1 /*
2 * Copyright (c) 1997-2016 Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/kernel.h>
8
9 #include <zephyr/init.h>
10 #include <zephyr/internal/syscall_handler.h>
11 #include <stdbool.h>
12 #include <zephyr/spinlock.h>
13 #include <ksched.h>
14 #include <wait_q.h>
15
16 static struct k_spinlock lock;
17
18 #ifdef CONFIG_OBJ_CORE_TIMER
19 static struct k_obj_type obj_type_timer;
20 #endif /* CONFIG_OBJ_CORE_TIMER */
21
22 /**
23 * @brief Handle expiration of a kernel timer object.
24 *
25 * @param t Timeout used by the timer.
26 */
z_timer_expiration_handler(struct _timeout * t)27 void z_timer_expiration_handler(struct _timeout *t)
28 {
29 struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout);
30 struct k_thread *thread;
31 k_spinlock_key_t key = k_spin_lock(&lock);
32
33 /* In sys_clock_announce(), when a timeout expires, it is first removed
34 * from the timeout list, then its expiration handler is called (with
35 * unlocked interrupts). For kernel timers, the expiration handler is
36 * this function. Usually, the timeout structure related to the timer
37 * that is handled here will not be linked to the timeout list at this
38 * point. But it may happen that before this function is executed and
39 * interrupts are locked again, a given timer gets restarted from an
40 * interrupt context that has a priority higher than the system timer
41 * interrupt. Then, the timeout structure for this timer will turn out
42 * to be linked to the timeout list. And in such case, since the timer
43 * was restarted, its expiration handler should not be executed then,
44 * so the function exits immediately.
45 */
46 if (sys_dnode_is_linked(&t->node)) {
47 k_spin_unlock(&lock, key);
48 return;
49 }
50
51 /*
52 * if the timer is periodic, start it again; don't add _TICK_ALIGN
53 * since we're already aligned to a tick boundary
54 */
55 if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) &&
56 !K_TIMEOUT_EQ(timer->period, K_FOREVER)) {
57 k_timeout_t next = timer->period;
58
59 /* see note about z_add_timeout() in z_impl_k_timer_start() */
60 next.ticks = max(next.ticks - 1, 0);
61
62 #ifdef CONFIG_TIMEOUT_64BIT
63 /* Exploit the fact that uptime during a kernel
64 * timeout handler reflects the time of the scheduled
65 * event and not real time to get some inexpensive
66 * protection against late interrupts. If we're
67 * delayed for any reason, we still end up calculating
68 * the next expiration as a regular stride from where
69 * we "should" have run. Requires absolute timeouts.
70 * (Note offset by one: we're nominally at the
71 * beginning of a tick, so need to defeat the "round
72 * down" behavior on timeout addition).
73 */
74 next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + next.ticks);
75 #endif /* CONFIG_TIMEOUT_64BIT */
76 z_add_timeout(&timer->timeout, z_timer_expiration_handler,
77 next);
78 }
79
80 /* update timer's status */
81 timer->status += 1U;
82
83 /* invoke timer expiry function */
84 if (timer->expiry_fn != NULL) {
85 /* Unlock for user handler. */
86 k_spin_unlock(&lock, key);
87
88 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, expiry, timer);
89
90 timer->expiry_fn(timer);
91
92 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, expiry, timer);
93
94 key = k_spin_lock(&lock);
95 }
96
97 if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
98 k_spin_unlock(&lock, key);
99 return;
100 }
101
102 thread = z_waitq_head(&timer->wait_q);
103
104 if (thread == NULL) {
105 k_spin_unlock(&lock, key);
106 return;
107 }
108
109 z_unpend_thread_no_timeout(thread);
110
111 arch_thread_return_value_set(thread, 0);
112
113 k_spin_unlock(&lock, key);
114
115 z_ready_thread(thread);
116 }
117
118
k_timer_init(struct k_timer * timer,k_timer_expiry_t expiry_fn,k_timer_stop_t stop_fn)119 void k_timer_init(struct k_timer *timer,
120 k_timer_expiry_t expiry_fn,
121 k_timer_stop_t stop_fn)
122 {
123 timer->expiry_fn = expiry_fn;
124 timer->stop_fn = stop_fn;
125 timer->status = 0U;
126
127 if (IS_ENABLED(CONFIG_MULTITHREADING)) {
128 z_waitq_init(&timer->wait_q);
129 }
130
131 z_init_timeout(&timer->timeout);
132
133 SYS_PORT_TRACING_OBJ_INIT(k_timer, timer);
134
135 timer->user_data = NULL;
136
137 k_object_init(timer);
138
139 #ifdef CONFIG_OBJ_CORE_TIMER
140 k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer);
141 #endif /* CONFIG_OBJ_CORE_TIMER */
142 }
143
144
z_impl_k_timer_start(struct k_timer * timer,k_timeout_t duration,k_timeout_t period)145 void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration,
146 k_timeout_t period)
147 {
148 SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period);
149
150 /* Acquire spinlock to ensure safety during concurrent calls to
151 * k_timer_start for scheduling or rescheduling. This is necessary
152 * since k_timer_start can be preempted, especially for the same
153 * timer instance.
