1 /*
2  * Copyright (c) 2016, Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  *
10  * @brief Public kernel APIs.
11  */
12 
13 #ifndef ZEPHYR_INCLUDE_KERNEL_H_
14 #define ZEPHYR_INCLUDE_KERNEL_H_
15 
16 #if !defined(_ASMLANGUAGE)
17 #include <zephyr/kernel_includes.h>
18 #include <errno.h>
19 #include <limits.h>
20 #include <stdbool.h>
21 #include <zephyr/toolchain.h>
22 #include <zephyr/tracing/tracing_macros.h>
23 #include <zephyr/sys/mem_stats.h>
24 #include <zephyr/sys/iterable_sections.h>
25 
26 #ifdef __cplusplus
27 extern "C" {
28 #endif
29 
30 /*
31  * Zephyr currently assumes the size of a couple standard types to simplify
32  * print string formats. Let's make sure this doesn't change without notice.
33  */
34 BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35 BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36 BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37 
38 /**
39  * @brief Kernel APIs
40  * @defgroup kernel_apis Kernel APIs
41  * @{
42  * @}
43  */
44 
45 #define K_ANY NULL
46 
47 #if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48 #error Zero available thread priorities defined!
49 #endif
50 
51 #define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52 #define K_PRIO_PREEMPT(x) (x)
53 
54 #define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55 #define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56 #define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57 #define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58 #define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59 
60 #ifdef CONFIG_POLL
61 #define Z_POLL_EVENT_OBJ_INIT(obj) \
62 	.poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63 #define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
64 #else
65 #define Z_POLL_EVENT_OBJ_INIT(obj)
66 #define Z_DECL_POLL_EVENT
67 #endif
68 
69 struct k_thread;
70 struct k_mutex;
71 struct k_sem;
72 struct k_msgq;
73 struct k_mbox;
74 struct k_pipe;
75 struct k_queue;
76 struct k_fifo;
77 struct k_lifo;
78 struct k_stack;
79 struct k_mem_slab;
80 struct k_timer;
81 struct k_poll_event;
82 struct k_poll_signal;
83 struct k_mem_domain;
84 struct k_mem_partition;
85 struct k_futex;
86 struct k_event;
87 
88 enum execution_context_types {
89 	K_ISR = 0,
90 	K_COOP_THREAD,
91 	K_PREEMPT_THREAD,
92 };
93 
94 /* private, used by k_poll and k_work_poll */
95 struct k_work_poll;
96 typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97 
98 /**
99  * @addtogroup thread_apis
100  * @{
101  */
102 
103 typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 				   void *user_data);
105 
106 /**
107  * @brief Iterate over all the threads in the system.
108  *
109  * This routine iterates over all the threads in the system and
110  * calls the user_cb function for each thread.
111  *
112  * @param user_cb Pointer to the user callback function.
113  * @param user_data Pointer to user data.
114  *
115  * @note @kconfig{CONFIG_THREAD_MONITOR} must be set for this function
116  * to be effective.
117  * @note This API uses @ref k_spin_lock to protect the _kernel.threads
118  * list which means creation of new threads and terminations of existing
119  * threads are blocked until this API returns.
120  */
121 void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
122 
123 /**
124  * @brief Iterate over all the threads in the system without locking.
125  *
126  * This routine works exactly the same like @ref k_thread_foreach
127  * but unlocks interrupts when user_cb is executed.
128  *
129  * @param user_cb Pointer to the user callback function.
130  * @param user_data Pointer to user data.
131  *
132  * @note @kconfig{CONFIG_THREAD_MONITOR} must be set for this function
133  * to be effective.
134  * @note This API uses @ref k_spin_lock only when accessing the _kernel.threads
135  * queue elements. It unlocks it during user callback function processing.
136  * If a new task is created when this @c foreach function is in progress,
137  * the added new task would not be included in the enumeration.
138  * If a task is aborted during this enumeration, there would be a race here
139  * and there is a possibility that this aborted task would be included in the
140  * enumeration.
141  * @note If the task is aborted and the memory occupied by its @c k_thread
142  * structure is reused when this @c k_thread_foreach_unlocked is in progress
143  * it might even lead to the system behave unstable.
144  * This function may never return, as it would follow some @c next task
145  * pointers treating given pointer as a pointer to the k_thread structure
146  * while it is something different right now.
147  * Do not reuse the memory that was occupied by k_thread structure of aborted
148  * task if it was aborted after this function was called in any context.
149  */
150 void k_thread_foreach_unlocked(
151 	k_thread_user_cb_t user_cb, void *user_data);
152 
153 /** @} */
154 
155 /**
156  * @defgroup thread_apis Thread APIs
157  * @ingroup kernel_apis
158  * @{
159  */
160 
161 #endif /* !_ASMLANGUAGE */
162 
163 
164 /*
165  * Thread user options. May be needed by assembly code. Common part uses low
166  * bits, arch-specific use high bits.
167  */
168 
169 /**
170  * @brief system thread that must not abort
171  * */
172 #define K_ESSENTIAL (BIT(0))
173 
174 /**
175  * @brief FPU registers are managed by context switch
176  *
177  * @details
178  * This option indicates that the thread uses the CPU's floating point
179  * registers. This instructs the kernel to take additional steps to save
180  * and restore the contents of these registers when scheduling the thread.
181  * No effect if @kconfig{CONFIG_FPU_SHARING} is not enabled.
182  */
183 #define K_FP_IDX 1
184 #define K_FP_REGS (BIT(K_FP_IDX))
185 
186 /**
187  * @brief user mode thread
188  *
189  * This thread has dropped from supervisor mode to user mode and consequently
190  * has additional restrictions
191  */
192 #define K_USER (BIT(2))
193 
194 /**
195  * @brief Inherit Permissions
196  *
197  * @details
198  * Indicates that the thread being created should inherit all kernel object
199  * permissions from the thread that created it. No effect if
200  * @kconfig{CONFIG_USERSPACE} is not enabled.
201  */
202 #define K_INHERIT_PERMS (BIT(3))
203 
204 /**
205  * @brief Callback item state
206  *
207  * @details
208  * This is a single bit of state reserved for "callback manager"
209  * utilities (p4wq initially) who need to track operations invoked
210  * from within a user-provided callback they have been invoked.
211  * Effectively it serves as a tiny bit of zero-overhead TLS data.
212  */
213 #define K_CALLBACK_STATE (BIT(4))
214 
215 /**
216  * @brief DSP registers are managed by context switch
217  *
218  * @details
219  * This option indicates that the thread uses the CPU's DSP registers.
220  * This instructs the kernel to take additional steps to save and
221  * restore the contents of these registers when scheduling the thread.
222  * No effect if @kconfig{CONFIG_DSP_SHARING} is not enabled.
223  */
224 #define K_DSP_IDX 6
225 #define K_DSP_REGS (BIT(K_DSP_IDX))
226 
227 /**
228  * @brief AGU registers are managed by context switch
229  *
230  * @details
231  * This option indicates that the thread uses the ARC processor's XY
232  * memory and DSP feature. Often used with @kconfig{CONFIG_ARC_AGU_SHARING}.
