1 /*
2 * Copyright (c) 2018 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #include <zephyr/init.h>
7 #include <zephyr/drivers/timer/system_timer.h>
8 #include <zephyr/sys_clock.h>
9 #include <zephyr/spinlock.h>
10 #include <cmsis_core.h>
11 #include <zephyr/irq.h>
12 #include <zephyr/sys/util.h>
13 #include <zephyr/drivers/counter.h>
14
15 #include "cortex_m_systick.h"
16
17 #define COUNTER_MAX 0x00ffffff
18 #define TIMER_STOPPED 0xff000000
19
20
21 #if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
22 extern unsigned int z_clock_hw_cycles_per_sec;
23 /* CYC_PER_TICK must be inside of systick capacities (<1Ghz) */
24 #define CYC_PER_TICK (z_clock_hw_cycles_per_sec/CONFIG_SYS_CLOCK_TICKS_PER_SEC)
25 #else
26 #define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC/CONFIG_SYS_CLOCK_TICKS_PER_SEC)
27 #if (COUNTER_MAX / CYC_PER_TICK) == 1
28 #pragma message("tickless does nothing as CONFIG_SYS_CLOCK_TICKS_PER_SEC too low")
29 #endif
30 #endif
31
32 /* add MAX_TICKS protection */
33 #define _MAX_TICKS (int)((k_ticks_t)(COUNTER_MAX / CYC_PER_TICK) - 1)
34 #define MAX_TICKS ((_MAX_TICKS > 0) ? _MAX_TICKS : 1)
35 #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
36
37 /* Minimum cycles in the future to try to program. Note that this is
38 * NOT simply "enough cycles to get the counter read and reprogrammed
39 * reliably" -- it becomes the minimum value of the LOAD register, and
40 * thus reflects how much time we can reliably see expire between
41 * calls to elapsed() to read the COUNTFLAG bit. So it needs to be
42 * set to be larger than the maximum time the interrupt might be
43 * masked. Choosing a fraction of a tick is probably a good enough
44 * default, with an absolute minimum of 1k cyc.
45 */
46 #define MIN_DELAY MAX(1024U, ((uint32_t)CYC_PER_TICK/16U))
47
48 static struct k_spinlock lock;
49
50 static uint32_t last_load;
51
52 #ifdef CONFIG_CORTEX_M_SYSTICK_64BIT_CYCLE_COUNTER
53 typedef uint64_t cycle_t;
54 #else
55 typedef uint32_t cycle_t;
56 #endif
57
58 /*
59 * This local variable holds the amount of SysTick HW cycles elapsed
60 * and it is updated in sys_clock_isr() and sys_clock_set_timeout().
61 *
62 * Note:
63 * At an arbitrary point in time the "current" value of the SysTick
64 * HW timer is calculated as:
65 *
66 * t = cycle_counter + elapsed();
67 */
68 static cycle_t cycle_count;
69
70 /*
71 * This local variable holds the amount of elapsed SysTick HW cycles
72 * that have been announced to the kernel.
73 *
74 * Note:
75 * Additions/subtractions/comparisons of 64-bits values on 32-bits systems
76 * are very cheap. Divisions are not. Make sure the difference between
77 * cycle_count and announced_cycles is stored in a 32-bit variable before
78 * dividing it by CYC_PER_TICK.
79 */
80 static cycle_t announced_cycles;
81
82 /*
83 * This local variable holds the amount of elapsed HW cycles due to
84 * SysTick timer wraps ('overflows') and is used in the calculation
85 * in elapsed() function, as well as in the updates to cycle_count.
86 *
87 * Note:
88 * Each time cycle_count is updated with the value from overflow_cyc,
89 * the overflow_cyc must be reset to zero.
90 */
91 static volatile uint32_t overflow_cyc;
92
93 #if !defined(CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_NONE)
94 /* This local variable indicates that the timeout was set right before
95 * entering idle state.