154 */
155 k_spinlock_key_t key = k_spin_lock(&lock);
156
157 if (K_TIMEOUT_EQ(duration, K_FOREVER)) {
158 k_spin_unlock(&lock, key);
159 return;
160 }
161
162 /* z_add_timeout() always adds one to the incoming tick count
163 * to round up to the next tick (by convention it waits for
164 * "at least as long as the specified timeout"), but the
165 * period interval is always guaranteed to be reset from
166 * within the timer ISR, so no round up is desired and 1 is
167 * subtracted in there.
168 *
169 * Note that the duration (!) value gets the same treatment
170 * for backwards compatibility. This is unfortunate
171 * (i.e. k_timer_start() doesn't treat its initial sleep
172 * argument the same way k_sleep() does), but historical. The
173 * timer_api test relies on this behavior.
174 */
175 if (Z_IS_TIMEOUT_RELATIVE(duration)) {
176 /* For the duration == K_NO_WAIT case, ensure that behaviour
177 * is consistent for both 32-bit k_ticks_t which are unsigned
178 * and 64-bit k_ticks_t which are signed.
179 */
180 duration.ticks = max(1, duration.ticks);
181 duration.ticks = duration.ticks - 1;
182 }
183
184 (void)z_abort_timeout(&timer->timeout);
185 timer->period = period;
186 timer->status = 0U;
187
188 z_add_timeout(&timer->timeout, z_timer_expiration_handler,
189 duration);
190
191 k_spin_unlock(&lock, key);
192 }
193
194 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_start(struct k_timer * timer,k_timeout_t duration,k_timeout_t period)195 static inline void z_vrfy_k_timer_start(struct k_timer *timer,
196 k_timeout_t duration,
197 k_timeout_t period)
198 {
199 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
200 z_impl_k_timer_start(timer, duration, period);
201 }
202 #include <zephyr/syscalls/k_timer_start_mrsh.c>
203 #endif /* CONFIG_USERSPACE */
204
z_impl_k_timer_stop(struct k_timer * timer)205 void z_impl_k_timer_stop(struct k_timer *timer)
206 {
207 SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer);
208
209 bool inactive = (z_abort_timeout(&timer->timeout) != 0);
210
211 if (inactive) {
212 return;
213 }
214
215 if (timer->stop_fn != NULL) {
216 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, stop_fn_expiry, timer);
217
218 timer->stop_fn(timer);
219
220 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, stop_fn_expiry, timer);
221 }
222
223 if (IS_ENABLED(CONFIG_MULTITHREADING)) {
224 struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q);
225
226 if (pending_thread != NULL) {
227 z_ready_thread(pending_thread);
228 z_reschedule_unlocked();
229 }
230 }
231 }
232
233 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_stop(struct k_timer * timer)234 static inline void z_vrfy_k_timer_stop(struct k_timer *timer)
235 {
236 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
237 z_impl_k_timer_stop(timer);
238 }
239 #include <zephyr/syscalls/k_timer_stop_mrsh.c>
240 #endif /* CONFIG_USERSPACE */
241
z_impl_k_timer_status_get(struct k_timer * timer)242 uint32_t z_impl_k_timer_status_get(struct k_timer *timer)
243 {
244 k_spinlock_key_t key = k_spin_lock(&lock);
245 uint32_t result = timer->status;
246
247 timer->status = 0U;
248 k_spin_unlock(&lock, key);
249
250 return result;
251 }
252
253 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_status_get(struct k_timer * timer)254 static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer)
255 {
256 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
257 return z_impl_k_timer_status_get(timer);
258 }
259 #include <zephyr/syscalls/k_timer_status_get_mrsh.c>
260 #endif /* CONFIG_USERSPACE */
261
z_impl_k_timer_status_sync(struct k_timer * timer)262 uint32_t z_impl_k_timer_status_sync(struct k_timer *timer)