233  * No effect if @kconfig{CONFIG_ARC_AGU_SHARING} is not enabled.
234  */
235 #define K_AGU_IDX 7
236 #define K_AGU_REGS (BIT(K_AGU_IDX))
237 
238 /**
239  * @brief FP and SSE registers are managed by context switch on x86
240  *
241  * @details
242  * This option indicates that the thread uses the x86 CPU's floating point
243  * and SSE registers. This instructs the kernel to take additional steps to
244  * save and restore the contents of these registers when scheduling
245  * the thread. No effect if @kconfig{CONFIG_X86_SSE} is not enabled.
246  */
247 #define K_SSE_REGS (BIT(7))
248 
249 /* end - thread options */
250 
251 #if !defined(_ASMLANGUAGE)
252 /**
253  * @brief Dynamically allocate a thread stack.
254  *
255  * Relevant stack creation flags include:
256  * - @ref K_USER allocate a userspace thread (requires `CONFIG_USERSPACE=y`)
257  *
258  * @param size Stack size in bytes.
259  * @param flags Stack creation flags, or 0.
260  *
261  * @retval the allocated thread stack on success.
262  * @retval NULL on failure.
263  *
264  * @see CONFIG_DYNAMIC_THREAD
265  */
266 __syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
267 
268 /**
269  * @brief Free a dynamically allocated thread stack.
270  *
271  * @param stack Pointer to the thread stack.
272  *
273  * @retval 0 on success.
274  * @retval -EBUSY if the thread stack is in use.
275  * @retval -EINVAL if @p stack is invalid.
276  * @retval -ENOSYS if dynamic thread stack allocation is disabled
277  *
278  * @see CONFIG_DYNAMIC_THREAD
279  */
280 __syscall int k_thread_stack_free(k_thread_stack_t *stack);
281 
282 /**
283  * @brief Create a thread.
284  *
285  * This routine initializes a thread, then schedules it for execution.
286  *
287  * The new thread may be scheduled for immediate execution or a delayed start.
288  * If the newly spawned thread does not have a delayed start the kernel
289  * scheduler may preempt the current thread to allow the new thread to
290  * execute.
291  *
292  * Thread options are architecture-specific, and can include K_ESSENTIAL,
293  * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
294  * them using "|" (the logical OR operator).
295  *
296  * Stack objects passed to this function must be originally defined with
297  * either of these macros in order to be portable:
298  *
299  * - K_THREAD_STACK_DEFINE() - For stacks that may support either user or
300  *   supervisor threads.
301  * - K_KERNEL_STACK_DEFINE() - For stacks that may support supervisor
302  *   threads only. These stacks use less memory if CONFIG_USERSPACE is
303  *   enabled.
304  *
305  * The stack_size parameter has constraints. It must either be:
306  *
307  * - The original size value passed to K_THREAD_STACK_DEFINE() or
308  *   K_KERNEL_STACK_DEFINE()
309  * - The return value of K_THREAD_STACK_SIZEOF(stack) if the stack was
310  *   defined with K_THREAD_STACK_DEFINE()
311  * - The return value of K_KERNEL_STACK_SIZEOF(stack) if the stack was
312  *   defined with K_KERNEL_STACK_DEFINE().
313  *
314  * Using other values, or sizeof(stack) may produce undefined behavior.
315  *
316  * @param new_thread Pointer to uninitialized struct k_thread
317  * @param stack Pointer to the stack space.
318  * @param stack_size Stack size in bytes.
319  * @param entry Thread entry function.
320  * @param p1 1st entry point parameter.
321  * @param p2 2nd entry point parameter.
322  * @param p3 3rd entry point parameter.
323  * @param prio Thread priority.
324  * @param options Thread options.
325  * @param delay Scheduling delay, or K_NO_WAIT (for no delay).
326  *
327  * @return ID of new thread.
328  *
329  */
330 __syscall k_tid_t k_thread_create(struct k_thread *new_thread,
331 				  k_thread_stack_t *stack,
332 				  size_t stack_size,
333 				  k_thread_entry_t entry,
334 				  void *p1, void *p2, void *p3,
335 				  int prio, uint32_t options, k_timeout_t delay);
336 
337 /**
338  * @brief Drop a thread's privileges permanently to user mode
339  *
340  * This allows a supervisor thread to be re-used as a user thread.
341  * This function does not return, but control will transfer to the provided
342  * entry point as if this was a new user thread.
343  *
344  * The implementation ensures that the stack buffer contents are erased.
345  * Any thread-local storage will be reverted to a pristine state.
346  *
347  * Memory domain membership, resource pool assignment, kernel object
348  * permissions, priority, and thread options are preserved.
349  *
350  * A common use of this function is to re-use the main thread as a user thread
351  * once all supervisor mode-only tasks have been completed.
352  *
353  * @param entry Function to start executing from
354  * @param p1 1st entry point parameter
355  * @param p2 2nd entry point parameter
356  * @param p3 3rd entry point parameter
357  */
358 FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
359 						   void *p1, void *p2,
360 						   void *p3);
361 
362 /**
363  * @brief Grant a thread access to a set of kernel objects
364  *
365  * This is a convenience function. For the provided thread, grant access to
366  * the remaining arguments, which must be pointers to kernel objects.
367  *
368  * The thread object must be initialized (i.e. running). The objects don't
369  * need to be.
370  * Note that NULL shouldn't be passed as an argument.
371  *
372  * @param thread Thread to grant access to objects
373  * @param ... list of kernel object pointers
374  */
375 #define k_thread_access_grant(thread, ...) \
376 	FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
377 
378 /**
379  * @brief Assign a resource memory pool to a thread
380  *
381  * By default, threads have no resource pool assigned unless their parent
382  * thread has a resource pool, in which case it is inherited. Multiple
383  * threads may be assigned to the same memory pool.
384  *
385  * Changing a thread's resource pool will not migrate allocations from the
386  * previous pool.
387  *
388  * @param thread Target thread to assign a memory pool for resource requests.
389  * @param heap Heap object to use for resources,
390  *             or NULL if the thread should no longer have a memory pool.
391  */
k_thread_heap_assign(struct k_thread * thread,struct k_heap * heap)392 static inline void k_thread_heap_assign(struct k_thread *thread,
393 					struct k_heap *heap)
394 {
395 	thread->resource_pool = heap;
396 }
397 
398 #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
399 /**
400  * @brief Obtain stack usage information for the specified thread
401  *
402  * User threads will need to have permission on the target thread object.
403  *
404  * Some hardware may prevent inspection of a stack buffer currently in use.
405  * If this API is called from supervisor mode, on the currently running thread,
406  * on a platform which selects @kconfig{CONFIG_NO_UNUSED_STACK_INSPECTION}, an
407  * error will be generated.
