1 /*
2 * Copyright (c) 2025 Bastien Jauny <bastien.jauny@smile.fr>
3 * SPDX-License-Identifier: Apache-2.0
4 */
5
6 #define DT_DRV_COMPAT vishay_vs1838b
7
8 #include <zephyr/device.h>
9 #include <zephyr/drivers/gpio.h>
10 #include <zephyr/logging/log.h>
11 #include <zephyr/input/input.h>
12 #include <zephyr/kernel.h>
13
14 LOG_MODULE_REGISTER(input_vs1838b, CONFIG_INPUT_LOG_LEVEL);
15
16 /* A NEC packet is defined by:
17 * - a lead burst (2 edges)
18 * - an 8-bit address followed by its logical inverse
19 * - an 8-bit command followed by its logical inverse
20 * - a trailing burst
21 */
22
23 /* Constants used for parsing the edges buffer for NEC protocol */
24 #define NEC_LEAD_PULSE_EDGE_OFFSET 0
25 #define NEC_LEAD_PULSE_EDGE_WIDTH 2
26
27 #define NEC_ADDRESS_BYTE_EDGE_OFFSET (NEC_LEAD_PULSE_EDGE_OFFSET + NEC_LEAD_PULSE_EDGE_WIDTH)
28 #define NEC_ADDRESS_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
29
30 #define NEC_REVERSE_ADDRESS_BYTE_EDGE_OFFSET \
31 (NEC_ADDRESS_BYTE_EDGE_OFFSET + NEC_ADDRESS_BYTE_EDGE_WIDTH)
32 #define NEC_REVERSE_ADDRESS_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
33
34 #define NEC_COMMAND_BYTE_EDGE_OFFSET \
35 (NEC_REVERSE_ADDRESS_BYTE_EDGE_OFFSET + NEC_REVERSE_ADDRESS_BYTE_EDGE_WIDTH)
36 #define NEC_COMMAND_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
37
38 #define NEC_REVERSE_COMMAND_BYTE_EDGE_OFFSET \
39 (NEC_COMMAND_BYTE_EDGE_OFFSET + NEC_COMMAND_BYTE_EDGE_WIDTH)
40 #define NEC_REVERSE_COMMAND_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
41
42 #define NEC_SINGLE_COMMAND_EDGES_COUNT \
43 (NEC_REVERSE_COMMAND_BYTE_EDGE_OFFSET + NEC_REVERSE_COMMAND_BYTE_EDGE_WIDTH + 2)
44
45 /* NEC protocol values */
46 #define NEC_LEAD_PULSE_PERIOD_ON_USEC 9000
47 #define NEC_LEAD_PULSE_PERIOD_OFF_USEC 4500
48 #define NEC_BIT_DETECT_PERIOD_NSEC 562500
49 #define NEC_BIT_DETECT_PERIOD_USEC (NEC_BIT_DETECT_PERIOD_NSEC / NSEC_PER_USEC)
50 #define NEC_BIT_0_TOTAL_PERIOD_USEC 1125
51 #define NEC_BIT_1_TOTAL_PERIOD_USEC 2250
52 /* Total delay between a command and a repeat code is 108ms
53 * and total time of a command is 67.5ms
54 */
55 #define NEC_TIMEOUT_REPEAT_CODE_MSEC (108 - 67)
56
57 /* Macros to define tick ranges based on a millisecond tolerance */
58 #define VS1838B_MIN_TICK(usec, tol) \
59 ((((usec) - (tol)) * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / USEC_PER_SEC)
60 #define VS1838B_MAX_TICK(usec, tol) \
61 ((((usec) + (tol)) * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / USEC_PER_SEC)
62
63 /* Empiric tolerance values. Might be a good idea to put them in the Kconfig? */
64 #define VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC 400
65 #define VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC 150
66 #define VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC 200
67 #define VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC 200
68
69 /* Tick ranges for the NEC elements */
70 #define VS1838B_NEC_LEAD_PULSE_ON_MIN_TICK \
71 VS1838B_MIN_TICK(NEC_LEAD_PULSE_PERIOD_ON_USEC, \
72 VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
73 #define VS1838B_NEC_LEAD_PULSE_ON_MAX_TICK \
74 VS1838B_MAX_TICK(NEC_LEAD_PULSE_PERIOD_ON_USEC, \
75 VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
76
77 #define VS1838B_NEC_LEAD_PULSE_OFF_MIN_TICK \
78 VS1838B_MIN_TICK(NEC_LEAD_PULSE_PERIOD_OFF_USEC, \
79 VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
80 #define VS1838B_NEC_LEAD_PULSE_OFF_MAX_TICK \
81 VS1838B_MAX_TICK(NEC_LEAD_PULSE_PERIOD_OFF_USEC, \
82 VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
