1 /*
2  * Copyright (c) 2010-2014 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Kernel initialization module
10  *
11  * This module contains routines that are used to initialize the kernel.
12  */
13 
14 #include <ctype.h>
15 #include <stdbool.h>
16 #include <string.h>
17 #include <offsets_short.h>
18 #include <zephyr/kernel.h>
19 #include <zephyr/sys/printk.h>
20 #include <zephyr/debug/stack.h>
21 #include <zephyr/random/random.h>
22 #include <zephyr/linker/sections.h>
23 #include <zephyr/toolchain.h>
24 #include <zephyr/kernel_structs.h>
25 #include <zephyr/device.h>
26 #include <zephyr/init.h>
27 #include <zephyr/linker/linker-defs.h>
28 #include <zephyr/platform/hooks.h>
29 #include <ksched.h>
30 #include <kthread.h>
31 #include <ipi.h>
32 #include <zephyr/sys/dlist.h>
33 #include <kernel_internal.h>
34 #include <zephyr/drivers/entropy.h>
35 #include <zephyr/logging/log_ctrl.h>
36 #include <zephyr/tracing/tracing.h>
37 #include <zephyr/debug/gcov.h>
38 #include <kswap.h>
39 #include <zephyr/timing/timing.h>
40 #include <zephyr/logging/log.h>
41 #include <zephyr/internal/syscall_handler.h>
42 #include <zephyr/arch/common/init.h>
43 
44 LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);
45 
46 /* the only struct z_kernel instance */
47 __pinned_bss
48 struct z_kernel _kernel;
49 
50 #ifdef CONFIG_PM
51 __pinned_bss atomic_t _cpus_active;
52 #endif
53 
54 /* init/main and idle threads */
55 K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
56 struct k_thread z_main_thread;
57 
58 #ifdef CONFIG_MULTITHREADING
59 __pinned_bss
60 struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
61 
62 static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
63 					  CONFIG_MP_MAX_NUM_CPUS,
64 					  CONFIG_IDLE_STACK_SIZE);
65 
z_init_static_threads(void)66 static void z_init_static_threads(void)
67 {
68 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
69 		z_setup_new_thread(
70 			thread_data->init_thread,
71 			thread_data->init_stack,
72 			thread_data->init_stack_size,
73 			thread_data->init_entry,
74 			thread_data->init_p1,
75 			thread_data->init_p2,
76 			thread_data->init_p3,
77 			thread_data->init_prio,
78 			thread_data->init_options,
79 			thread_data->init_name);
80 
81 		thread_data->init_thread->init_data = thread_data;
82 	}
83 
84 #ifdef CONFIG_USERSPACE
85 	STRUCT_SECTION_FOREACH(k_object_assignment, pos) {
86 		for (int i = 0; pos->objects[i] != NULL; i++) {
87 			k_object_access_grant(pos->objects[i],
88 					      pos->thread);
89 		}
90 	}
91 #endif /* CONFIG_USERSPACE */
92 
93 	/*
94 	 * Non-legacy static threads may be started immediately or
95 	 * after a previously specified delay. Even though the
96 	 * scheduler is locked, ticks can still be delivered and
97 	 * processed. Take a sched lock to prevent them from running
98 	 * until they are all started.
99 	 *
100 	 * Note that static threads defined using the legacy API have a
101 	 * delay of K_FOREVER.
102 	 */
103 	k_sched_lock();
104 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
105 		k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data);
106 
107 		if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) {
108 			thread_schedule_new(thread_data->init_thread,
109 					    init_delay);
110 		}
111 	}
112 	k_sched_unlock();
113 }
114 #else
115 #define z_init_static_threads() do { } while (false)
116 #endif /* CONFIG_MULTITHREADING */
117 
118 extern const struct init_entry __init_start[];
119 extern const struct init_entry __init_EARLY_start[];
120 extern const struct init_entry __init_PRE_KERNEL_1_start[];
121 extern const struct init_entry __init_PRE_KERNEL_2_start[];
122 extern const struct init_entry __init_POST_KERNEL_start[];
123 extern const struct init_entry __init_APPLICATION_start[];
124 extern const struct init_entry __init_end[];
125 
126 enum init_level {
127 	INIT_LEVEL_EARLY = 0,
128 	INIT_LEVEL_PRE_KERNEL_1,
129 	INIT_LEVEL_PRE_KERNEL_2,
130 	INIT_LEVEL_POST_KERNEL,
131 	INIT_LEVEL_APPLICATION,
132 #ifdef CONFIG_SMP
133 	INIT_LEVEL_SMP,
134 #endif /* CONFIG_SMP */
135 };
136 
137 #ifdef CONFIG_SMP
138 extern const struct init_entry __init_SMP_start[];
139 #endif /* CONFIG_SMP */
140 
141 /*
142  * storage space for the interrupt stack
143  *
144  * Note: This area is used as the system stack during kernel initialization,
145  * since the kernel hasn't yet set up its own stack areas. The dual purposing
146  * of this area is safe since interrupts are disabled until the kernel context
147  * switches to the init thread.
