244 node = NULL;
245
246 end:
247 k_spin_unlock(&lists_lock, key);
248
249 return node;
250 }
251
252 /**
253 * @internal
254 *
255 * @brief Allocate a new thread index for a new thread.
256 *
257 * This finds an unused thread index that can be assigned to a new
258 * thread. If too many threads have been allocated, the kernel will
259 * run out of indexes and this function will fail.
260 *
261 * Note that if an unused index is found, that index will be marked as
262 * used after return of this function.
263 *
264 * @param tidx The new thread index if successful
265 *
266 * @return true if successful, false if failed
267 **/
thread_idx_alloc(uintptr_t * tidx)268 static bool thread_idx_alloc(uintptr_t *tidx)
269 {
270 int i;
271 int idx;
272 int base;
273
274 base = 0;
275 for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
276 idx = find_lsb_set(_thread_idx_map[i]);
277
278 if (idx != 0) {
279 *tidx = base + (idx - 1);
280
281 /* Clear the bit. We already know the array index,
282 * and the bit to be cleared.
283 */
284 _thread_idx_map[i] &= ~(BIT(idx - 1));
285
286 /* Clear permission from all objects */
287 k_object_wordlist_foreach(clear_perms_cb,
288 (void *)*tidx);
289
290 return true;
291 }
292
293 base += 8;
294 }
295
296 return false;
297 }
298
299 /**
300 * @internal
301 *
302 * @brief Free a thread index.
303 *
304 * This frees a thread index so it can be used by another
305 * thread.
306 *
307 * @param tidx The thread index to be freed
308 **/
thread_idx_free(uintptr_t tidx)309 static void thread_idx_free(uintptr_t tidx)
310 {
311 /* To prevent leaked permission when index is recycled */
312 k_object_wordlist_foreach(clear_perms_cb, (void *)tidx);
313
314 /* Figure out which bits to set in _thread_idx_map[] and set it. */
315 int base = tidx / NUM_BITS(_thread_idx_map[0]);
316 int offset = tidx % NUM_BITS(_thread_idx_map[0]);
317
318 _thread_idx_map[base] |= BIT(offset);
319 }
320
dynamic_object_create(enum k_objects otype,size_t align,size_t size)321 static struct k_object *dynamic_object_create(enum k_objects otype, size_t align,
322 size_t size)
323 {
324 struct dyn_obj *dyn;
325
326 dyn = z_thread_aligned_alloc(align, sizeof(struct dyn_obj));
327 if (dyn == NULL) {
328 return NULL;
329 }
330
331 if (otype == K_OBJ_THREAD_STACK_ELEMENT) {
332 size_t adjusted_size;
333
334 if (size == 0) {
335 k_free(dyn);
336 return NULL;
337 }
338
339 adjusted_size = STACK_ELEMENT_DATA_SIZE(size);
340 dyn->data = z_thread_aligned_alloc(DYN_OBJ_DATA_ALIGN_K_THREAD_STACK,
341 adjusted_size);
342 if (dyn->data == NULL) {
343 k_free(dyn);
344 return NULL;
345 }
346
347 #ifdef CONFIG_GEN_PRIV_STACKS
348 struct z_stack_data *stack_data = (struct z_stack_data *)
349 ((uint8_t *)dyn->data + adjusted_size - sizeof(*stack_data));
350 #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU) || defined(CONFIG_RISCV_PMP)
351 stack_data->priv = (void *)ROUND_UP(((uint8_t *)dyn->data + size),
352 Z_THREAD_STACK_OBJ_ALIGN(size));
353 #else
354 stack_data->priv = (uint8_t *)dyn->data;
355 #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU || CONFIG_RISCV_PMP */
356 stack_data->size = adjusted_size;
357 dyn->kobj.data.stack_data = stack_data;
358 dyn->kobj.name = dyn->data;
359 #else
360 dyn->kobj.name = dyn->data;
361 dyn->kobj.data.stack_size = adjusted_size;
362 #endif /* CONFIG_GEN_PRIV_STACKS */
363 } else {
364 dyn->data = z_thread_aligned_alloc(align, obj_size_get(otype) + size);
365 if (dyn->data == NULL) {
366 k_free(dyn);
367 return NULL;
368 }