263 {
264 __ASSERT(!arch_is_in_isr(), "");
265 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer);
266
267 if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
268 uint32_t result;
269
270 do {
271 k_spinlock_key_t key = k_spin_lock(&lock);
272
273 if (!z_is_inactive_timeout(&timer->timeout)) {
274 result = *(volatile uint32_t *)&timer->status;
275 timer->status = 0U;
276 k_spin_unlock(&lock, key);
277 if (result > 0) {
278 break;
279 }
280 } else {
281 result = timer->status;
282 k_spin_unlock(&lock, key);
283 break;
284 }
285 } while (true);
286
287 return result;
288 }
289
290 k_spinlock_key_t key = k_spin_lock(&lock);
291 uint32_t result = timer->status;
292
293 if (result == 0U) {
294 if (!z_is_inactive_timeout(&timer->timeout)) {
295 SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER);
296
297 /* wait for timer to expire or stop */
298 (void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER);
299
300 /* get updated timer status */
301 key = k_spin_lock(&lock);
302 result = timer->status;
303 } else {
304 /* timer is already stopped */
305 }
306 } else {
307 /* timer has already expired at least once */
308 }
309
310 timer->status = 0U;
311 k_spin_unlock(&lock, key);
312
313 /**
314 * @note New tracing hook
315 */
316 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result);
317
318 return result;
319 }
320
321 #ifdef CONFIG_USERSPACE
z_vrfy_k_timer_status_sync(struct k_timer * timer)322 static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer)
323 {
324 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
325 return z_impl_k_timer_status_sync(timer);
326 }
327 #include <zephyr/syscalls/k_timer_status_sync_mrsh.c>
328
z_vrfy_k_timer_remaining_ticks(const struct k_timer * timer)329 static inline k_ticks_t z_vrfy_k_timer_remaining_ticks(
330 const struct k_timer *timer)
331 {
332 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
333 return z_impl_k_timer_remaining_ticks(timer);
334 }
335 #include <zephyr/syscalls/k_timer_remaining_ticks_mrsh.c>
336
z_vrfy_k_timer_expires_ticks(const struct k_timer * timer)337 static inline k_ticks_t z_vrfy_k_timer_expires_ticks(
338 const struct k_timer *timer)
339 {
340 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
341 return z_impl_k_timer_expires_ticks(timer);
342 }
343 #include <zephyr/syscalls/k_timer_expires_ticks_mrsh.c>
344
z_vrfy_k_timer_user_data_get(const struct k_timer * timer)345 static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer)
346 {
347 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
348 return z_impl_k_timer_user_data_get(timer);
349 }
350 #include <zephyr/syscalls/k_timer_user_data_get_mrsh.c>
351
z_vrfy_k_timer_user_data_set(struct k_timer * timer,void * user_data)352 static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer,
353 void *user_data)
354 {
355 K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
356 z_impl_k_timer_user_data_set(timer, user_data);
357 }
358 #include <zephyr/syscalls/k_timer_user_data_set_mrsh.c>
359
360 #endif /* CONFIG_USERSPACE */
361
362 #ifdef CONFIG_OBJ_CORE_TIMER
init_timer_obj_core_list(void)363 static int init_timer_obj_core_list(void)
364 {
365 /* Initialize timer object type */
366
367 z_obj_type_init(&obj_type_timer, K_OBJ_TYPE_TIMER_ID,
368 offsetof(struct k_timer, obj_core));
369
370 /* Initialize and link statically defined timers */
371
372 STRUCT_SECTION_FOREACH(k_timer, timer) {
373 k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer);
374 }
375
376 return 0;
377 }
378 SYS_INIT(init_timer_obj_core_list, PRE_KERNEL_1,
379 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
380 #endif /* CONFIG_OBJ_CORE_TIMER */
381