96 *
97 * It is used for chips that has to use a separate idle timer in such
98 * case because the Cortex-m SysTick is not clocked in the low power
99 * mode state.
100 */
101 static bool timeout_idle;
102
103 #if !defined(CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM)
104 /* Cycle counter before entering the idle state. */
105 static cycle_t cycle_pre_idle;
106 #endif /* !CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM */
107
108 #if defined(CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_COUNTER)
109 /* Idle timer value before entering the idle state. */
110 static uint32_t idle_timer_pre_idle;
111
112 /* How many ticks the system was expected to sleep when
113 * idle timer was configured. Used to determine if the
114 * counter overflowed or not.
115 */
116 static uint32_t idle_timer_scheduled_sleep_ticks;
117
118 /* Idle timer used for timer while entering the idle state */
119 static const struct device *idle_timer = DEVICE_DT_GET(DT_CHOSEN(zephyr_cortex_m_idle_timer));
120
121 /* Stub callback to satisfy Counter API (cannot be NULL) */
idle_timer_alarm_stub(const struct device * dev,uint8_t chan_id,uint32_t ticks,void * user_data)122 static void idle_timer_alarm_stub(const struct device *dev, uint8_t chan_id,
123 uint32_t ticks, void *user_data)
124 {
125 ARG_UNUSED(dev);
126 ARG_UNUSED(chan_id);
127 ARG_UNUSED(ticks);
128 ARG_UNUSED(user_data);
129 }
130 #endif /* CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_COUNTER */
131 #endif /* !CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_NONE */
132
133 #if defined(CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_COUNTER)
134 /**
135 * To simplify the driver, implement the callout to Counter API
136 * as hooks that would be provided by platform drivers if
137 * CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_HOOKS was selected instead.
138 */
z_cms_lptim_hook_on_lpm_entry(uint64_t max_lpm_time_us)139 void z_cms_lptim_hook_on_lpm_entry(uint64_t max_lpm_time_us)
140 {
141 struct counter_alarm_cfg cfg = {
142 .callback = idle_timer_alarm_stub,
143 .ticks = counter_us_to_ticks(idle_timer, max_lpm_time_us),
144 .user_data = NULL,
145 .flags = 0,
146 };
147
148 /**
149 * Disable the counter alarm in case it was already running.
150 */
151 counter_cancel_channel_alarm(idle_timer, 0);
152
153 /* Set the alarm using timer that runs the idle.
154 * Needed rump-up/setting time, lower accurency etc. should be
155 * included in the exit-latency in the power state definition.
156 */
157 counter_set_channel_alarm(idle_timer, 0, &cfg);
158
159 /* Store current value of the selected timer to calculate a
160 * difference in measurements after exiting the idle state.
161 */
162 counter_get_value(idle_timer, &idle_timer_pre_idle);
163
164 idle_timer_scheduled_sleep_ticks = cfg.ticks;
165 }
166
z_cms_lptim_hook_on_lpm_exit(void)167 uint64_t z_cms_lptim_hook_on_lpm_exit(void)
168 {
169 /**
170 * Calculate how much time elapsed according to counter.
171 */
172 uint32_t idle_timer_post, idle_timer_diff, idle_timer_top;
173 bool idle_timer_int_pending, idle_timer_wrap;
174
175 counter_get_value(idle_timer, &idle_timer_post);
176 idle_timer_int_pending = counter_get_pending_int(idle_timer) ? true : false;
177 idle_timer_top = counter_get_top_value(idle_timer);
178
179 /**
180 * Check for counter timer overflow
181 * (TODO: this doesn't work for downcounting timers!)
182 */
183 if (idle_timer_pre_idle > idle_timer_post) {
184 /* Pre > Post: counter wrapped (overflow occurred) */
185 idle_timer_wrap = true;
186 } else if (idle_timer_pre_idle == idle_timer_post) {
187 /* Pre == Post: consider wrap only if interrupt is pending */
188 idle_timer_wrap = idle_timer_int_pending;
189 } else {
190 /* Pre < Post: normally no wrap; if interrupt pending and the
191 * expected sleep spans the counter top, treat as wrap.