83
84 #define VS1838B_NEC_BIT_DETECT_MIN_TICK \
85 VS1838B_MIN_TICK(NEC_BIT_DETECT_PERIOD_USEC, VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC)
86 #define VS1838B_NEC_BIT_DETECT_MAX_TICK \
87 VS1838B_MAX_TICK(NEC_BIT_DETECT_PERIOD_USEC, VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC)
88
89 #define VS1838B_NEC_BIT_0_TOTAL_MIN_TICK \
90 VS1838B_MIN_TICK(NEC_BIT_0_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC)
91 #define VS1838B_NEC_BIT_0_TOTAL_MAX_TICK \
92 VS1838B_MAX_TICK(NEC_BIT_0_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC)
93
94 #define VS1838B_NEC_BIT_1_TOTAL_MIN_TICK \
95 VS1838B_MIN_TICK(NEC_BIT_1_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC)
96 #define VS1838B_NEC_BIT_1_TOTAL_MAX_TICK \
97 VS1838B_MAX_TICK(NEC_BIT_1_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC)
98
99 struct vs1838b_data {
100 struct device const *dev;
101 struct gpio_callback input_cb;
102 struct k_work_delayable decode_work;
103 int64_t edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT];
104 uint8_t edges_count;
105 struct k_sem decode_sem;
106 };
107
108 struct vs1838b_config {
109 struct gpio_dt_spec input;
110 };
111
is_within_range(k_ticks_t const ticks,k_ticks_t const min,k_ticks_t const max)112 static inline bool is_within_range(k_ticks_t const ticks, k_ticks_t const min, k_ticks_t const max)
113 {
114 return (ticks <= max) && (ticks >= min);
115 }
116
read_byte_from(int64_t * const edges_ticks,uint8_t const offset,uint8_t * byte)117 static bool read_byte_from(int64_t *const edges_ticks, uint8_t const offset, uint8_t *byte)
118 {
119 /* Make sure we add bits from 0 */
120 uint8_t temp_byte = 0;
121 k_ticks_t ticks_on;
122 k_ticks_t ticks_total;
123
124 /* Bytes are transmitted LSB first */
125 for (uint8_t i = 0; i < BITS_PER_BYTE; ++i) {
126 /*
127 * To detect bits and their values we analyze:
128 * - the initial pulse width
129 * - the total period
130 */
131 ticks_on = edges_ticks[(2 * i) + offset + 1] - edges_ticks[(2 * i) + offset];
132 ticks_total = edges_ticks[(2 * i) + offset + 2] - edges_ticks[(2 * i) + offset];
133
134 LOG_DBG("ticks_on %lld", ticks_on);
135 LOG_DBG("ticks_total %lld", ticks_total);
136 if (is_within_range(ticks_on, VS1838B_NEC_BIT_DETECT_MIN_TICK,
137 VS1838B_NEC_BIT_DETECT_MAX_TICK)) {
138 if (is_within_range(ticks_total, VS1838B_NEC_BIT_0_TOTAL_MIN_TICK,
139 VS1838B_NEC_BIT_0_TOTAL_MAX_TICK)) {
140 /* 0 detected */
141 } else if (is_within_range(ticks_total, VS1838B_NEC_BIT_1_TOTAL_MIN_TICK,
142 VS1838B_NEC_BIT_1_TOTAL_MAX_TICK)) {
143 /* 1 detected */
144 temp_byte += BIT(i);
145 } else {
146 LOG_WRN("Failed to identify detected bit at position %u", i);
147 return false;
148 }
149 } else {
150 LOG_WRN("Failed to detect a valid bit at position %u", i);
151 return false;
152 }
153 }
154
155 *byte = temp_byte;
156 return true;
157 }
158
detect_leading_burst(int64_t * const edges_ticks)159 static bool detect_leading_burst(int64_t *const edges_ticks)
160 {
161 /* Detect leading pulse using the first 3 edges */
162 int64_t lead_ticks_on = edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1] -
163 edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET];
164 int64_t lead_ticks_off = edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 2] -
165 edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1];
166
167 /* Manage the corner case of an overflow */
168 if ((lead_ticks_on < 0) || (lead_ticks_off < 0)) {
169 LOG_ERR("Ticks overflow: %lld - %lld - %lld",
170 edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET],