408  *
409  * @param thread Thread to inspect stack information
410  * @param unused_ptr Output parameter, filled in with the unused stack space
411  *	of the target thread in bytes.
412  * @return 0 on success
413  * @return -EBADF Bad thread object (user mode only)
414  * @return -EPERM No permissions on thread object (user mode only)
415  * #return -ENOTSUP Forbidden by hardware policy
416  * @return -EINVAL Thread is uninitialized or exited (user mode only)
417  * @return -EFAULT Bad memory address for unused_ptr (user mode only)
418  */
419 __syscall int k_thread_stack_space_get(const struct k_thread *thread,
420 				       size_t *unused_ptr);
421 #endif
422 
423 #if (K_HEAP_MEM_POOL_SIZE > 0)
424 /**
425  * @brief Assign the system heap as a thread's resource pool
426  *
427  * Similar to k_thread_heap_assign(), but the thread will use
428  * the kernel heap to draw memory.
429  *
430  * Use with caution, as a malicious thread could perform DoS attacks on the
431  * kernel heap.
432  *
433  * @param thread Target thread to assign the system heap for resource requests
434  *
435  */
436 void k_thread_system_pool_assign(struct k_thread *thread);
437 #endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
438 
439 /**
440  * @brief Sleep until a thread exits
441  *
442  * The caller will be put to sleep until the target thread exits, either due
443  * to being aborted, self-exiting, or taking a fatal error. This API returns
444  * immediately if the thread isn't running.
445  *
446  * This API may only be called from ISRs with a K_NO_WAIT timeout,
447  * where it can be useful as a predicate to detect when a thread has
448  * aborted.
449  *
450  * @param thread Thread to wait to exit
451  * @param timeout upper bound time to wait for the thread to exit.
452  * @retval 0 success, target thread has exited or wasn't running
453  * @retval -EBUSY returned without waiting
454  * @retval -EAGAIN waiting period timed out
455  * @retval -EDEADLK target thread is joining on the caller, or target thread
456  *                  is the caller
457  */
458 __syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
459 
460 /**
461  * @brief Put the current thread to sleep.
462  *
463  * This routine puts the current thread to sleep for @a duration,
464  * specified as a k_timeout_t object.
465  *
466  * @note if @a timeout is set to K_FOREVER then the thread is suspended.
467  *
468  * @param timeout Desired duration of sleep.
469  *
470  * @return Zero if the requested time has elapsed or if the thread was woken up
471  * by the \ref k_wakeup call, the time left to sleep rounded up to the nearest
472  * millisecond.
473  */
474 __syscall int32_t k_sleep(k_timeout_t timeout);
475 
476 /**
477  * @brief Put the current thread to sleep.
478  *
479  * This routine puts the current thread to sleep for @a duration milliseconds.
480  *
481  * @param ms Number of milliseconds to sleep.
482  *
483  * @return Zero if the requested time has elapsed or if the thread was woken up
484  * by the \ref k_wakeup call, the time left to sleep rounded up to the nearest
485  * millisecond.
486  */
k_msleep(int32_t ms)487 static inline int32_t k_msleep(int32_t ms)
488 {
489 	return k_sleep(Z_TIMEOUT_MS(ms));
490 }
491 
492 /**
493  * @brief Put the current thread to sleep with microsecond resolution.
494  *
495  * This function is unlikely to work as expected without kernel tuning.
496  * In particular, because the lower bound on the duration of a sleep is
497  * the duration of a tick, @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} must be
498  * adjusted to achieve the resolution desired. The implications of doing
499  * this must be understood before attempting to use k_usleep(). Use with
500  * caution.
501  *
502  * @param us Number of microseconds to sleep.
503  *
504  * @return Zero if the requested time has elapsed or if the thread was woken up
505  * by the \ref k_wakeup call, the time left to sleep rounded up to the nearest
506  * microsecond.
507  */
508 __syscall int32_t k_usleep(int32_t us);
509 
510 /**
511  * @brief Cause the current thread to busy wait.
512  *
513  * This routine causes the current thread to execute a "do nothing" loop for
514  * @a usec_to_wait microseconds.
515  *
516  * @note The clock used for the microsecond-resolution delay here may
517  * be skewed relative to the clock used for system timeouts like
518  * k_sleep().  For example k_busy_wait(1000) may take slightly more or
519  * less time than k_sleep(K_MSEC(1)), with the offset dependent on
520  * clock tolerances.
521  *
522  * @note In case when @kconfig{CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE} and
523  * @kconfig{CONFIG_PM} options are enabled, this function may not work.
524  * The timer/clock used for delay processing may be disabled/inactive.
525  */
526 __syscall void k_busy_wait(uint32_t usec_to_wait);
527 
528 /**
529  * @brief Check whether it is possible to yield in the current context.
530  *
531  * This routine checks whether the kernel is in a state where it is possible to
532  * yield or call blocking API's. It should be used by code that needs to yield
533  * to perform correctly, but can feasibly be called from contexts where that
534  * is not possible. For example in the PRE_KERNEL initialization step, or when
535  * being run from the idle thread.
536  *
537  * @return True if it is possible to yield in the current context, false otherwise.
538  */
539 bool k_can_yield(void);
540 
541 /**
542  * @brief Yield the current thread.
543  *
544  * This routine causes the current thread to yield execution to another
545  * thread of the same or higher priority. If there are no other ready threads
546  * of the same or higher priority, the routine returns immediately.
547  */
548 __syscall void k_yield(void);
549 
550 /**
551  * @brief Wake up a sleeping thread.
552  *
553  * This routine prematurely wakes up @a thread from sleeping.
554  *
555  * If @a thread is not currently sleeping, the routine has no effect.
556  *
557  * @param thread ID of thread to wake.
558  */
559 __syscall void k_wakeup(k_tid_t thread);
560 
561 /**
562  * @brief Query thread ID of the current thread.
563  *
564  * This unconditionally queries the kernel via a system call.
565  *
566  * @note Use k_current_get() unless absolutely sure this is necessary.
567  *       This should only be used directly where the thread local
568  *       variable cannot be used or may contain invalid values
569  *       if thread local storage (TLS) is enabled. If TLS is not
570  *       enabled, this is the same as k_current_get().
571  *
572  * @return ID of current thread.
573  */
574 __attribute_const__
575 __syscall k_tid_t k_sched_current_thread_query(void);
576 
577 /**
578  * @brief Get thread ID of the current thread.
579  *
580  * @return ID of current thread.
581  *
582  */
583 __attribute_const__
k_current_get(void)584 static inline k_tid_t k_current_get(void)
585 {
586 #ifdef CONFIG_CURRENT_THREAD_USE_TLS
587 
588 	/* Thread-local cache of current thread ID, set in z_thread_entry() */
589 	extern __thread k_tid_t z_tls_current;
590 
591 	return z_tls_current;
592 #else
593 	return k_sched_current_thread_query();
594 #endif
595 }
596 
597 /**
598  * @brief Abort a thread.