148  */
149 K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
150 				   CONFIG_MP_MAX_NUM_CPUS,
151 				   CONFIG_ISR_STACK_SIZE);
152 
153 extern void idle(void *unused1, void *unused2, void *unused3);
154 
155 #ifdef CONFIG_OBJ_CORE_SYSTEM
156 static struct k_obj_type obj_type_cpu;
157 static struct k_obj_type obj_type_kernel;
158 
159 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
160 static struct k_obj_core_stats_desc  cpu_stats_desc = {
161 	.raw_size = sizeof(struct k_cycle_stats),
162 	.query_size = sizeof(struct k_thread_runtime_stats),
163 	.raw   = z_cpu_stats_raw,
164 	.query = z_cpu_stats_query,
165 	.reset = NULL,
166 	.disable = NULL,
167 	.enable  = NULL,
168 };
169 
170 static struct k_obj_core_stats_desc  kernel_stats_desc = {
171 	.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS,
172 	.query_size = sizeof(struct k_thread_runtime_stats),
173 	.raw   = z_kernel_stats_raw,
174 	.query = z_kernel_stats_query,
175 	.reset = NULL,
176 	.disable = NULL,
177 	.enable  = NULL,
178 };
179 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
180 #endif /* CONFIG_OBJ_CORE_SYSTEM */
181 
182 #ifdef CONFIG_REQUIRES_STACK_CANARIES
183 #ifdef CONFIG_STACK_CANARIES_TLS
184 extern Z_THREAD_LOCAL volatile uintptr_t __stack_chk_guard;
185 #else
186 extern volatile uintptr_t __stack_chk_guard;
187 #endif /* CONFIG_STACK_CANARIES_TLS */
188 #endif /* CONFIG_REQUIRES_STACK_CANARIES */
189 
190 __pinned_bss
191 bool z_sys_post_kernel;
192 
193 /* defined in device.c */
194 extern int do_device_init(const struct device *dev);
195 
196 /**
197  * @brief Initialize state for all static devices.
198  *
199  * The state object is always zero-initialized, but this may not be
200  * sufficient.
201  */
z_device_state_init(void)202 static void z_device_state_init(void)
203 {
204 	STRUCT_SECTION_FOREACH(device, dev) {
205 		k_object_init(dev);
206 	}
207 }
208 
209 /**
210  * @brief Execute all the init entry initialization functions at a given level
211  *
212  * @details Invokes the initialization routine for each init entry object
213  * created by the INIT_ENTRY_DEFINE() macro using the specified level.
214  * The linker script places the init entry objects in memory in the order
215  * they need to be invoked, with symbols indicating where one level leaves
216  * off and the next one begins.
217  *
218  * @param level init level to run.
219  */
z_sys_init_run_level(enum init_level level)220 static void z_sys_init_run_level(enum init_level level)
221 {
222 	static const struct init_entry *levels[] = {
223 		__init_EARLY_start,
224 		__init_PRE_KERNEL_1_start,
225 		__init_PRE_KERNEL_2_start,
226 		__init_POST_KERNEL_start,
227 		__init_APPLICATION_start,
228 #ifdef CONFIG_SMP
229 		__init_SMP_start,
230 #endif /* CONFIG_SMP */
231 		/* End marker */
232 		__init_end,
233 	};
234 	const struct init_entry *entry;
235 
236 	for (entry = levels[level]; entry < levels[level+1]; entry++) {
237 		const struct device *dev = entry->dev;
238 		int result = 0;
239 
240 		sys_trace_sys_init_enter(entry, level);
241 		if (dev != NULL) {
242 			if ((dev->flags & DEVICE_FLAG_INIT_DEFERRED) == 0U) {
243 				result = do_device_init(dev);
244 			}
245 		} else {
246 			result = entry->init_fn();
247 		}
248 		sys_trace_sys_init_exit(entry, level, result);
249 	}
250 }
251 
252 /* defined in banner.c */
253 extern void boot_banner(void);
254 
255 
256 #ifdef CONFIG_STATIC_INIT_GNU
257 
258 extern void (*__zephyr_init_array_start[])();
259 extern void (*__zephyr_init_array_end[])();
260 
z_static_init_gnu(void)261 static void z_static_init_gnu(void)
262 {
263 	void	(**fn)();
264 
265 	for (fn = __zephyr_init_array_start; fn != __zephyr_init_array_end; fn++) {
266 		/* MWDT toolchain sticks a NULL at the end of the array */
267 		if (*fn == NULL) {
268 			break;
269 		}
270 		(**fn)();
271 	}
272 }
273 
274 #endif
275 
276 /**
277  * @brief Mainline for kernel's background thread
278  *
279  * This routine completes kernel initialization by invoking the remaining
280  * init functions, then invokes application's main() routine.