192 */
193 idle_timer_wrap = idle_timer_int_pending &&
194 ((uint64_t)idle_timer_pre_idle + idle_timer_scheduled_sleep_ticks
195 >= idle_timer_top);
196 }
197
198 if (idle_timer_wrap) {
199 idle_timer_diff = idle_timer_top - idle_timer_pre_idle + idle_timer_post + 1;
200 } else {
201 idle_timer_diff = idle_timer_post - idle_timer_pre_idle;
202 }
203
204 return (uint64_t)counter_ticks_to_us(idle_timer, idle_timer_diff);
205 }
206 #endif /* CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_COUNTER */
207
208 /* This internal function calculates the amount of HW cycles that have
209 * elapsed since the last time the absolute HW cycles counter has been
210 * updated. 'cycle_count' may be updated either by the ISR, or when we
211 * re-program the SysTick.LOAD register, in sys_clock_set_timeout().
212 *
213 * Additionally, the function updates the 'overflow_cyc' counter, that
214 * holds the amount of elapsed HW cycles due to (possibly) multiple
215 * timer wraps (overflows).
216 *
217 * Prerequisites:
218 * - reprogramming of SysTick.LOAD must be clearing the SysTick.COUNTER
219 * register and the 'overflow_cyc' counter.
220 * - ISR must be clearing the 'overflow_cyc' counter.
221 * - no more than one counter-wrap has occurred between
222 * - the timer reset or the last time the function was called
223 * - and until the current call of the function is completed.
224 * - the function is invoked with interrupts disabled.
225 */
elapsed(void)226 static uint32_t elapsed(void)
227 {
228 uint32_t val1 = SysTick->VAL; /* A */
229 uint32_t ctrl = SysTick->CTRL; /* B */
230 uint32_t val2 = SysTick->VAL; /* C */
231
232 /* SysTick behavior: The counter wraps after zero automatically.
233 * The COUNTFLAG field of the CTRL register is set when it
234 * decrements from 1 to 0. Reading the control register
235 * automatically clears that field. When a timer is started,
236 * count begins at zero then wraps after the first cycle.
237 * Reference:
238 * Armv6-m (B3.3.1) https://developer.arm.com/documentation/ddi0419
239 * Armv7-m (B3.3.1) https://developer.arm.com/documentation/ddi0403
240 * Armv8-m (B11.1) https://developer.arm.com/documentation/ddi0553
241 *
242 * First, manually wrap/realign val1 and val2 from [0:last_load-1]
243 * to [1:last_load]. This allows subsequent code to assume that
244 * COUNTFLAG and wrapping occur on the same cycle.
245 *
246 * If the count wrapped...
247 * 1) Before A then COUNTFLAG will be set and val1 >= val2
248 * 2) Between A and B then COUNTFLAG will be set and val1 < val2
249 * 3) Between B and C then COUNTFLAG will be clear and val1 < val2
250 * 4) After C we'll see it next time
251 *
252 * So the count in val2 is post-wrap and last_load needs to be
253 * added if and only if COUNTFLAG is set or val1 < val2.
254 */
255 if (val1 == 0) {
256 val1 = last_load;
257 }
258 if (val2 == 0) {
259 val2 = last_load;
260 }
261
262 if ((ctrl & SysTick_CTRL_COUNTFLAG_Msk)
263 || (val1 < val2)) {
264 overflow_cyc += last_load;
265
266 /* We know there was a wrap, but we might not have
267 * seen it in CTRL, so clear it. */
268 (void)SysTick->CTRL;
269 }
270
271 return (last_load - val2) + overflow_cyc;
272 }
273
274 /* sys_clock_isr is calling directly from the platform's vectors table.
