1# Lint as: python3 2# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# ============================================================================== 16# pylint: disable=g-bad-import-order 17 18"""Test for data_load.py.""" 19 20from __future__ import absolute_import 21from __future__ import division 22from __future__ import print_function 23 24import unittest 25from data_load import DataLoader 26 27import tensorflow as tf 28 29 30class TestLoad(unittest.TestCase): 31 32 def setUp(self): # pylint: disable=g-missing-super-call 33 self.loader = DataLoader( 34 "./data/train", "./data/valid", "./data/test", seq_length=512) 35 36 def test_get_data(self): 37 self.assertIsInstance(self.loader.train_data, list) 38 self.assertIsInstance(self.loader.train_label, list) 39 self.assertIsInstance(self.loader.valid_data, list) 40 self.assertIsInstance(self.loader.valid_label, list) 41 self.assertIsInstance(self.loader.test_data, list) 42 self.assertIsInstance(self.loader.test_label, list) 43 self.assertEqual(self.loader.train_len, len(self.loader.train_data)) 44 self.assertEqual(self.loader.train_len, len(self.loader.train_label)) 45 self.assertEqual(self.loader.valid_len, len(self.loader.valid_data)) 46 self.assertEqual(self.loader.valid_len, len(self.loader.valid_label)) 47 self.assertEqual(self.loader.test_len, len(self.loader.test_data)) 48 self.assertEqual(self.loader.test_len, len(self.loader.test_label)) 49 50 def test_pad(self): 51 original_data1 = [[2, 3], [1, 1]] 52 expected_data1_0 = [[2, 3], [2, 3], [2, 3], [2, 3], [1, 1]] 53 expected_data1_1 = [[2, 3], [1, 1], [1, 1], [1, 1], [1, 1]] 54 original_data2 = [[-2, 3], [-77, -681], [5, 6], [9, -7], [22, 3333], 55 [9, 99], [-100, 0]] 56 expected_data2 = [[-2, 3], [-77, -681], [5, 6], [9, -7], [22, 3333]] 57 padding_data1 = self.loader.pad(original_data1, seq_length=5, dim=2) 58 padding_data2 = self.loader.pad(original_data2, seq_length=5, dim=2) 59 for i in range(len(padding_data1[0])): 60 for j in range(len(padding_data1[0].tolist()[0])): 61 self.assertLess( 62 abs(padding_data1[0].tolist()[i][j] - expected_data1_0[i][j]), 63 10.001) 64 for i in range(len(padding_data1[1])): 65 for j in range(len(padding_data1[1].tolist()[0])): 66 self.assertLess( 67 abs(padding_data1[1].tolist()[i][j] - expected_data1_1[i][j]), 68 10.001) 69 self.assertEqual(padding_data2[0].tolist(), expected_data2) 70 self.assertEqual(padding_data2[1].tolist(), expected_data2) 71 72 def test_format(self): 73 self.loader.format() 74 expected_train_label = int(self.loader.label2id[self.loader.train_label[0]]) 75 expected_valid_label = int(self.loader.label2id[self.loader.valid_label[0]]) 76 expected_test_label = int(self.loader.label2id[self.loader.test_label[0]]) 77 for feature, label in self.loader.train_data: # pylint: disable=unused-variable 78 format_train_label = label.numpy() 79 break 80 for feature, label in self.loader.valid_data: 81 format_valid_label = label.numpy() 82 break 83 for feature, label in self.loader.test_data: 84 format_test_label = label.numpy() 85 break 86 self.assertEqual(expected_train_label, format_train_label) 87 self.assertEqual(expected_valid_label, format_valid_label) 88 self.assertEqual(expected_test_label, format_test_label) 89 self.assertIsInstance(self.loader.train_data, tf.data.Dataset) 90 self.assertIsInstance(self.loader.valid_data, tf.data.Dataset) 91 self.assertIsInstance(self.loader.test_data, tf.data.Dataset) 92 93 94if __name__ == "__main__": 95 unittest.main() 96