281  */
282 __boot_func
bg_thread_main(void * unused1,void * unused2,void * unused3)283 static void bg_thread_main(void *unused1, void *unused2, void *unused3)
284 {
285 	ARG_UNUSED(unused1);
286 	ARG_UNUSED(unused2);
287 	ARG_UNUSED(unused3);
288 
289 #ifdef CONFIG_MMU
290 	/* Invoked here such that backing store or eviction algorithms may
291 	 * initialize kernel objects, and that all POST_KERNEL and later tasks
292 	 * may perform memory management tasks (except for
293 	 * k_mem_map_phys_bare() which is allowed at any time)
294 	 */
295 	z_mem_manage_init();
296 #endif /* CONFIG_MMU */
297 	z_sys_post_kernel = true;
298 
299 #if CONFIG_IRQ_OFFLOAD
300 	arch_irq_offload_init();
301 #endif
302 	z_sys_init_run_level(INIT_LEVEL_POST_KERNEL);
303 
304 	soc_late_init_hook();
305 
306 	board_late_init_hook();
307 
308 #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
309 	z_stack_adjust_initialized = 1;
310 #endif /* CONFIG_STACK_POINTER_RANDOM */
311 	boot_banner();
312 
313 #ifdef CONFIG_STATIC_INIT_GNU
314 	z_static_init_gnu();
315 #endif /* CONFIG_STATIC_INIT_GNU */
316 
317 	/* Final init level before app starts */
318 	z_sys_init_run_level(INIT_LEVEL_APPLICATION);
319 
320 	z_init_static_threads();
321 
322 #ifdef CONFIG_KERNEL_COHERENCE
323 	__ASSERT_NO_MSG(sys_cache_is_mem_coherent(&_kernel));
324 #endif /* CONFIG_KERNEL_COHERENCE */
325 
326 #ifdef CONFIG_SMP
327 	if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) {
328 		z_smp_init();
329 	}
330 	z_sys_init_run_level(INIT_LEVEL_SMP);
331 #endif /* CONFIG_SMP */
332 
333 #ifdef CONFIG_MMU
334 	z_mem_manage_boot_finish();
335 #endif /* CONFIG_MMU */
336 
337 #ifdef CONFIG_BOOTARGS
338 	extern int main(int, char **);
339 	extern char **prepare_main_args(int *argc);
340 
341 	int argc = 0;
342 	char **argv = prepare_main_args(&argc);
343 	(void)main(argc, argv);
344 #else
345 	extern int main(void);
346 
347 	(void)main();
348 #endif /* CONFIG_BOOTARGS */
349 
350 	/* Mark non-essential since main() has no more work to do */
351 	z_thread_essential_clear(&z_main_thread);
352 
353 #ifdef CONFIG_COVERAGE_DUMP
354 	/* Dump coverage data once the main() has exited. */
355 	gcov_coverage_dump();
356 #elif defined(CONFIG_COVERAGE_SEMIHOST)
357 	gcov_coverage_semihost();
358 #endif /* CONFIG_COVERAGE_DUMP */
359 } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */
360 
361 #if defined(CONFIG_MULTITHREADING)
362 __boot_func
init_idle_thread(int i)363 static void init_idle_thread(int i)
364 {
365 	struct k_thread *thread = &z_idle_threads[i];
366 	k_thread_stack_t *stack = z_idle_stacks[i];
367 	size_t stack_size = K_KERNEL_STACK_SIZEOF(z_idle_stacks[i]);
368 
369 #ifdef CONFIG_THREAD_NAME
370 
371 #if CONFIG_MP_MAX_NUM_CPUS > 1
372 	char tname[8];
373 	snprintk(tname, 8, "idle %02d", i);
374 #else
375 	char *tname = "idle";
376 #endif /* CONFIG_MP_MAX_NUM_CPUS */
377 
378 #else
379 	char *tname = NULL;
380 #endif /* CONFIG_THREAD_NAME */
381 
382 	z_setup_new_thread(thread, stack,
383 			  stack_size, idle, &_kernel.cpus[i],
384 			  NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
385 			  tname);
386 	z_mark_thread_as_not_sleeping(thread);
387 
388 #ifdef CONFIG_SMP