275 * However using ISR_DIRECT_DECLARE() is not so suitable due to possible
276 * tracing overflow, so here is a stripped down version of it.
277 */
278 ARCH_ISR_DIAG_OFF
sys_clock_isr(void)279 __attribute__((interrupt("IRQ"))) void sys_clock_isr(void)
280 {
281 #ifdef CONFIG_TRACING_ISR
282 sys_trace_isr_enter();
283 #endif /* CONFIG_TRACING_ISR */
284
285 uint32_t dcycles;
286 uint32_t dticks;
287
288 /* Update overflow_cyc and clear COUNTFLAG by invoking elapsed() */
289 elapsed();
290
291 /* Increment the amount of HW cycles elapsed (complete counter
292 * cycles) and announce the progress to the kernel.
293 */
294 cycle_count += overflow_cyc;
295 overflow_cyc = 0;
296
297 #if defined(CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_COUNTER)
298 /* Rare case, when the interrupt was triggered, with previously programmed
299 * LOAD value, just before entering the idle mode (SysTick is clocked) or right
300 * after exiting the idle mode, before executing the procedure in the
301 * sys_clock_idle_exit function.
302 */
303 if (timeout_idle) {
304 ISR_DIRECT_PM();
305 z_arm_int_exit();
306
307 return;
308 }
309 #endif /* CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_COUNTER */
310
311 if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
312 /* In TICKLESS mode, the SysTick.LOAD is re-programmed
313 * in sys_clock_set_timeout(), followed by resetting of
314 * the counter (VAL = 0).
315 *
316 * If a timer wrap occurs right when we re-program LOAD,
317 * the ISR is triggered immediately after sys_clock_set_timeout()
318 * returns; in that case we shall not increment the cycle_count
319 * because the value has been updated before LOAD re-program.
320 *
321 * We can assess if this is the case by inspecting COUNTFLAG.
322 */
323
324 dcycles = cycle_count - announced_cycles;
325 dticks = dcycles / CYC_PER_TICK;
326 announced_cycles += dticks * CYC_PER_TICK;
327 sys_clock_announce(dticks);
328 } else {
329 sys_clock_announce(1);
330 }
331
332 ISR_DIRECT_PM();
333
334 #ifdef CONFIG_TRACING_ISR
335 sys_trace_isr_exit();
336 #endif /* CONFIG_TRACING_ISR */
337
338 z_arm_int_exit();
339 }
340 ARCH_ISR_DIAG_ON
341
sys_clock_set_timeout(int32_t ticks,bool idle)342 void sys_clock_set_timeout(int32_t ticks, bool idle)
343 {
344 /* Fast CPUs and a 24 bit counter mean that even idle systems
345 * need to wake up multiple times per second. If the kernel
346 * allows us to miss tick announcements in idle, then shut off
347 * the counter. (Note: we can assume if idle==true that
348 * interrupts are already disabled)
349 */
350 if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && idle && ticks == K_TICKS_FOREVER) {
351 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
352 last_load = TIMER_STOPPED;
353 return;
354 }
355
356 #if !defined(CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_NONE)
357 if (idle) {
358 uint64_t timeout_us =
359 ((uint64_t)ticks * USEC_PER_SEC) / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
360
361 timeout_idle = true;
362
363 /**
364 * Invoke platform-specific layer to configure LPTIM
365 * such that system wakes up after timeout elapses.
366 */
367 z_cms_lptim_hook_on_lpm_entry(timeout_us);
368
369 #if !defined(CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM)
370 /* Store current value of SysTick counter to be able to
371 * calculate a difference in measurements after exiting
372 * the low-power state.
373 */
374 cycle_pre_idle = cycle_count + elapsed();
375 #else /* CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM */
376 /**
377 * SysTick will be placed under reset once we enter
378 * low-power mode. Turn it off right now then update
379 * the cycle counter now, since we won't be able to
380 * to it after waking up.