171 edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1],
172 edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 2]);
173 return false;
174 }
175
176 LOG_DBG("Read %lld ticks on and %lld ticks off", lead_ticks_on, lead_ticks_off);
177
178 return is_within_range(lead_ticks_on, VS1838B_NEC_LEAD_PULSE_ON_MIN_TICK,
179 VS1838B_NEC_LEAD_PULSE_ON_MAX_TICK) &&
180 is_within_range(lead_ticks_off, VS1838B_NEC_LEAD_PULSE_OFF_MIN_TICK,
181 VS1838B_NEC_LEAD_PULSE_OFF_MAX_TICK);
182 }
183
read_redundant_byte(int64_t * const edges_ticks,uint8_t * const byte,uint32_t const offset)184 static bool read_redundant_byte(int64_t *const edges_ticks, uint8_t *const byte,
185 uint32_t const offset)
186 {
187 uint8_t temp_byte;
188 uint8_t reverse_byte;
189
190 if (read_byte_from(edges_ticks, offset, &temp_byte) &&
191 read_byte_from(edges_ticks, offset + (2 * BITS_PER_BYTE), &reverse_byte)) {
192 if (temp_byte == (uint8_t)(~reverse_byte)) {
193 *byte = temp_byte;
194 } else {
195 LOG_ERR("Error while decoding byte");
196 return false;
197 }
198 } else {
199 LOG_ERR("Error while reading bytes");
200 return false;
201 }
202
203 return true;
204 }
205
read_address_byte(int64_t * const edges_ticks,uint8_t * const address)206 static bool read_address_byte(int64_t *const edges_ticks, uint8_t *const address)
207 {
208 return read_redundant_byte(edges_ticks, address, NEC_ADDRESS_BYTE_EDGE_OFFSET);
209 }
210
read_command_byte(int64_t * const edges_ticks,uint8_t * const command)211 static bool read_command_byte(int64_t *const edges_ticks, uint8_t *const command)
212 {
213 return read_redundant_byte(edges_ticks, command, NEC_COMMAND_BYTE_EDGE_OFFSET);
214 }
215
detect_last_burst(int64_t * const edges_ticks)216 static bool detect_last_burst(int64_t *const edges_ticks)
217 {
218 /* Detect leading pulse using the last 3 edges */
219 int64_t burst_length = edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 1] -
220 edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 2];
221
222 /* Manage the corner case of an overflow */
223 if (burst_length < 0) {
224 LOG_ERR("Ticks overflow: %lld - %lld",
225 edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 1],
226 edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 2]);
227 return false;
228 }
229
230 LOG_DBG("Read %lld ticks in the last burst", burst_length);
231
232 return is_within_range(burst_length, VS1838B_NEC_BIT_DETECT_MIN_TICK,
233 VS1838B_NEC_BIT_DETECT_MAX_TICK);
234 }
235
get_address_and_command(int64_t * const edges_ticks,uint8_t * const address,uint8_t * const command)236 static bool get_address_and_command(int64_t *const edges_ticks, uint8_t *const address,
237 uint8_t *const command)
238 {
239 if (!detect_leading_burst(edges_ticks)) {
240 LOG_DBG("No lead detected");
241 return false;
242 }
243
244 if (!read_address_byte(edges_ticks, address)) {
245 LOG_DBG("No address decoded");
246 return false;
247 }
248
249 if (!read_command_byte(edges_ticks, command)) {
250 LOG_DBG("No command decoded");
251 return false;
252 }
253 if (!detect_last_burst(edges_ticks)) {
254 LOG_DBG("No trailing edge detected");
255 return false;
256 }
257
258 return true;
259 }
260
261 /*
262 * Management of the decoding
263 */
vs1838b_decode_work_handler(struct k_work * item)264 static void vs1838b_decode_work_handler(struct k_work *item)
265 {
266 struct k_work_delayable *dwork = k_work_delayable_from_work(item);
267 struct vs1838b_data *data = CONTAINER_OF(dwork, struct vs1838b_data, decode_work);
268
269 if (k_sem_take(&data->decode_sem, K_FOREVER) == 0) {
270 uint8_t address_byte;