389 	thread->base.is_idle = 1U;
390 #endif /* CONFIG_SMP */
391 }
392 
z_init_cpu(int id)393 void z_init_cpu(int id)
394 {
395 	init_idle_thread(id);
396 	_kernel.cpus[id].idle_thread = &z_idle_threads[id];
397 	_kernel.cpus[id].id = id;
398 	_kernel.cpus[id].irq_stack =
399 		(K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) +
400 		 K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id]));
401 #ifdef CONFIG_SCHED_THREAD_USAGE_ALL
402 	_kernel.cpus[id].usage = &_kernel.usage[id];
403 	_kernel.cpus[id].usage->track_usage =
404 		CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
405 #endif
406 
407 #ifdef CONFIG_PM
408 	/*
409 	 * Increment number of CPUs active. The pm subsystem
410 	 * will keep track of this from here.
411 	 */
412 	atomic_inc(&_cpus_active);
413 #endif
414 
415 #ifdef CONFIG_OBJ_CORE_SYSTEM
416 	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu);
417 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
418 	k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]),
419 				  _kernel.cpus[id].usage,
420 				  sizeof(struct k_cycle_stats));
421 #endif
422 #endif
423 
424 #ifdef CONFIG_SCHED_IPI_SUPPORTED
425 	sys_dlist_init(&_kernel.cpus[id].ipi_workq);
426 #endif
427 }
428 
429 /**
430  *
431  * @brief Initializes kernel data structures
432  *
433  * This routine initializes various kernel data structures, including
434  * the init and idle threads and any architecture-specific initialization.
435  *
436  * Note that all fields of "_kernel" are set to zero on entry, which may
437  * be all the initialization many of them require.
438  *
439  * @return initial stack pointer for the main thread
440  */
441 __boot_func
prepare_multithreading(void)442 static char *prepare_multithreading(void)
443 {
444 	char *stack_ptr;
445 
446 	/* _kernel.ready_q is all zeroes */
447 	z_sched_init();
448 
449 #ifndef CONFIG_SMP
450 	/*
451 	 * prime the cache with the main thread since:
452 	 *
453 	 * - the cache can never be NULL
454 	 * - the main thread will be the one to run first
455 	 * - no other thread is initialized yet and thus their priority fields
456 	 *   contain garbage, which would prevent the cache loading algorithm
457 	 *   to work as intended
458 	 */
459 	_kernel.ready_q.cache = &z_main_thread;
460 #endif /* CONFIG_SMP */
461 	stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
462 				       K_THREAD_STACK_SIZEOF(z_main_stack),
463 				       bg_thread_main,
464 				       NULL, NULL, NULL,
465 				       CONFIG_MAIN_THREAD_PRIORITY,
466 				       K_ESSENTIAL, "main");
467 	z_mark_thread_as_not_sleeping(&z_main_thread);
468 	z_ready_thread(&z_main_thread);
469 
470 	z_init_cpu(0);
471 
472 	return stack_ptr;
473 }
474 
475 __boot_func
switch_to_main_thread(char * stack_ptr)476 static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
477 {
478 #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
479 	arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
480 #else
481 	ARG_UNUSED(stack_ptr);
482 	/*
483 	 * Context switch to main task (entry function is _main()): the
484 	 * current fake thread is not on a wait queue or ready queue, so it
485 	 * will never be rescheduled in.