381 */
382 sys_clock_disable();
383
384 cycle_count += elapsed();
385 overflow_cyc = 0;
386 #endif /* !CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM */
387 return;
388 }
389 #endif /* !CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_NONE */
390
391 #if defined(CONFIG_TICKLESS_KERNEL)
392 uint32_t delay;
393 uint32_t val1, val2;
394 uint32_t last_load_ = last_load;
395
396 ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
397 ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
398
399 k_spinlock_key_t key = k_spin_lock(&lock);
400
401 uint32_t pending = elapsed();
402
403 val1 = SysTick->VAL;
404
405 cycle_count += pending;
406 overflow_cyc = 0U;
407
408 uint32_t unannounced = cycle_count - announced_cycles;
409
410 if ((int32_t)unannounced < 0) {
411 /* We haven't announced for more than half the 32-bit
412 * wrap duration, because new timeouts keep being set
413 * before the existing one fires. Force an announce
414 * to avoid loss of a wrap event, making sure the
415 * delay is at least the minimum delay possible.
416 */
417 last_load = MIN_DELAY;
418 } else {
419 /* Desired delay in the future */
420 delay = ticks * CYC_PER_TICK;
421
422 /* Round delay up to next tick boundary */
423 delay += unannounced;
424 delay = DIV_ROUND_UP(delay, CYC_PER_TICK) * CYC_PER_TICK;
425 delay -= unannounced;
426 delay = MAX(delay, MIN_DELAY);
427 if (delay > MAX_CYCLES) {
428 last_load = MAX_CYCLES;
429 } else {
430 last_load = delay;
431 }
432 }
433
434 val2 = SysTick->VAL;
435
436 SysTick->LOAD = last_load - 1;
437 SysTick->VAL = 0; /* resets timer to last_load */
438
439 /*
440 * Add elapsed cycles while computing the new load to cycle_count.
441 *
442 * Note that comparing val1 and val2 is normaly not good enough to
443 * guess if the counter wrapped during this interval. Indeed if val1 is
444 * close to LOAD, then there are little chances to catch val2 between
445 * val1 and LOAD after a wrap. COUNTFLAG should be checked in addition.
446 * But since the load computation is faster than MIN_DELAY, then we
447 * don't need to worry about this case.
448 */
449 if (val1 < val2) {
450 cycle_count += (val1 + (last_load_ - val2));
451 } else {
452 cycle_count += (val1 - val2);
453 }
454 k_spin_unlock(&lock, key);
455 #endif
456 }
457
sys_clock_elapsed(void)458 uint32_t sys_clock_elapsed(void)
459 {
460 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
461 return 0;
462 }
463
464 k_spinlock_key_t key = k_spin_lock(&lock);
465 uint32_t unannounced = cycle_count - announced_cycles;
466 uint32_t cyc = elapsed() + unannounced;
467
468 k_spin_unlock(&lock, key);
469 return cyc / CYC_PER_TICK;
470 }
471
sys_clock_cycle_get_32(void)472 uint32_t sys_clock_cycle_get_32(void)
473 {
474 k_spinlock_key_t key = k_spin_lock(&lock);
475 uint32_t ret = cycle_count;
476
477 ret += elapsed();
478 k_spin_unlock(&lock, key);
479 return ret;
480 }
481
482 #ifdef CONFIG_CORTEX_M_SYSTICK_64BIT_CYCLE_COUNTER
sys_clock_cycle_get_64(void)483 uint64_t sys_clock_cycle_get_64(void)
484 {
485 k_spinlock_key_t key = k_spin_lock(&lock);
486 uint64_t ret = cycle_count + elapsed();
487
488 k_spin_unlock(&lock, key);
489 return ret;
490 }
491 #endif
492
sys_clock_idle_exit(void)493 void sys_clock_idle_exit(void)
494 {
495 #if !defined(CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_NONE)
496 if (timeout_idle) {
497 cycle_t systick_diff, missed_cycles;
498 uint32_t dcycles, dticks;
499 uint64_t systick_us, idle_timer_us;
500
501 #if !defined(CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM)
502 /**
503 * Get current value for SysTick and calculate how
504 * much time has passed since last measurement.