599  *
600  * This routine permanently stops execution of @a thread. The thread is taken
601  * off all kernel queues it is part of (i.e. the ready queue, the timeout
602  * queue, or a kernel object wait queue). However, any kernel resources the
603  * thread might currently own (such as mutexes or memory blocks) are not
604  * released. It is the responsibility of the caller of this routine to ensure
605  * all necessary cleanup is performed.
606  *
607  * After k_thread_abort() returns, the thread is guaranteed not to be
608  * running or to become runnable anywhere on the system.  Normally
609  * this is done via blocking the caller (in the same manner as
610  * k_thread_join()), but in interrupt context on SMP systems the
611  * implementation is required to spin for threads that are running on
612  * other CPUs.
613  *
614  * @param thread ID of thread to abort.
615  */
616 __syscall void k_thread_abort(k_tid_t thread);
617 
618 
619 /**
620  * @brief Start an inactive thread
621  *
622  * If a thread was created with K_FOREVER in the delay parameter, it will
623  * not be added to the scheduling queue until this function is called
624  * on it.
625  *
626  * @param thread thread to start
627  */
628 __syscall void k_thread_start(k_tid_t thread);
629 
630 k_ticks_t z_timeout_expires(const struct _timeout *timeout);
631 k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
632 
633 #ifdef CONFIG_SYS_CLOCK_EXISTS
634 
635 /**
636  * @brief Get time when a thread wakes up, in system ticks
637  *
638  * This routine computes the system uptime when a waiting thread next
639  * executes, in units of system ticks.  If the thread is not waiting,
640  * it returns current system time.
641  */
642 __syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t);
643 
z_impl_k_thread_timeout_expires_ticks(const struct k_thread * t)644 static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
645 						const struct k_thread *t)
646 {
647 	return z_timeout_expires(&t->base.timeout);
648 }
649 
650 /**
651  * @brief Get time remaining before a thread wakes up, in system ticks
652  *
653  * This routine computes the time remaining before a waiting thread
654  * next executes, in units of system ticks.  If the thread is not
655  * waiting, it returns zero.
656  */
657 __syscall k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t);
658 
z_impl_k_thread_timeout_remaining_ticks(const struct k_thread * t)659 static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
660 						const struct k_thread *t)
661 {
662 	return z_timeout_remaining(&t->base.timeout);
663 }
664 
665 #endif /* CONFIG_SYS_CLOCK_EXISTS */
666 
667 /**
668  * @cond INTERNAL_HIDDEN
669  */
670 
671 struct _static_thread_data {
672 	struct k_thread *init_thread;
673 	k_thread_stack_t *init_stack;
674 	unsigned int init_stack_size;
675 	k_thread_entry_t init_entry;
676 	void *init_p1;
677 	void *init_p2;
678 	void *init_p3;
679 	int init_prio;
680 	uint32_t init_options;
681 	const char *init_name;
682 #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
683 	int32_t init_delay_ms;
684 #else
685 	k_timeout_t init_delay;
686 #endif
687 };
688 
689 #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
690 #define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
691 #define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
692 #else
693 #define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
694 #define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
695 #endif
696 
697 #define Z_THREAD_INITIALIZER(thread, stack, stack_size,           \
698 			    entry, p1, p2, p3,                   \
699 			    prio, options, delay, tname)         \
700 	{                                                        \
701 	.init_thread = (thread),				 \
702 	.init_stack = (stack),					 \
703 	.init_stack_size = (stack_size),                         \
704 	.init_entry = (k_thread_entry_t)entry,			 \
705 	.init_p1 = (void *)p1,                                   \
706 	.init_p2 = (void *)p2,                                   \
707 	.init_p3 = (void *)p3,                                   \
708 	.init_prio = (prio),                                     \
709 	.init_options = (options),                               \
710 	.init_name = STRINGIFY(tname),                           \
711 	Z_THREAD_INIT_DELAY_INITIALIZER(delay)			 \
712 	}
713 
714 /*
715  * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
716  * information on arguments.
717  */
718 #define Z_THREAD_COMMON_DEFINE(name, stack_size,			\
719 			       entry, p1, p2, p3,			\
720 			       prio, options, delay)			\
721 	struct k_thread _k_thread_obj_##name;				\
722 	STRUCT_SECTION_ITERABLE(_static_thread_data,			\
723 				_k_thread_data_##name) =		\
724 		Z_THREAD_INITIALIZER(&_k_thread_obj_##name,		\
725 				     _k_thread_stack_##name, stack_size,\
726 				     entry, p1, p2, p3, prio, options,	\
727 				     delay, name);			\
728 	const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
729 
730 /**
731  * INTERNAL_HIDDEN @endcond
732  */
733 
734 /**
735  * @brief Statically define and initialize a thread.
736  *
737  * The thread may be scheduled for immediate execution or a delayed start.
738  *
739  * Thread options are architecture-specific, and can include K_ESSENTIAL,
740  * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
741  * them using "|" (the logical OR operator).
742  *
743  * The ID of the thread can be accessed using:
744  *
745  * @code extern const k_tid_t <name>; @endcode
746  *
747  * @param name Name of the thread.
748  * @param stack_size Stack size in bytes.
749  * @param entry Thread entry function.
750  * @param p1 1st entry point parameter.
751  * @param p2 2nd entry point parameter.
752  * @param p3 3rd entry point parameter.
753  * @param prio Thread priority.
754  * @param options Thread options.
755  * @param delay Scheduling delay (in milliseconds), zero for no delay.
756  *
757  * @note Static threads with zero delay should not normally have
758  * MetaIRQ priority levels.  This can preempt the system
759  * initialization handling (depending on the priority of the main
760  * thread) and cause surprising ordering side effects.  It will not
761  * affect anything in the OS per se, but consider it bad practice.
762  * Use a SYS_INIT() callback if you need to run code before entrance
763  * to the application main().
764  */
765 #define K_THREAD_DEFINE(name, stack_size,                                \
766 			entry, p1, p2, p3,                               \
767 			prio, options, delay)                            \
768 	K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size);	 \
769 	Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3,	 \
770 			       prio, options, delay)
771 
772 /**
773  * @brief Statically define and initialize a thread intended to run only in kernel mode.
774  *
775  * The thread may be scheduled for immediate execution or a delayed start.
776  *
777  * Thread options are architecture-specific, and can include K_ESSENTIAL,
778  * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
779  * them using "|" (the logical OR operator).
780  *
781  * The ID of the thread can be accessed using:
782  *
783  * @code extern const k_tid_t <name>; @endcode
784  *
785  * @note Threads defined by this can only run in kernel mode, and cannot be
786  *       transformed into user thread via k_thread_user_mode_enter().
787  *
788  * @warning Depending on the architecture, the stack size (@p stack_size)
789  *          may need to be multiples of CONFIG_MMU_PAGE_SIZE (if MMU)
790  *          or in power-of-two size (if MPU).
791  *
792  * @param name Name of the thread.
793  * @param stack_size Stack size in bytes.
794  * @param entry Thread entry function.
795  * @param p1 1st entry point parameter.