369 dyn->kobj.name = dyn->data;
370 }
371
372 dyn->kobj.type = otype;
373 dyn->kobj.flags = 0;
374 (void)memset(dyn->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
375
376 k_spinlock_key_t key = k_spin_lock(&lists_lock);
377
378 sys_dlist_append(&obj_list, &dyn->dobj_list);
379 k_spin_unlock(&lists_lock, key);
380
381 return &dyn->kobj;
382 }
383
k_object_create_dynamic_aligned(size_t align,size_t size)384 struct k_object *k_object_create_dynamic_aligned(size_t align, size_t size)
385 {
386 struct k_object *obj = dynamic_object_create(K_OBJ_ANY, align, size);
387
388 if (obj == NULL) {
389 LOG_ERR("could not allocate kernel object, out of memory");
390 }
391
392 return obj;
393 }
394
z_object_alloc(enum k_objects otype,size_t size)395 static void *z_object_alloc(enum k_objects otype, size_t size)
396 {
397 struct k_object *zo;
398 uintptr_t tidx = 0;
399
400 if ((otype <= K_OBJ_ANY) || (otype >= K_OBJ_LAST)) {
401 LOG_ERR("bad object type %d requested", otype);
402 return NULL;
403 }
404
405 switch (otype) {
406 case K_OBJ_THREAD:
407 if (!thread_idx_alloc(&tidx)) {
408 LOG_ERR("out of free thread indexes");
409 return NULL;
410 }
411 break;
412 /* The following are currently not allowed at all */
413 case K_OBJ_FUTEX: /* Lives in user memory */
414 case K_OBJ_SYS_MUTEX: /* Lives in user memory */
415 case K_OBJ_NET_SOCKET: /* Indeterminate size */
416 LOG_ERR("forbidden object type '%s' requested",
417 otype_to_str(otype));
418 return NULL;
419 default:
420 /* Remainder within bounds are permitted */
421 break;
422 }
423
424 zo = dynamic_object_create(otype, obj_align_get(otype), size);
425 if (zo == NULL) {
426 if (otype == K_OBJ_THREAD) {
427 thread_idx_free(tidx);
428 }
429 return NULL;
430 }
431
432 if (otype == K_OBJ_THREAD) {
433 zo->data.thread_id = tidx;
434 }
435
436 /* The allocating thread implicitly gets permission on kernel objects
437 * that it allocates
438 */
439 k_thread_perms_set(zo, _current);
440
441 /* Activates reference counting logic for automatic disposal when
442 * all permissions have been revoked
443 */
444 zo->flags |= K_OBJ_FLAG_ALLOC;
445
446 return zo->name;
447 }
448
z_impl_k_object_alloc(enum k_objects otype)449 void *z_impl_k_object_alloc(enum k_objects otype)
450 {
451 return z_object_alloc(otype, 0);
452 }
453
z_impl_k_object_alloc_size(enum k_objects otype,size_t size)454 void *z_impl_k_object_alloc_size(enum k_objects otype, size_t size)
455 {
456 return z_object_alloc(otype, size);
457 }
458
k_object_free(void * obj)459 void k_object_free(void *obj)
460 {
461 struct dyn_obj *dyn;
462
463 /* This function is intentionally not exposed to user mode.
464 * There's currently no robust way to track that an object isn't
465 * being used by some other thread
466 */
467
468 k_spinlock_key_t key = k_spin_lock(&objfree_lock);
469
470 dyn = dyn_object_find(obj);
471 if (dyn != NULL) {
472 sys_dlist_remove(&dyn->dobj_list);
473
474 if (dyn->kobj.type == K_OBJ_THREAD) {
475 thread_idx_free(dyn->kobj.data.thread_id);
476 }
477 }
478 k_spin_unlock(&objfree_lock, key);
479
480 if (dyn != NULL) {
481 k_free(dyn->data);
482 k_free(dyn);
483 }
484 }
485
k_object_find(const void * obj)486 struct k_object *k_object_find(const void *obj)
487 {
488 struct k_object *ret;
489
490 ret = z_object_gperf_find(obj);
491
492 if (ret == NULL) {
493 struct dyn_obj *dyn;
494
495 /* The cast to pointer-to-non-const violates MISRA
496 * 11.8 but is justified since we know dynamic objects
497 * were not declared with a const qualifier.
