1 /*
2 * Copyright (c) 2017 BayLibre, SAS
3 * Copyright (c) 2020 Nordic Semiconductor ASA
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #include <errno.h>
9 #include <string.h>
10
11 #include <zephyr/kernel.h>
12 #include <zephyr/device.h>
13 #include <stdio.h>
14 #include <zephyr/sys/byteorder.h>
15 #include <zephyr/sys/util.h>
16
17 #include <zephyr/drivers/i2c.h>
18 #include <zephyr/drivers/i2c/target/eeprom.h>
19 #include <zephyr/drivers/gpio.h>
20
21 #include <zephyr/ztest.h>
22
23 #define NODE_EP0 DT_NODELABEL(eeprom0)
24 #define NODE_EP1 DT_NODELABEL(eeprom1)
25
26 #define TEST_DATA_SIZE MIN(CONFIG_I2C_TEST_DATA_MAX_SIZE, \
27 MIN(DT_PROP(NODE_EP0, size), DT_PROP(NODE_EP1, size)))
28
29 static uint8_t eeprom_0_data[TEST_DATA_SIZE];
30 static uint8_t eeprom_1_data[TEST_DATA_SIZE];
31 static uint8_t i2c_buffer[TEST_DATA_SIZE];
32
33 /*
34 * We need 5x(buffer size) + 1 to print a comma-separated list of each
35 * byte in hex, plus a null.
36 */
37 uint8_t buffer_print_eeprom[TEST_DATA_SIZE * 5 + 1];
38 uint8_t buffer_print_i2c[TEST_DATA_SIZE * 5 + 1];
39
init_eeprom_test_data(void)40 static void init_eeprom_test_data(void)
41 {
42 size_t n;
43
44 /*
45 * Initialize EEPROM data with printable ASCII value (range [32 126]).
46 * Make sure content differs between eeprom_0_data[] and eeprom_1_data[].
47 */
48 for (n = 0; n < sizeof(eeprom_0_data); n++) {
49 eeprom_0_data[n] = 32 + (n % (126 - 32));
50 }
51
52 for (n = 0; n < sizeof(eeprom_1_data); n++) {
53 eeprom_1_data[n] = 32 + (((n + 10) * 3) % (126 - 32));
54 }
55 }
56
to_display_format(const uint8_t * src,size_t size,char * dst)57 static void to_display_format(const uint8_t *src, size_t size, char *dst)
58 {
59 size_t i;
60
61 for (i = 0; i < size; i++) {
62 sprintf(dst + 5 * i, "0x%02x,", src[i]);
63 }
64 }
65
run_full_read(const struct device * i2c,uint8_t addr,uint8_t addr_width,const uint8_t * comp_buffer)66 static int run_full_read(const struct device *i2c, uint8_t addr,
67 uint8_t addr_width, const uint8_t *comp_buffer)
68 {
69 int ret;
70 uint8_t start_addr[2];
71
72 TC_PRINT("Testing full read: Master: %s, address: 0x%x\n",
73 i2c->name, addr);
74
75 /* Read EEPROM from I2C Master requests, then compare */
76 memset(start_addr, 0, sizeof(start_addr));
77 ret = i2c_write_read(i2c, addr, start_addr, (addr_width >> 3), i2c_buffer, TEST_DATA_SIZE);
78 zassert_equal(ret, 0, "Failed to read EEPROM");
79
80 if (memcmp(i2c_buffer, comp_buffer, TEST_DATA_SIZE)) {
81 to_display_format(i2c_buffer, TEST_DATA_SIZE,
82 buffer_print_i2c);
83 to_display_format(comp_buffer, TEST_DATA_SIZE,
84 buffer_print_eeprom);
85 TC_PRINT("Error: Buffer contents are different: %s\n",
86 buffer_print_i2c);
87 TC_PRINT(" vs expected: %s\n",
88 buffer_print_eeprom);
89 return -EIO;
90 }
91
92 return 0;
93 }
94
run_partial_read(const struct device * i2c,uint8_t addr,uint8_t addr_width,const uint8_t * comp_buffer,unsigned int offset)95 static int run_partial_read(const struct device *i2c, uint8_t addr,
96 uint8_t addr_width, const uint8_t *comp_buffer, unsigned int offset)