796  * @param p2 2nd entry point parameter.
797  * @param p3 3rd entry point parameter.
798  * @param prio Thread priority.
799  * @param options Thread options.
800  * @param delay Scheduling delay (in milliseconds), zero for no delay.
801  */
802 #define K_KERNEL_THREAD_DEFINE(name, stack_size,			\
803 			       entry, p1, p2, p3,			\
804 			       prio, options, delay)			\
805 	K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size);	\
806 	Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3,	\
807 			       prio, options, delay)
808 
809 /**
810  * @brief Get a thread's priority.
811  *
812  * This routine gets the priority of @a thread.
813  *
814  * @param thread ID of thread whose priority is needed.
815  *
816  * @return Priority of @a thread.
817  */
818 __syscall int k_thread_priority_get(k_tid_t thread);
819 
820 /**
821  * @brief Set a thread's priority.
822  *
823  * This routine immediately changes the priority of @a thread.
824  *
825  * Rescheduling can occur immediately depending on the priority @a thread is
826  * set to:
827  *
828  * - If its priority is raised above the priority of the caller of this
829  * function, and the caller is preemptible, @a thread will be scheduled in.
830  *
831  * - If the caller operates on itself, it lowers its priority below that of
832  * other threads in the system, and the caller is preemptible, the thread of
833  * highest priority will be scheduled in.
834  *
835  * Priority can be assigned in the range of -CONFIG_NUM_COOP_PRIORITIES to
836  * CONFIG_NUM_PREEMPT_PRIORITIES-1, where -CONFIG_NUM_COOP_PRIORITIES is the
837  * highest priority.
838  *
839  * @param thread ID of thread whose priority is to be set.
840  * @param prio New priority.
841  *
842  * @warning Changing the priority of a thread currently involved in mutex
843  * priority inheritance may result in undefined behavior.
844  */
845 __syscall void k_thread_priority_set(k_tid_t thread, int prio);
846 
847 
848 #ifdef CONFIG_SCHED_DEADLINE
849 /**
850  * @brief Set deadline expiration time for scheduler
851  *
852  * This sets the "deadline" expiration as a time delta from the
853  * current time, in the same units used by k_cycle_get_32().  The
854  * scheduler (when deadline scheduling is enabled) will choose the
855  * next expiring thread when selecting between threads at the same
856  * static priority.  Threads at different priorities will be scheduled
857  * according to their static priority.
858  *
859  * @note Deadlines are stored internally using 32 bit unsigned
860  * integers.  The number of cycles between the "first" deadline in the
861  * scheduler queue and the "last" deadline must be less than 2^31 (i.e
862  * a signed non-negative quantity).  Failure to adhere to this rule
863  * may result in scheduled threads running in an incorrect deadline
864  * order.
865  *
866  * @note Despite the API naming, the scheduler makes no guarantees
867  * the thread WILL be scheduled within that deadline, nor does it take
868  * extra metadata (like e.g. the "runtime" and "period" parameters in
869  * Linux sched_setattr()) that allows the kernel to validate the
870  * scheduling for achievability.  Such features could be implemented
871  * above this call, which is simply input to the priority selection
872  * logic.
873  *
874  * @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
875  * configuration.
876  *
877  * @param thread A thread on which to set the deadline
878  * @param deadline A time delta, in cycle units
879  *
880  */
881 __syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
882 #endif
883 
884 #ifdef CONFIG_SCHED_CPU_MASK
885 /**
886  * @brief Sets all CPU enable masks to zero
887  *
888  * After this returns, the thread will no longer be schedulable on any
889  * CPUs.  The thread must not be currently runnable.
890  *
891  * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
892  * configuration.
893  *
894  * @param thread Thread to operate upon
895  * @return Zero on success, otherwise error code
896  */
897 int k_thread_cpu_mask_clear(k_tid_t thread);
898 
899 /**
900  * @brief Sets all CPU enable masks to one
901  *
902  * After this returns, the thread will be schedulable on any CPU.  The
903  * thread must not be currently runnable.
904  *
905  * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
906  * configuration.
907  *
908  * @param thread Thread to operate upon
909  * @return Zero on success, otherwise error code
910  */
911 int k_thread_cpu_mask_enable_all(k_tid_t thread);
912 
913 /**
914  * @brief Enable thread to run on specified CPU
915  *
916  * The thread must not be currently runnable.
917  *
918  * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
919  * configuration.
920  *
921  * @param thread Thread to operate upon
922  * @param cpu CPU index
923  * @return Zero on success, otherwise error code
924  */
925 int k_thread_cpu_mask_enable(k_tid_t thread, int cpu);
926 
927 /**
928  * @brief Prevent thread to run on specified CPU
929  *
930  * The thread must not be currently runnable.
931  *
932  * @note You should enable @kconfig{CONFIG_SCHED_CPU_MASK} in your project
933  * configuration.
934  *
935  * @param thread Thread to operate upon
936  * @param cpu CPU index
937  * @return Zero on success, otherwise error code
938  */
939 int k_thread_cpu_mask_disable(k_tid_t thread, int cpu);
940 
941 /**
942  * @brief Pin a thread to a CPU
943  *
944  * Pin a thread to a CPU by first clearing the cpu mask and then enabling the
945  * thread on the selected CPU.
946  *
947  * @param thread Thread to operate upon
948  * @param cpu CPU index
949  * @return Zero on success, otherwise error code
950  */
951 int k_thread_cpu_pin(k_tid_t thread, int cpu);
952 #endif
953 
954 /**
955  * @brief Suspend a thread.
956  *
957  * This routine prevents the kernel scheduler from making @a thread
958  * the current thread. All other internal operations on @a thread are
959  * still performed; for example, kernel objects it is waiting on are
960  * still handed to it.  Note that any existing timeouts
961  * (e.g. k_sleep(), or a timeout argument to k_sem_take() et. al.)
962  * will be canceled.  On resume, the thread will begin running
963  * immediately and return from the blocked call.
964  *
965  * When the target thread is active on another CPU, the caller will block until
966  * the target thread is halted (suspended or aborted).  But if the caller is in
967  * an interrupt context, it will spin waiting for that target thread active on
968  * another CPU to halt.
969  *
970  * If @a thread is already suspended, the routine has no effect.
971  *
972  * @param thread ID of thread to suspend.
973  */
974 __syscall void k_thread_suspend(k_tid_t thread);
975 
976 /**
977  * @brief Resume a suspended thread.
978  *
979  * This routine allows the kernel scheduler to make @a thread the current
980  * thread, when it is next eligible for that role.
981  *
982  * If @a thread is not currently suspended, the routine has no effect.
983  *
984  * @param thread ID of thread to resume.
985  */
986 __syscall void k_thread_resume(k_tid_t thread);
987 
988 /**
989  * @brief Set time-slicing period and scope.
990  *
991  * This routine specifies how the scheduler will perform time slicing of
992  * preemptible threads.
