# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=g-bad-import-order """Test for data_load.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from data_load import DataLoader import tensorflow as tf class TestLoad(unittest.TestCase): def setUp(self): # pylint: disable=g-missing-super-call self.loader = DataLoader( "./data/train", "./data/valid", "./data/test", seq_length=512) def test_get_data(self): self.assertIsInstance(self.loader.train_data, list) self.assertIsInstance(self.loader.train_label, list) self.assertIsInstance(self.loader.valid_data, list) self.assertIsInstance(self.loader.valid_label, list) self.assertIsInstance(self.loader.test_data, list) self.assertIsInstance(self.loader.test_label, list) self.assertEqual(self.loader.train_len, len(self.loader.train_data)) self.assertEqual(self.loader.train_len, len(self.loader.train_label)) self.assertEqual(self.loader.valid_len, len(self.loader.valid_data)) self.assertEqual(self.loader.valid_len, len(self.loader.valid_label)) self.assertEqual(self.loader.test_len, len(self.loader.test_data)) self.assertEqual(self.loader.test_len, len(self.loader.test_label)) def test_pad(self): original_data1 = [[2, 3], [1, 1]] expected_data1_0 = [[2, 3], [2, 3], [2, 3], [2, 3], [1, 1]] expected_data1_1 = [[2, 3], [1, 1], [1, 1], [1, 1], [1, 1]] original_data2 = [[-2, 3], [-77, -681], [5, 6], [9, -7], [22, 3333], [9, 99], [-100, 0]] expected_data2 = [[-2, 3], [-77, -681], [5, 6], [9, -7], [22, 3333]] padding_data1 = self.loader.pad(original_data1, seq_length=5, dim=2) padding_data2 = self.loader.pad(original_data2, seq_length=5, dim=2) for i in range(len(padding_data1[0])): for j in range(len(padding_data1[0].tolist()[0])): self.assertLess( abs(padding_data1[0].tolist()[i][j] - expected_data1_0[i][j]), 10.001) for i in range(len(padding_data1[1])): for j in range(len(padding_data1[1].tolist()[0])): self.assertLess( abs(padding_data1[1].tolist()[i][j] - expected_data1_1[i][j]), 10.001) self.assertEqual(padding_data2[0].tolist(), expected_data2) self.assertEqual(padding_data2[1].tolist(), expected_data2) def test_format(self): self.loader.format() expected_train_label = int(self.loader.label2id[self.loader.train_label[0]]) expected_valid_label = int(self.loader.label2id[self.loader.valid_label[0]]) expected_test_label = int(self.loader.label2id[self.loader.test_label[0]]) for feature, label in self.loader.train_data: # pylint: disable=unused-variable format_train_label = label.numpy() break for feature, label in self.loader.valid_data: format_valid_label = label.numpy() break for feature, label in self.loader.test_data: format_test_label = label.numpy() break self.assertEqual(expected_train_label, format_train_label) self.assertEqual(expected_valid_label, format_valid_label) self.assertEqual(expected_test_label, format_test_label) self.assertIsInstance(self.loader.train_data, tf.data.Dataset) self.assertIsInstance(self.loader.valid_data, tf.data.Dataset) self.assertIsInstance(self.loader.test_data, tf.data.Dataset) if __name__ == "__main__": unittest.main()