498 */
499 dyn = dyn_object_find(obj);
500 if (dyn != NULL) {
501 ret = &dyn->kobj;
502 }
503 }
504
505 return ret;
506 }
507
k_object_wordlist_foreach(_wordlist_cb_func_t func,void * context)508 void k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
509 {
510 struct dyn_obj *obj, *next;
511
512 z_object_gperf_wordlist_foreach(func, context);
513
514 k_spinlock_key_t key = k_spin_lock(&lists_lock);
515
516 SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, dobj_list) {
517 func(&obj->kobj, context);
518 }
519 k_spin_unlock(&lists_lock, key);
520 }
521 #endif /* CONFIG_DYNAMIC_OBJECTS */
522
523 /* In the earlier linker-passes before we have the real generated
524 * implementation of the lookup functions, we need some weak dummies.
525 * Being __weak, they will be replaced by the generated implementations in
526 * the later linker passes.
527 */
528 #ifdef CONFIG_DYNAMIC_OBJECTS
529 Z_GENERIC_SECTION(.kobject_data.text.dummies)
z_object_gperf_find(const void * obj)530 __weak struct k_object *z_object_gperf_find(const void *obj)
531 {
532 return NULL;
533 }
534 Z_GENERIC_SECTION(.kobject_data.text.dummies)
z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,void * context)535 __weak void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, void *context)
536 {
537 }
538 #else
539 Z_GENERIC_SECTION(.kobject_data.text.dummies)
k_object_find(const void * obj)540 __weak struct k_object *k_object_find(const void *obj)
541 {
542 return NULL;
543 }
544 Z_GENERIC_SECTION(.kobject_data.text.dummies)
k_object_wordlist_foreach(_wordlist_cb_func_t func,void * context)545 __weak void k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
546 {
547 }
548 #endif
549
thread_index_get(struct k_thread * thread)550 static unsigned int thread_index_get(struct k_thread *thread)
551 {
552 struct k_object *ko;
553
554 ko = k_object_find(thread);
555
556 if (ko == NULL) {
557 return -1;
558 }
559
560 return ko->data.thread_id;
561 }
562
unref_check(struct k_object * ko,uintptr_t index)563 static void unref_check(struct k_object *ko, uintptr_t index)
564 {
565 k_spinlock_key_t key = k_spin_lock(&obj_lock);
566
567 sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
568
569 #ifdef CONFIG_DYNAMIC_OBJECTS
570 if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) {
571 /* skip unref check for static kernel object */
572 goto out;
573 }
574
575 void *vko = ko;
576
577 struct dyn_obj *dyn = CONTAINER_OF(vko, struct dyn_obj, kobj);
578
579 __ASSERT(IS_PTR_ALIGNED(dyn, struct dyn_obj), "unaligned z_object");
580
581 for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
582 if (ko->perms[i] != 0U) {
583 goto out;
584 }
585 }
586
587 /* This object has no more references. Some objects may have
588 * dynamically allocated resources, require cleanup, or need to be
589 * marked as uninitialized when all references are gone. What
590 * specifically needs to happen depends on the object type.
591 */
592 switch (ko->type) {
593 case K_OBJ_MSGQ:
594 k_msgq_cleanup((struct k_msgq *)ko->name);
595 break;
596 case K_OBJ_STACK:
597 k_stack_cleanup((struct k_stack *)ko->name);
598 break;
599 default:
600 /* Nothing to do */
601 break;
602 }
603
604 sys_dlist_remove(&dyn->dobj_list);
605 k_free(dyn->data);
606 k_free(dyn);
607 out:
608 #endif /* CONFIG_DYNAMIC_OBJECTS */
609 k_spin_unlock(&obj_lock, key);
610 }
611
wordlist_cb(struct k_object * ko,void * ctx_ptr)612 static void wordlist_cb(struct k_object *ko, void *ctx_ptr)
613 {
614 struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
615
616 if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
617 ((struct k_thread *)ko->name != ctx->parent)) {
618 sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
619 }
620 }
621
k_thread_perms_inherit(struct k_thread * parent,struct k_thread * child)622 void k_thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
623 {
624 struct perm_ctx ctx = {
625 thread_index_get(parent),
626 thread_index_get(child),
627 parent
628 };
629
630 if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
631 k_object_wordlist_foreach(wordlist_cb, &ctx);
632 }
633 }
634
k_thread_perms_set(struct k_object * ko,struct k_thread * thread)635 void k_thread_perms_set(struct k_object *ko, struct k_thread *thread)
636 {
637 int index = thread_index_get(thread);
638
639 if (index != -1) {
640 sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
641 }
642 }
643
k_thread_perms_clear(struct k_object * ko,struct k_thread * thread)644 void k_thread_perms_clear(struct k_object *ko, struct k_thread *thread)