505 */
506 systick_diff = cycle_count + elapsed() - cycle_pre_idle;
507 systick_us =
508 ((uint64_t)systick_diff * USEC_PER_SEC) / sys_clock_hw_cycles_per_sec();
509 #else /* CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM */
510 /* SysTick was placed under reset so it didn't tick */
511 systick_diff = systick_us = 0;
512 #endif /* !CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM */
513
514 /**
515 * Query platform-specific code for elapsed time according to LPTIM.
516 */
517 idle_timer_us = z_cms_lptim_hook_on_lpm_exit();
518
519 /* Calculate difference in measurements to get how much time
520 * the SysTick missed in idle state.
521 */
522 if (idle_timer_us < systick_us) {
523 /* This case is possible, when the time in low power mode is
524 * very short or 0. SysTick usually has higher measurement
525 * resolution of than the IDLE timer, thus the measurement of
526 * passed time since the sys_clock_set_timeout call can be higher.
527 */
528 missed_cycles = 0;
529 } else {
530 uint64_t measurement_diff_us;
531
532 measurement_diff_us = idle_timer_us - systick_us;
533 missed_cycles = (sys_clock_hw_cycles_per_sec() * measurement_diff_us) /
534 USEC_PER_SEC;
535 }
536
537 /* Update the cycle counter to include the cycles missed in idle */
538 cycle_count += missed_cycles;
539
540 /* Announce the passed ticks to the kernel */
541 dcycles = cycle_count + elapsed() - announced_cycles;
542 dticks = dcycles / CYC_PER_TICK;
543 announced_cycles += dticks * CYC_PER_TICK;
544 sys_clock_announce(dticks);
545
546 /* We've alredy performed all needed operations */
547 timeout_idle = false;
548 }
549 #endif /* !CONFIG_CORTEX_M_SYSTICK_LPM_TIMER_NONE */
550
551 if (last_load == TIMER_STOPPED || IS_ENABLED(CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM)) {
552 /* SysTick was stopped or placed under reset.
553 * Restart the timer from scratch.
554 */
555 K_SPINLOCK(&lock) {
556 last_load = CYC_PER_TICK;
557 SysTick->LOAD = last_load - 1;
558 SysTick->VAL = 0; /* resets timer to last_load */
559 if (!IS_ENABLED(CONFIG_CORTEX_M_SYSTICK_RESET_BY_LPM)) {
560 SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
561 } else {
562 NVIC_SetPriority(SysTick_IRQn, _IRQ_PRIO_OFFSET);
563 SysTick->CTRL |= (SysTick_CTRL_ENABLE_Msk |
564 SysTick_CTRL_TICKINT_Msk |
565 SysTick_CTRL_CLKSOURCE_Msk);
566 }
567 }
568 }
569 }
570
sys_clock_disable(void)571 void sys_clock_disable(void)
572 {
573 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
574 }
575
sys_clock_driver_init(void)576 static int sys_clock_driver_init(void)
577 {
578
579 NVIC_SetPriority(SysTick_IRQn, _IRQ_PRIO_OFFSET);
580 last_load = CYC_PER_TICK;
581 overflow_cyc = 0U;
582 SysTick->LOAD = last_load - 1;
583 SysTick->VAL = 0; /* resets timer to last_load */
584 SysTick->CTRL |= (SysTick_CTRL_ENABLE_Msk |
585 SysTick_CTRL_TICKINT_Msk |
586 SysTick_CTRL_CLKSOURCE_Msk);
587 return 0;
588 }
589
590 SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
591 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
592