486 	 */
487 	z_swap_unlocked();
488 #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
489 	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
490 }
491 #endif /* CONFIG_MULTITHREADING */
492 
493 __boot_func
z_early_rand_get(uint8_t * buf,size_t length)494 void __weak z_early_rand_get(uint8_t *buf, size_t length)
495 {
496 	static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE;
497 	int rc;
498 
499 #ifdef CONFIG_ENTROPY_HAS_DRIVER
500 	const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy));
501 
502 	if ((entropy != NULL) && device_is_ready(entropy)) {
503 		/* Try to see if driver provides an ISR-specific API */
504 		rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
505 		if (rc > 0) {
506 			length -= rc;
507 			buf += rc;
508 		}
509 	}
510 #endif /* CONFIG_ENTROPY_HAS_DRIVER */
511 
512 	while (length > 0) {
513 		uint32_t val;
514 
515 		state = state + k_cycle_get_32();
516 		state = state * 2862933555777941757ULL + 3037000493ULL;
517 		val = (uint32_t)(state >> 32);
518 		rc = min(length, sizeof(val));
519 		arch_early_memcpy((void *)buf, &val, rc);
520 
521 		length -= rc;
522 		buf += rc;
523 	}
524 }
525 
526 /**
527  *
528  * @brief Initialize kernel
529  *
530  * This routine is invoked when the system is ready to run C code. The
531  * processor must be running in 32-bit mode, and the BSS must have been
532  * cleared/zeroed.
533  *
534  * @return Does not return
535  */
536 __boot_func
537 FUNC_NO_STACK_PROTECTOR
z_cstart(void)538 FUNC_NORETURN void z_cstart(void)
539 {
540 	/* gcov hook needed to get the coverage report.*/
541 	gcov_static_init();
542 
543 	/* initialize early init calls */
544 	z_sys_init_run_level(INIT_LEVEL_EARLY);
545 
546 	/* perform any architecture-specific initialization */
547 	arch_kernel_init();
548 
549 	LOG_CORE_INIT();
550 
551 #if defined(CONFIG_MULTITHREADING)
552 	z_dummy_thread_init(&_thread_dummy);
553 #endif /* CONFIG_MULTITHREADING */
554 	/* do any necessary initialization of static devices */
555 	z_device_state_init();
556 
557 	soc_early_init_hook();
558 
559 	board_early_init_hook();
560 
561 	/* perform basic hardware initialization */
562 	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1);
563 #if defined(CONFIG_SMP)
564 	arch_smp_init();
565 #endif
566 	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2);
567 
568 #ifdef CONFIG_REQUIRES_STACK_CANARIES
569 	uintptr_t stack_guard;
570 
571 	z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
572 	__stack_chk_guard = stack_guard;
573 	__stack_chk_guard <<= 8;
574 #endif	/* CONFIG_REQUIRES_STACK_CANARIES */
575 
576 #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
577 	timing_init();
578 	timing_start();
579 #endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */
580 
581 #ifdef CONFIG_MULTITHREADING
582 	switch_to_main_thread(prepare_multithreading());
583 #else
584 #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
585 	/* Custom ARCH-specific routine to switch to main()
586 	 * in the case of no multi-threading.
587 	 */
588 	ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
589 		NULL, NULL, NULL);
590 #else
591 	bg_thread_main(NULL, NULL, NULL);
592 
593 	/* LCOV_EXCL_START
594 	 * We've already dumped coverage data at this point.
595 	 */
596 	irq_lock();
597 	while (true) {
598 	}
599 	/* LCOV_EXCL_STOP */
600 #endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */
601 #endif /* CONFIG_MULTITHREADING */
602 
603 	/*
604 	 * Compiler can't tell that the above routines won't return and issues
605 	 * a warning unless we explicitly tell it that control never gets this
606 	 * far.
607 	 */
608 
609 	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
610 }
611 
612 #ifdef CONFIG_OBJ_CORE_SYSTEM
init_cpu_obj_core_list(void)613 static int init_cpu_obj_core_list(void)
614 {
615 	/* Initialize CPU object type */
616 
617 	z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID,
618 			offsetof(struct _cpu, obj_core));
619 
620 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
621 	k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc);
622 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
623 
624 	return 0;
625 }
626 
init_kernel_obj_core_list(void)627 static int init_kernel_obj_core_list(void)
628 {
629 	/* Initialize kernel object type */
630 
631 	z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID,
632 			offsetof(struct z_kernel, obj_core));
633 
634 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
635 	k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc);
636 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
637 
638 	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel);
639 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
640 	k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage,
641 				  sizeof(_kernel.usage));
642 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
643 
644 	return 0;
645 }
646 
647 SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1,
648 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
649 
650 SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1,
651 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
652 #endif /* CONFIG_OBJ_CORE_SYSTEM */
653