993  *
994  * To enable time slicing, @a slice must be non-zero. The scheduler
995  * ensures that no thread runs for more than the specified time limit
996  * before other threads of that priority are given a chance to execute.
997  * Any thread whose priority is higher than @a prio is exempted, and may
998  * execute as long as desired without being preempted due to time slicing.
999  *
1000  * Time slicing only limits the maximum amount of time a thread may continuously
1001  * execute. Once the scheduler selects a thread for execution, there is no
1002  * minimum guaranteed time the thread will execute before threads of greater or
1003  * equal priority are scheduled.
1004  *
1005  * When the current thread is the only one of that priority eligible
1006  * for execution, this routine has no effect; the thread is immediately
1007  * rescheduled after the slice period expires.
1008  *
1009  * To disable timeslicing, set both @a slice and @a prio to zero.
1010  *
1011  * @param slice Maximum time slice length (in milliseconds).
1012  * @param prio Highest thread priority level eligible for time slicing.
1013  */
1014 void k_sched_time_slice_set(int32_t slice, int prio);
1015 
1016 /**
1017  * @brief Set thread time slice
1018  *
1019  * As for k_sched_time_slice_set, but (when
1020  * CONFIG_TIMESLICE_PER_THREAD=y) sets the timeslice for a specific
1021  * thread.  When non-zero, this timeslice will take precedence over
1022  * the global value.
1023  *
1024  * When such a thread's timeslice expires, the configured callback
1025  * will be called before the thread is removed/re-added to the run
1026  * queue.  This callback will occur in interrupt context, and the
1027  * specified thread is guaranteed to have been preempted by the
1028  * currently-executing ISR.  Such a callback is free to, for example,
1029  * modify the thread priority or slice time for future execution,
1030  * suspend the thread, etc...
1031  *
1032  * @note Unlike the older API, the time slice parameter here is
1033  * specified in ticks, not milliseconds.  Ticks have always been the
1034  * internal unit, and not all platforms have integer conversions
1035  * between the two.
1036  *
1037  * @note Threads with a non-zero slice time set will be timesliced
1038  * always, even if they are higher priority than the maximum timeslice
1039  * priority set via k_sched_time_slice_set().
1040  *
1041  * @note The callback notification for slice expiration happens, as it
1042  * must, while the thread is still "current", and thus it happens
1043  * before any registered timeouts at this tick.  This has the somewhat
1044  * confusing side effect that the tick time (c.f. k_uptime_get()) does
1045  * not yet reflect the expired ticks.  Applications wishing to make
1046  * fine-grained timing decisions within this callback should use the
1047  * cycle API, or derived facilities like k_thread_runtime_stats_get().
1048  *
1049  * @param th A valid, initialized thread
1050  * @param slice_ticks Maximum timeslice, in ticks
1051  * @param expired Callback function called on slice expiration
1052  * @param data Parameter for the expiration handler
1053  */
1054 void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1055 			     k_thread_timeslice_fn_t expired, void *data);
1056 
1057 /** @} */
1058 
1059 /**
1060  * @addtogroup isr_apis
1061  * @{
1062  */
1063 
1064 /**
1065  * @brief Determine if code is running at interrupt level.
1066  *
1067  * This routine allows the caller to customize its actions, depending on
1068  * whether it is a thread or an ISR.
1069  *
1070  * @funcprops \isr_ok
1071  *
1072  * @return false if invoked by a thread.
1073  * @return true if invoked by an ISR.
1074  */
1075 bool k_is_in_isr(void);
1076 
1077 /**
1078  * @brief Determine if code is running in a preemptible thread.
1079  *
1080  * This routine allows the caller to customize its actions, depending on
1081  * whether it can be preempted by another thread. The routine returns a 'true'
1082  * value if all of the following conditions are met:
1083  *
1084  * - The code is running in a thread, not at ISR.
1085  * - The thread's priority is in the preemptible range.
1086  * - The thread has not locked the scheduler.
1087  *
1088  * @funcprops \isr_ok
1089  *
1090  * @return 0 if invoked by an ISR or by a cooperative thread.
1091  * @return Non-zero if invoked by a preemptible thread.
1092  */
1093 __syscall int k_is_preempt_thread(void);
1094 
1095 /**
1096  * @brief Test whether startup is in the before-main-task phase.
1097  *
1098  * This routine allows the caller to customize its actions, depending on
1099  * whether it being invoked before the kernel is fully active.
1100  *
1101  * @funcprops \isr_ok
1102  *
1103  * @return true if invoked before post-kernel initialization
1104  * @return false if invoked during/after post-kernel initialization
1105  */
k_is_pre_kernel(void)1106 static inline bool k_is_pre_kernel(void)
1107 {
1108 	extern bool z_sys_post_kernel; /* in init.c */
1109 
1110 	return !z_sys_post_kernel;
1111 }
1112 
1113 /**
1114  * @}
1115  */
1116 
1117 /**
1118  * @addtogroup thread_apis
1119  * @{
1120  */
1121 
1122 /**
1123  * @brief Lock the scheduler.
1124  *
1125  * This routine prevents the current thread from being preempted by another
1126  * thread by instructing the scheduler to treat it as a cooperative thread.
1127  * If the thread subsequently performs an operation that makes it unready,
1128  * it will be context switched out in the normal manner. When the thread
1129  * again becomes the current thread, its non-preemptible status is maintained.
1130  *
1131  * This routine can be called recursively.
1132  *
1133  * Owing to clever implementation details, scheduler locks are
1134  * extremely fast for non-userspace threads (just one byte
1135  * inc/decrement in the thread struct).
1136  *
1137  * @note This works by elevating the thread priority temporarily to a
1138  * cooperative priority, allowing cheap synchronization vs. other
1139  * preemptible or cooperative threads running on the current CPU.  It
1140  * does not prevent preemption or asynchrony of other types.  It does
1141  * not prevent threads from running on other CPUs when CONFIG_SMP=y.
1142  * It does not prevent interrupts from happening, nor does it prevent
1143  * threads with MetaIRQ priorities from preempting the current thread.
1144  * In general this is a historical API not well-suited to modern
1145  * applications, use with care.
1146  */
1147 void k_sched_lock(void);
1148 
1149 /**
1150  * @brief Unlock the scheduler.
1151  *
1152  * This routine reverses the effect of a previous call to k_sched_lock().
1153  * A thread must call the routine once for each time it called k_sched_lock()
1154  * before the thread becomes preemptible.
1155  */
1156 void k_sched_unlock(void);
1157 
1158 /**
1159  * @brief Set current thread's custom data.
1160  *
1161  * This routine sets the custom data for the current thread to @ value.
1162  *
1163  * Custom data is not used by the kernel itself, and is freely available
1164  * for a thread to use as it sees fit. It can be used as a framework
1165  * upon which to build thread-local storage.
1166  *
1167  * @param value New custom data value.
1168  *
1169  */
1170 __syscall void k_thread_custom_data_set(void *value);
1171 
1172 /**
1173  * @brief Get current thread's custom data.