645 {
646 int index = thread_index_get(thread);
647
648 if (index != -1) {
649 sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
650 unref_check(ko, index);
651 }
652 }
653
clear_perms_cb(struct k_object * ko,void * ctx_ptr)654 static void clear_perms_cb(struct k_object *ko, void *ctx_ptr)
655 {
656 uintptr_t id = (uintptr_t)ctx_ptr;
657
658 unref_check(ko, id);
659 }
660
k_thread_perms_all_clear(struct k_thread * thread)661 void k_thread_perms_all_clear(struct k_thread *thread)
662 {
663 uintptr_t index = thread_index_get(thread);
664
665 if ((int)index != -1) {
666 k_object_wordlist_foreach(clear_perms_cb, (void *)index);
667 }
668 }
669
thread_perms_test(struct k_object * ko)670 static int thread_perms_test(struct k_object *ko)
671 {
672 int index;
673
674 if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) {
675 return 1;
676 }
677
678 index = thread_index_get(_current);
679 if (index != -1) {
680 return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
681 }
682 return 0;
683 }
684
dump_permission_error(struct k_object * ko)685 static void dump_permission_error(struct k_object *ko)
686 {
687 int index = thread_index_get(_current);
688 LOG_ERR("thread %p (%d) does not have permission on %s %p",
689 _current, index,
690 otype_to_str(ko->type), ko->name);
691 LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap");
692 }
693
k_object_dump_error(int retval,const void * obj,struct k_object * ko,enum k_objects otype)694 void k_object_dump_error(int retval, const void *obj, struct k_object *ko,
695 enum k_objects otype)
696 {
697 switch (retval) {
698 case -EBADF:
699 LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype));
700 if (ko == NULL) {
701 LOG_ERR("address is not a known kernel object");
702 } else {
703 LOG_ERR("address is actually a %s",
704 otype_to_str(ko->type));
705 }
706 break;
707 case -EPERM:
708 dump_permission_error(ko);
709 break;
710 case -EINVAL:
711 LOG_ERR("%p used before initialization", obj);
712 break;
713 case -EADDRINUSE:
714 LOG_ERR("%p %s in use", obj, otype_to_str(otype));
715 break;
716 default:
717 /* Not handled error */
718 break;
719 }
720 }
721
z_impl_k_object_access_grant(const void * object,struct k_thread * thread)722 void z_impl_k_object_access_grant(const void *object, struct k_thread *thread)
723 {
724 struct k_object *ko = k_object_find(object);
725
726 if (ko != NULL) {
727 k_thread_perms_set(ko, thread);
728 }
729 }
730
k_object_access_revoke(const void * object,struct k_thread * thread)731 void k_object_access_revoke(const void *object, struct k_thread *thread)
732 {
733 struct k_object *ko = k_object_find(object);
734
735 if (ko != NULL) {
736 k_thread_perms_clear(ko, thread);
737 }
738 }
739
z_impl_k_object_release(const void * object)740 void z_impl_k_object_release(const void *object)
741 {
742 k_object_access_revoke(object, _current);
743 }
744
k_object_access_all_grant(const void * object)745 void k_object_access_all_grant(const void *object)
746 {
747 struct k_object *ko = k_object_find(object);
748
749 if (ko != NULL) {
750 ko->flags |= K_OBJ_FLAG_PUBLIC;
751 }
752 }
753
k_object_validate(struct k_object * ko,enum k_objects otype,enum _obj_init_check init)754 int k_object_validate(struct k_object *ko, enum k_objects otype,
755 enum _obj_init_check init)
756 {
757 if (unlikely((ko == NULL) ||
758 ((otype != K_OBJ_ANY) && (ko->type != otype)))) {
759 return -EBADF;
760 }
761
762 /* Manipulation of any kernel objects by a user thread requires that
763 * thread be granted access first, even for uninitialized objects
764 */
765 if (unlikely(thread_perms_test(ko) == 0)) {
766 return -EPERM;
767 }
768
769 /* Initialization state checks. _OBJ_INIT_ANY, we don't care */
770 if (likely(init == _OBJ_INIT_TRUE)) {
771 /* Object MUST be initialized */
772 if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) {
773 return -EINVAL;
774 }
775 } else if (init == _OBJ_INIT_FALSE) { /* _OBJ_INIT_FALSE case */
776 /* Object MUST NOT be initialized */
777 if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) {
778 return -EADDRINUSE;
779 }
780 } else {
781 /* _OBJ_INIT_ANY */
782 }
783
784 return 0;
785 }
786
k_object_init(const void * obj)787 void k_object_init(const void *obj)
788 {
789 struct k_object *ko;
790
791 /* By the time we get here, if the caller was from userspace, all the
792 * necessary checks have been done in k_object_validate(), which takes
793 * place before the object is initialized.