97 {
98 int ret;
99 uint8_t start_addr[2];
100
101 TC_PRINT("Testing partial read. Master: %s, address: 0x%x, off=%d\n",
102 i2c->name, addr, offset);
103
104 switch (addr_width) {
105 case 8:
106 start_addr[0] = (uint8_t) (offset & 0xFF);
107 break;
108 case 16:
109 sys_put_be16((uint16_t)(offset & 0xFFFF), start_addr);
110 break;
111 default:
112 return -EINVAL;
113 }
114
115 ret = i2c_write_read(i2c, addr,
116 start_addr, (addr_width >> 3), i2c_buffer, TEST_DATA_SIZE-offset);
117 zassert_equal(ret, 0, "Failed to read EEPROM");
118
119 if (memcmp(i2c_buffer, &comp_buffer[offset], TEST_DATA_SIZE-offset)) {
120 to_display_format(i2c_buffer, TEST_DATA_SIZE-offset,
121 buffer_print_i2c);
122 to_display_format(&comp_buffer[offset], TEST_DATA_SIZE-offset,
123 buffer_print_eeprom);
124 TC_PRINT("Error: Buffer contents are different: %s\n",
125 buffer_print_i2c);
126 TC_PRINT(" vs expected: %s\n",
127 buffer_print_eeprom);
128 return -EIO;
129 }
130
131 return 0;
132 }
133
run_program_read(const struct device * i2c,uint8_t addr,uint8_t addr_width,unsigned int offset)134 static int run_program_read(const struct device *i2c, uint8_t addr,
135 uint8_t addr_width, unsigned int offset)
136 {
137 int ret, i;
138 uint8_t buf[TEST_DATA_SIZE + 2];
139 uint8_t addr_size;
140
141 TC_PRINT("Testing program. Master: %s, address: 0x%x, off=%d\n",
142 i2c->name, addr, offset);
143
144 switch (addr_width) {
145 case 8:
146 buf[0] = (uint8_t) (offset & 0xFF);
147 addr_size = 1;
148 break;
149 case 16:
150 sys_put_be16((uint16_t)(offset & 0xFFFF), buf);
151 addr_size = 2;
152 break;
153 default:
154 return -EINVAL;
155 }
156
157 for (i = 0; i < TEST_DATA_SIZE - offset; ++i) {
158 buf[i + addr_size] = i & 0xFF;
159 }
160
161 ret = i2c_write(i2c, &buf[0], TEST_DATA_SIZE - offset + addr_size, addr);
162 zassert_equal(ret, 0, "Failed to write EEPROM");
163
164 /* Read back EEPROM from I2C Master requests, then compare */
165 ret = i2c_write_read(i2c, addr, buf, addr_size, i2c_buffer, TEST_DATA_SIZE - offset);
166 zassert_equal(ret, 0, "Failed to read EEPROM");
167
168 for (i = 0 ; i < TEST_DATA_SIZE-offset ; ++i) {
169 if (i2c_buffer[i] != (i & 0xFF)) {
170 to_display_format(i2c_buffer, TEST_DATA_SIZE-offset,
171 buffer_print_i2c);
172 TC_PRINT("Error: Unexpected %u (%02x) buffer content: %s\n",
173 i, i2c_buffer[i], buffer_print_i2c);
174 return -EIO;
175 }
176 }
177
178 return 0;
179 }
180
ZTEST(i2c_eeprom_target,test_deinit)181 ZTEST(i2c_eeprom_target, test_deinit)
182 {
183 const struct device *const i2c_0 = DEVICE_DT_GET(DT_BUS(NODE_EP0));
184 const struct device *const i2c_1 = DEVICE_DT_GET(DT_BUS(NODE_EP1));
185 const struct gpio_dt_spec sda_pin_0 =
186 GPIO_DT_SPEC_GET_OR(DT_PATH(zephyr_user), sda0_gpios, {});
187 const struct gpio_dt_spec scl_pin_0 =
188 GPIO_DT_SPEC_GET_OR(DT_PATH(zephyr_user), scl0_gpios, {});
189 const struct gpio_dt_spec sda_pin_1 =
190 GPIO_DT_SPEC_GET_OR(DT_PATH(zephyr_user), sda1_gpios, {});
191 const struct gpio_dt_spec scl_pin_1 =