1174  *
1175  * This routine returns the custom data for the current thread.
1176  *
1177  * @return Current custom data value.
1178  */
1179 __syscall void *k_thread_custom_data_get(void);
1180 
1181 /**
1182  * @brief Set current thread name
1183  *
1184  * Set the name of the thread to be used when @kconfig{CONFIG_THREAD_MONITOR}
1185  * is enabled for tracing and debugging.
1186  *
1187  * @param thread Thread to set name, or NULL to set the current thread
1188  * @param str Name string
1189  * @retval 0 on success
1190  * @retval -EFAULT Memory access error with supplied string
1191  * @retval -ENOSYS Thread name configuration option not enabled
1192  * @retval -EINVAL Thread name too long
1193  */
1194 __syscall int k_thread_name_set(k_tid_t thread, const char *str);
1195 
1196 /**
1197  * @brief Get thread name
1198  *
1199  * Get the name of a thread
1200  *
1201  * @param thread Thread ID
1202  * @retval Thread name, or NULL if configuration not enabled
1203  */
1204 const char *k_thread_name_get(k_tid_t thread);
1205 
1206 /**
1207  * @brief Copy the thread name into a supplied buffer
1208  *
1209  * @param thread Thread to obtain name information
1210  * @param buf Destination buffer
1211  * @param size Destination buffer size
1212  * @retval -ENOSPC Destination buffer too small
1213  * @retval -EFAULT Memory access error
1214  * @retval -ENOSYS Thread name feature not enabled
1215  * @retval 0 Success
1216  */
1217 __syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1218 				 size_t size);
1219 
1220 /**
1221  * @brief Get thread state string
1222  *
1223  * This routine generates a human friendly string containing the thread's
1224  * state, and copies as much of it as possible into @a buf.
1225  *
1226  * @param thread_id Thread ID
1227  * @param buf Buffer into which to copy state strings
1228  * @param buf_size Size of the buffer
1229  *
1230  * @retval Pointer to @a buf if data was copied, else a pointer to "".
1231  */
1232 const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1233 
1234 /**
1235  * @}
1236  */
1237 
1238 /**
1239  * @addtogroup clock_apis
1240  * @{
1241  */
1242 
1243 /**
1244  * @brief Generate null timeout delay.
1245  *
1246  * This macro generates a timeout delay that instructs a kernel API
1247  * not to wait if the requested operation cannot be performed immediately.
1248  *
1249  * @return Timeout delay value.
1250  */
1251 #define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1252 
1253 /**
1254  * @brief Generate timeout delay from nanoseconds.
1255  *
1256  * This macro generates a timeout delay that instructs a kernel API to
1257  * wait up to @a t nanoseconds to perform the requested operation.
1258  * Note that timer precision is limited to the tick rate, not the
1259  * requested value.
1260  *
1261  * @param t Duration in nanoseconds.
1262  *
1263  * @return Timeout delay value.
1264  */
1265 #define K_NSEC(t)     Z_TIMEOUT_NS(t)
1266 
1267 /**
1268  * @brief Generate timeout delay from microseconds.
1269  *
1270  * This macro generates a timeout delay that instructs a kernel API
1271  * to wait up to @a t microseconds to perform the requested operation.
1272  * Note that timer precision is limited to the tick rate, not the
1273  * requested value.
1274  *
1275  * @param t Duration in microseconds.
1276  *
1277  * @return Timeout delay value.
1278  */
1279 #define K_USEC(t)     Z_TIMEOUT_US(t)
1280 
1281 /**
1282  * @brief Generate timeout delay from cycles.
1283  *
1284  * This macro generates a timeout delay that instructs a kernel API
1285  * to wait up to @a t cycles to perform the requested operation.
1286  *
1287  * @param t Duration in cycles.
1288  *
1289  * @return Timeout delay value.
1290  */
1291 #define K_CYC(t)     Z_TIMEOUT_CYC(t)
1292 
1293 /**
1294  * @brief Generate timeout delay from system ticks.
1295  *
1296  * This macro generates a timeout delay that instructs a kernel API
1297  * to wait up to @a t ticks to perform the requested operation.
1298  *
1299  * @param t Duration in system ticks.
1300  *
1301  * @return Timeout delay value.
1302  */
1303 #define K_TICKS(t)     Z_TIMEOUT_TICKS(t)
1304 
1305 /**
1306  * @brief Generate timeout delay from milliseconds.
1307  *
1308  * This macro generates a timeout delay that instructs a kernel API
1309  * to wait up to @a ms milliseconds to perform the requested operation.
1310  *
1311  * @param ms Duration in milliseconds.
1312  *
1313  * @return Timeout delay value.
1314  */
1315 #define K_MSEC(ms)     Z_TIMEOUT_MS(ms)
1316 
1317 /**
1318  * @brief Generate timeout delay from seconds.
1319  *
1320  * This macro generates a timeout delay that instructs a kernel API
1321  * to wait up to @a s seconds to perform the requested operation.
1322  *
1323  * @param s Duration in seconds.
1324  *
1325  * @return Timeout delay value.
1326  */
1327 #define K_SECONDS(s)   K_MSEC((s) * MSEC_PER_SEC)
1328 
1329 /**
1330  * @brief Generate timeout delay from minutes.
1331 
1332  * This macro generates a timeout delay that instructs a kernel API
1333  * to wait up to @a m minutes to perform the requested operation.
1334  *
1335  * @param m Duration in minutes.
1336  *
1337  * @return Timeout delay value.
1338  */
1339 #define K_MINUTES(m)   K_SECONDS((m) * 60)
1340 
1341 /**
1342  * @brief Generate timeout delay from hours.
1343  *
1344  * This macro generates a timeout delay that instructs a kernel API
1345  * to wait up to @a h hours to perform the requested operation.
1346  *
1347  * @param h Duration in hours.
1348  *
1349  * @return Timeout delay value.
1350  */
1351 #define K_HOURS(h)     K_MINUTES((h) * 60)
1352 
1353 /**
1354  * @brief Generate infinite timeout delay.
1355  *
1356  * This macro generates a timeout delay that instructs a kernel API
1357  * to wait as long as necessary to perform the requested operation.
1358  *
1359  * @return Timeout delay value.
1360  */
1361 #define K_FOREVER Z_FOREVER
1362 
1363 #ifdef CONFIG_TIMEOUT_64BIT
1364 
1365 /**
1366  * @brief Generates an absolute/uptime timeout value from system ticks
1367  *
1368  * This macro generates a timeout delay that represents an expiration
1369  * at the absolute uptime value specified, in system ticks.  That is, the
1370  * timeout will expire immediately after the system uptime reaches the
1371  * specified tick count.
1372  *
1373  * @param t Tick uptime value
1374  * @return Timeout delay value
1375  */
1376 #define K_TIMEOUT_ABS_TICKS(t) \
1377 	Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1378 
1379 /**
1380  * @brief Generates an absolute/uptime timeout value from milliseconds
1381  *
1382  * This macro generates a timeout delay that represents an expiration
1383  * at the absolute uptime value specified, in milliseconds.  That is,
1384  * the timeout will expire immediately after the system uptime reaches
1385  * the specified tick count.