271 uint8_t command_byte;
272
273 if (get_address_and_command(data->edges_ticks, &address_byte, &command_byte)) {
274 LOG_DBG("Address: [0x%X] | Command: [0x%X]", address_byte, command_byte);
275 if (input_report(data->dev, INPUT_EV_DEVICE, INPUT_MSC_SCAN,
276 (address_byte << 8) | command_byte, true, K_FOREVER) < 0) {
277 LOG_ERR("Message failed to be enqueued");
278 }
279 }
280 }
281
282 /* Reset the record */
283 data->edges_count = 0;
284 k_sem_give(&data->decode_sem);
285 }
286
287 /*
288 * Internal callback
289 */
vs1838b_input_callback(struct device const * dev,struct gpio_callback * cb,uint32_t pins)290 static void vs1838b_input_callback(struct device const *dev, struct gpio_callback *cb,
291 uint32_t pins)
292 {
293 /*
294 * We want to:
295 * - register the timestamps of interrupts
296 * - try and decode the received bits when we reach the appropriate threshold
297 */
298 int64_t const tick = k_uptime_ticks();
299 struct vs1838b_data *data = CONTAINER_OF(cb, struct vs1838b_data, input_cb);
300
301 /* If we already schedule a decode, we need to cancel it. */
302 if (k_work_cancel_delayable(&data->decode_work) != 0) {
303 LOG_WRN("Decoding not cancelled!");
304 }
305
306 if (k_sem_take(&data->decode_sem, K_NO_WAIT) != 0) {
307 /* Decoding might be pending */
308 return;
309 }
310
311 /* If more interrupts are received, they're likely to be repeat codes
312 * and we choose to ignore them.
313 */
314 if (data->edges_count < NEC_SINGLE_COMMAND_EDGES_COUNT) {
315 data->edges_ticks[data->edges_count++] = tick;
316 }
317
318 /* If the first 3 edges do not match a leading burst,
319 * shift left the edges_ticks to get rid of leading noises.
320 */
321 if ((data->edges_count == 3) && !detect_leading_burst(data->edges_ticks)) {
322 data->edges_ticks[0] = data->edges_ticks[1];
323 data->edges_ticks[1] = data->edges_ticks[2];
324 data->edges_count = 2;
325 }
326
327 if (data->edges_count == NEC_SINGLE_COMMAND_EDGES_COUNT) {
328 /* There's a candidate!
329 * If nothing gets in during the grace period
330 * it *should* be an entire command.
331 */
332 k_work_schedule(&data->decode_work, K_MSEC(NEC_TIMEOUT_REPEAT_CODE_MSEC));
333 }
334 k_sem_give(&data->decode_sem);
335 }
336
vs1838b_init(struct device const * dev)337 static int vs1838b_init(struct device const *dev)
338 {
339 struct vs1838b_config const *config = dev->config;
340 struct gpio_dt_spec const *data_input = &config->input;
341 struct vs1838b_data *data = dev->data;
342
343 data->dev = dev;
344
345 if (!gpio_is_ready_dt(data_input)) {
346 LOG_ERR("GPIO input pin is not ready");
347 return -ENODEV;
348 }
349
350 /*
351 * Setup the input as an interrupt source
352 * and register an associated callback.
353 */
354 gpio_pin_configure_dt(data_input, GPIO_INPUT);
355 gpio_pin_interrupt_configure_dt(data_input, GPIO_INT_EDGE_BOTH);
356 gpio_init_callback(&data->input_cb, vs1838b_input_callback, BIT(data_input->pin));
357 gpio_add_callback_dt(data_input, &data->input_cb);
358
359 k_sem_init(&data->decode_sem, 1, 1);
360 k_work_init_delayable(&data->decode_work, vs1838b_decode_work_handler);
361
362 return 0;
363 }
364
365 #define VS1838B_DEFINE(inst) \
366 static struct vs1838b_data vs1838b_data_##inst; \
367 \
368 static struct vs1838b_config const vs1838b_config_##inst = { \
369 .input = GPIO_DT_SPEC_INST_GET(inst, data_gpios), \
370 }; \
371 \
372 DEVICE_DT_INST_DEFINE(inst, vs1838b_init, NULL, &vs1838b_data_##inst, \
373 &vs1838b_config_##inst, POST_KERNEL, CONFIG_INPUT_INIT_PRIORITY, \
374 NULL);
375
376 DT_INST_FOREACH_STATUS_OKAY(VS1838B_DEFINE)
377