192 GPIO_DT_SPEC_GET_OR(DT_PATH(zephyr_user), scl1_gpios, {});
193 int ret;
194
195 if (i2c_0 == i2c_1) {
196 TC_PRINT(" gpio loopback required for test\n");
197 ztest_test_skip();
198 }
199
200 if (scl_pin_0.port == NULL || sda_pin_0.port == NULL ||
201 scl_pin_1.port == NULL || sda_pin_1.port == NULL) {
202 TC_PRINT(" bus gpios not specified in zephyr,path\n");
203 ztest_test_skip();
204 }
205
206 ret = device_deinit(i2c_0);
207 if (ret == -ENOTSUP) {
208 TC_PRINT(" device deinit not supported\n");
209 ztest_test_skip();
210 }
211
212 zassert_ok(ret);
213
214 ret = device_deinit(i2c_1);
215 if (ret == -ENOTSUP) {
216 TC_PRINT(" device deinit not supported\n");
217 zassert_ok(device_init(i2c_0));
218 ztest_test_skip();
219 }
220
221 zassert_ok(gpio_pin_configure_dt(&sda_pin_0, GPIO_INPUT));
222 zassert_ok(gpio_pin_configure_dt(&sda_pin_1, GPIO_OUTPUT_INACTIVE));
223 zassert_ok(gpio_pin_configure_dt(&scl_pin_0, GPIO_INPUT));
224 zassert_ok(gpio_pin_configure_dt(&scl_pin_1, GPIO_OUTPUT_INACTIVE));
225 zassert_equal(gpio_pin_get_dt(&sda_pin_0), 0);
226 zassert_equal(gpio_pin_get_dt(&scl_pin_0), 0);
227 zassert_ok(gpio_pin_set_dt(&sda_pin_1, 1));
228 zassert_ok(gpio_pin_set_dt(&scl_pin_1, 1));
229 zassert_equal(gpio_pin_get_dt(&sda_pin_0), 1);
230 zassert_equal(gpio_pin_get_dt(&scl_pin_0), 1);
231 zassert_ok(gpio_pin_configure_dt(&sda_pin_1, GPIO_INPUT));
232 zassert_ok(gpio_pin_configure_dt(&scl_pin_1, GPIO_INPUT));
233 zassert_ok(device_init(i2c_0));
234 zassert_ok(device_init(i2c_1));
235 }
236
ZTEST(i2c_eeprom_target,test_eeprom_target)237 ZTEST(i2c_eeprom_target, test_eeprom_target)
238 {
239 const struct device *const eeprom_0 = DEVICE_DT_GET(NODE_EP0);
240 const struct device *const i2c_0 = DEVICE_DT_GET(DT_BUS(NODE_EP0));
241 int addr_0 = DT_REG_ADDR(NODE_EP0);
242 uint8_t addr_0_width = DT_PROP_OR(NODE_EP0, address_width, 8);
243 const struct device *const eeprom_1 = DEVICE_DT_GET(NODE_EP1);
244 const struct device *const i2c_1 = DEVICE_DT_GET(DT_BUS(NODE_EP1));
245 int addr_1 = DT_REG_ADDR(NODE_EP1);
246 uint8_t addr_1_width = DT_PROP_OR(NODE_EP1, address_width, 8);
247 int ret, offset;
248
249 init_eeprom_test_data();
250
251 zassert_not_null(i2c_0, "EEPROM 0 - I2C bus not found");
252 zassert_not_null(eeprom_0, "EEPROM 0 device not found");
253
254 zassert_true(device_is_ready(i2c_0), "EEPROM 0 - I2C bus not ready");
255
256 TC_PRINT("Found EEPROM 0 on I2C bus device %s at addr %02x\n",
257 i2c_0->name, addr_0);
258
259 zassert_not_null(i2c_1, "EEPROM 1 - I2C device not found");
260 zassert_not_null(eeprom_1, "EEPROM 1 device not found");
261
262 zassert_true(device_is_ready(i2c_1), "EEPROM 1 - I2C bus not ready");
263
264 TC_PRINT("Found EEPROM 1 on I2C bus device %s at addr %02x\n",
265 i2c_1->name, addr_1);
266
267 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
268 TC_PRINT("Testing dual-role\n");
269 } else {
270 TC_PRINT("Testing single-role\n");
271 }
272
273 /* Program differentiable data into the two devices through a back door
274 * that doesn't use I2C.