794 *
795 * This function runs after the object has been initialized and
796 * finalizes it
797 */
798
799 ko = k_object_find(obj);
800 if (ko == NULL) {
801 /* Supervisor threads can ignore rules about kernel objects
802 * and may declare them on stacks, etc. Such objects will never
803 * be usable from userspace, but we shouldn't explode.
804 */
805 return;
806 }
807
808 /* Allows non-initialization system calls to be made on this object */
809 ko->flags |= K_OBJ_FLAG_INITIALIZED;
810 }
811
k_object_recycle(const void * obj)812 void k_object_recycle(const void *obj)
813 {
814 struct k_object *ko = k_object_find(obj);
815
816 if (ko != NULL) {
817 (void)memset(ko->perms, 0, sizeof(ko->perms));
818 k_thread_perms_set(ko, _current);
819 ko->flags |= K_OBJ_FLAG_INITIALIZED;
820 }
821 }
822
k_object_uninit(const void * obj)823 void k_object_uninit(const void *obj)
824 {
825 struct k_object *ko;
826
827 /* See comments in k_object_init() */
828 ko = k_object_find(obj);
829 if (ko == NULL) {
830 return;
831 }
832
833 ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
834 }
835
836 /*
837 * Copy to/from helper functions used in syscall handlers
838 */
k_usermode_alloc_from_copy(const void * src,size_t size)839 void *k_usermode_alloc_from_copy(const void *src, size_t size)
840 {
841 void *dst = NULL;
842
843 /* Does the caller in user mode have access to read this memory? */
844 if (K_SYSCALL_MEMORY_READ(src, size)) {
845 goto out_err;
846 }
847
848 dst = z_thread_malloc(size);
849 if (dst == NULL) {
850 LOG_ERR("out of thread resource pool memory (%zu)", size);
851 goto out_err;
852 }
853
854 (void)memcpy(dst, src, size);
855 out_err:
856 return dst;
857 }
858
user_copy(void * dst,const void * src,size_t size,bool to_user)859 static int user_copy(void *dst, const void *src, size_t size, bool to_user)
860 {
861 int ret = EFAULT;
862
863 /* Does the caller in user mode have access to this memory? */
864 if (to_user ? K_SYSCALL_MEMORY_WRITE(dst, size) :
865 K_SYSCALL_MEMORY_READ(src, size)) {
866 goto out_err;
867 }
868
869 (void)memcpy(dst, src, size);
870 ret = 0;
871 out_err:
872 return ret;
873 }
874
k_usermode_from_copy(void * dst,const void * src,size_t size)875 int k_usermode_from_copy(void *dst, const void *src, size_t size)
876 {
877 return user_copy(dst, src, size, false);
878 }
879
k_usermode_to_copy(void * dst,const void * src,size_t size)880 int k_usermode_to_copy(void *dst, const void *src, size_t size)
881 {
882 return user_copy(dst, src, size, true);
883 }
884
k_usermode_string_alloc_copy(const char * src,size_t maxlen)885 char *k_usermode_string_alloc_copy(const char *src, size_t maxlen)
886 {
887 size_t actual_len;
888 int err;
889 char *ret = NULL;
890
891 actual_len = k_usermode_string_nlen(src, maxlen, &err);
892 if (err != 0) {
893 goto out;
894 }
895 if (actual_len == maxlen) {
896 /* Not NULL terminated */
897 LOG_ERR("string too long %p (%zu)", src, actual_len);
898 goto out;
899 }
900 if (size_add_overflow(actual_len, 1, &actual_len)) {
901 LOG_ERR("overflow");
902 goto out;
903 }
904
905 ret = k_usermode_alloc_from_copy(src, actual_len);
906
907 /* Someone may have modified the source string during the above
908 * checks. Ensure what we actually copied is still terminated
909 * properly.
910 */
911 if (ret != NULL) {
912 ret[actual_len - 1U] = '\0';
913 }
914 out:
915 return ret;
916 }
917
k_usermode_string_copy(char * dst,const char * src,size_t maxlen)918 int k_usermode_string_copy(char *dst, const char *src, size_t maxlen)
919 {
920 size_t actual_len;
921 int ret, err;
922
923 actual_len = k_usermode_string_nlen(src, maxlen, &err);
924 if (err != 0) {
925 ret = EFAULT;
926 goto out;
927 }
928 if (actual_len == maxlen) {
929 /* Not NULL terminated */
930 LOG_ERR("string too long %p (%zu)", src, actual_len);
931 ret = EINVAL;
932 goto out;
933 }
934 if (size_add_overflow(actual_len, 1, &actual_len)) {
935 LOG_ERR("overflow");
936 ret = EINVAL;
937 goto out;
938 }
939
940 ret = k_usermode_from_copy(dst, src, actual_len);
941
942 /* See comment above in k_usermode_string_alloc_copy() */
943 dst[actual_len - 1] = '\0';
944 out:
945 return ret;
946 }
947
948 /*
949 * Application memory region initialization
950 */
951
952 extern char __app_shmem_regions_start[];
953 extern char __app_shmem_regions_end[];
954
app_shmem_bss_zero(void)955 static int app_shmem_bss_zero(void)
956 {
957 struct z_app_region *region, *end;
958
959
960 end = (struct z_app_region *)&__app_shmem_regions_end[0];
961 region = (struct z_app_region *)&__app_shmem_regions_start[0];
962
963 for ( ; region < end; region++) {
964 #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
965 /* When BSS sections are not present at boot, we need to wait for
966 * paging mechanism to be initialized before we can zero out BSS.
967 */
968 extern bool z_sys_post_kernel;
969 bool do_clear = z_sys_post_kernel;
970
971 /* During pre-kernel init, z_sys_post_kernel == false, but
972 * with pinned rodata region, so clear. Otherwise skip.
973 * In post-kernel init, z_sys_post_kernel == true,
974 * skip those in pinned rodata region as they have already
975 * been cleared and possibly already in use. Otherwise clear.
976 */
977 if (((uint8_t *)region->bss_start >= (uint8_t *)_app_smem_pinned_start) &&
978 ((uint8_t *)region->bss_start < (uint8_t *)_app_smem_pinned_end)) {
979 do_clear = !do_clear;
980 }
981
982 if (do_clear)
983 #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
984 {
985 (void)memset(region->bss_start, 0, region->bss_size);
986 }
987 }
988
989 return 0;
990 }
991
992 SYS_INIT_NAMED(app_shmem_bss_zero_pre, app_shmem_bss_zero,
993 PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
994
995 #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
996 /* When BSS sections are not present at boot, we need to wait for
997 * paging mechanism to be initialized before we can zero out BSS.
998 */
999 SYS_INIT_NAMED(app_shmem_bss_zero_post, app_shmem_bss_zero,
1000 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
1001 #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
1002
1003 /*
1004 * Default handlers if otherwise unimplemented
1005 */
1006
handler_bad_syscall(uintptr_t bad_id,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uintptr_t arg6,void * ssf)1007 static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2,
1008 uintptr_t arg3, uintptr_t arg4,
1009 uintptr_t arg5, uintptr_t arg6,
1010 void *ssf)
1011 {
1012 ARG_UNUSED(arg2);
1013 ARG_UNUSED(arg3);
1014 ARG_UNUSED(arg4);
1015 ARG_UNUSED(arg5);
1016 ARG_UNUSED(arg6);
1017
1018 LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id);
1019 arch_syscall_oops(ssf);
1020 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
1021 }
1022
handler_no_syscall(uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uintptr_t arg6,void * ssf)1023 static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2,
1024 uintptr_t arg3, uintptr_t arg4,
1025 uintptr_t arg5, uintptr_t arg6, void *ssf)
1026 {
1027 ARG_UNUSED(arg1);
1028 ARG_UNUSED(arg2);
1029 ARG_UNUSED(arg3);
1030 ARG_UNUSED(arg4);
1031 ARG_UNUSED(arg5);
1032 ARG_UNUSED(arg6);
1033
1034 LOG_ERR("Unimplemented system call");
1035 arch_syscall_oops(ssf);
1036 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
1037 }
1038
1039 #include <zephyr/syscall_dispatch.c>
1040