275 */
276 ret = eeprom_target_program(eeprom_0, eeprom_0_data, TEST_DATA_SIZE);
277 zassert_equal(ret, 0, "Failed to program EEPROM 0");
278 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
279 ret = eeprom_target_program(eeprom_1, eeprom_1_data,
280 TEST_DATA_SIZE);
281 zassert_equal(ret, 0, "Failed to program EEPROM 1");
282 }
283
284 /* Attach each EEPROM to its owning bus as a target device. */
285 ret = i2c_target_driver_register(eeprom_0);
286 zassert_equal(ret, 0, "Failed to register EEPROM 0");
287
288 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
289 ret = i2c_target_driver_register(eeprom_1);
290 zassert_equal(ret, 0, "Failed to register EEPROM 1");
291 }
292
293 /* The simulated EP0 is configured to be accessed as a target device
294 * at addr_0 on i2c_0 and should expose eeprom_0_data. The validation
295 * uses i2c_1 as a bus master to access this device, which works because
296 * i2c_0 and i2_c have their SDA (SCL) pins shorted (they are on the
297 * same physical bus). Thus in these calls i2c_1 is a master device
298 * operating on the target address addr_0.
299 *
300 * Similarly validation of EP1 uses i2c_0 as a master with addr_1 and
301 * eeprom_1_data for validation.
302 */
303 ret = run_full_read(i2c_1, addr_0, addr_0_width, eeprom_0_data);
304 zassert_equal(ret, 0,
305 "Full I2C read from EP0 failed");
306 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
307 ret = run_full_read(i2c_0, addr_1, addr_1_width, eeprom_1_data);
308 zassert_equal(ret, 0,
309 "Full I2C read from EP1 failed");
310 }
311
312 for (offset = 0 ; offset < TEST_DATA_SIZE-1 ; ++offset) {
313 zassert_equal(0, run_partial_read(i2c_1, addr_0,
314 addr_0_width, eeprom_0_data, offset),
315 "Partial I2C read EP0 failed");
316 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
317 zassert_equal(0, run_partial_read(i2c_0, addr_1,
318 addr_1_width,
319 eeprom_1_data,
320 offset),
321 "Partial I2C read EP1 failed");
322 }
323 }
324
325 for (offset = 0 ; offset < TEST_DATA_SIZE-1 ; ++offset) {
326 zassert_equal(0, run_program_read(i2c_1, addr_0,
327 addr_0_width, offset),
328 "Program I2C read EP0 failed");
329 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
330 zassert_equal(0, run_program_read(i2c_0, addr_1,
331 addr_1_width, offset),
332 "Program I2C read EP1 failed");
333 }
334 }
335
336 /* Detach EEPROM */
337 ret = i2c_target_driver_unregister(eeprom_0);
338 zassert_equal(ret, 0, "Failed to unregister EEPROM 0");
339
340 if (IS_ENABLED(CONFIG_APP_DUAL_ROLE_I2C)) {
341 ret = i2c_target_driver_unregister(eeprom_1);
342 zassert_equal(ret, 0, "Failed to unregister EEPROM 1");
343 }
344 }
345
346 ZTEST_SUITE(i2c_eeprom_target, NULL, NULL, NULL, NULL, NULL);
347