1386  *
1387  * @param t Millisecond uptime value
1388  * @return Timeout delay value
1389  */
1390 #define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1391 
1392 /**
1393  * @brief Generates an absolute/uptime timeout value from microseconds
1394  *
1395  * This macro generates a timeout delay that represents an expiration
1396  * at the absolute uptime value specified, in microseconds.  That is,
1397  * the timeout will expire immediately after the system uptime reaches
1398  * the specified time.  Note that timer precision is limited by the
1399  * system tick rate and not the requested timeout value.
1400  *
1401  * @param t Microsecond uptime value
1402  * @return Timeout delay value
1403  */
1404 #define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1405 
1406 /**
1407  * @brief Generates an absolute/uptime timeout value from nanoseconds
1408  *
1409  * This macro generates a timeout delay that represents an expiration
1410  * at the absolute uptime value specified, in nanoseconds.  That is,
1411  * the timeout will expire immediately after the system uptime reaches
1412  * the specified time.  Note that timer precision is limited by the
1413  * system tick rate and not the requested timeout value.
1414  *
1415  * @param t Nanosecond uptime value
1416  * @return Timeout delay value
1417  */
1418 #define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1419 
1420 /**
1421  * @brief Generates an absolute/uptime timeout value from system cycles
1422  *
1423  * This macro generates a timeout delay that represents an expiration
1424  * at the absolute uptime value specified, in cycles.  That is, the
1425  * timeout will expire immediately after the system uptime reaches the
1426  * specified time.  Note that timer precision is limited by the system
1427  * tick rate and not the requested timeout value.
1428  *
1429  * @param t Cycle uptime value
1430  * @return Timeout delay value
1431  */
1432 #define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1433 
1434 #endif
1435 
1436 /**
1437  * @}
1438  */
1439 
1440 /**
1441  * @cond INTERNAL_HIDDEN
1442  */
1443 
1444 struct k_timer {
1445 	/*
1446 	 * _timeout structure must be first here if we want to use
1447 	 * dynamic timer allocation. timeout.node is used in the double-linked
1448 	 * list of free timers
1449 	 */
1450 	struct _timeout timeout;
1451 
1452 	/* wait queue for the (single) thread waiting on this timer */
1453 	_wait_q_t wait_q;
1454 
1455 	/* runs in ISR context */
1456 	void (*expiry_fn)(struct k_timer *timer);
1457 
1458 	/* runs in the context of the thread that calls k_timer_stop() */
1459 	void (*stop_fn)(struct k_timer *timer);
1460 
1461 	/* timer period */
1462 	k_timeout_t period;
1463 
1464 	/* timer status */
1465 	uint32_t status;
1466 
1467 	/* user-specific data, also used to support legacy features */
1468 	void *user_data;
1469 
1470 	SYS_PORT_TRACING_TRACKING_FIELD(k_timer)
1471 
1472 #ifdef CONFIG_OBJ_CORE_TIMER
1473 	struct k_obj_core  obj_core;
1474 #endif
1475 };
1476 
1477 #define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1478 	{ \
1479 	.timeout = { \
1480 		.node = {},\
1481 		.fn = z_timer_expiration_handler, \
1482 		.dticks = 0, \
1483 	}, \
1484 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1485 	.expiry_fn = expiry, \
1486 	.stop_fn = stop, \
1487 	.status = 0, \
1488 	.user_data = 0, \
1489 	}
1490 
1491 /**
1492  * INTERNAL_HIDDEN @endcond
1493  */
1494 
1495 /**
1496  * @defgroup timer_apis Timer APIs
1497  * @ingroup kernel_apis
1498  * @{
1499  */
1500 
1501 /**
1502  * @typedef k_timer_expiry_t
1503  * @brief Timer expiry function type.
1504  *
1505  * A timer's expiry function is executed by the system clock interrupt handler
1506  * each time the timer expires. The expiry function is optional, and is only
1507  * invoked if the timer has been initialized with one.
1508  *
1509  * @param timer     Address of timer.
1510  */
1511 typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1512 
1513 /**
1514  * @typedef k_timer_stop_t
1515  * @brief Timer stop function type.
1516  *
1517  * A timer's stop function is executed if the timer is stopped prematurely.
1518  * The function runs in the context of call that stops the timer.  As
1519  * k_timer_stop() can be invoked from an ISR, the stop function must be
1520  * callable from interrupt context (isr-ok).
1521  *
1522  * The stop function is optional, and is only invoked if the timer has been
1523  * initialized with one.
1524  *
1525  * @param timer     Address of timer.
1526  */
1527 typedef void (*k_timer_stop_t)(struct k_timer *timer);
1528 
1529 /**
1530  * @brief Statically define and initialize a timer.
1531  *
1532  * The timer can be accessed outside the module where it is defined using:
1533  *
1534  * @code extern struct k_timer <name>; @endcode
1535  *
1536  * @param name Name of the timer variable.
1537  * @param expiry_fn Function to invoke each time the timer expires.
1538  * @param stop_fn   Function to invoke if the timer is stopped while running.
1539  */
1540 #define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1541 	STRUCT_SECTION_ITERABLE(k_timer, name) = \
1542 		Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1543 
1544 /**
1545  * @brief Initialize a timer.
1546  *
1547  * This routine initializes a timer, prior to its first use.
1548  *
1549  * @param timer     Address of timer.
1550  * @param expiry_fn Function to invoke each time the timer expires.
1551  * @param stop_fn   Function to invoke if the timer is stopped while running.
1552  */
1553 void k_timer_init(struct k_timer *timer,
1554 			 k_timer_expiry_t expiry_fn,
1555 			 k_timer_stop_t stop_fn);
1556 
1557 /**
1558  * @brief Start a timer.
1559  *
1560  * This routine starts a timer, and resets its status to zero. The timer
1561  * begins counting down using the specified duration and period values.
1562  *
1563  * Attempting to start a timer that is already running is permitted.
1564  * The timer's status is reset to zero and the timer begins counting down
1565  * using the new duration and period values.
1566  *
1567  * @param timer     Address of timer.
1568  * @param duration  Initial timer duration.
1569  * @param period    Timer period.
1570  */
1571 __syscall void k_timer_start(struct k_timer *timer,
1572 			     k_timeout_t duration, k_timeout_t period);
1573 
1574 /**
1575  * @brief Stop a timer.
1576  *
1577  * This routine stops a running timer prematurely. The timer's stop function,
1578  * if one exists, is invoked by the caller.
1579  *
1580  * Attempting to stop a timer that is not running is permitted, but has no
1581  * effect on the timer.
1582  *
1583  * @note The stop handler has to be callable from ISRs if @a k_timer_stop is to
1584  * be called from ISRs.
1585  *
1586  * @funcprops \isr_ok
1587  *
1588  * @param timer     Address of timer.
1589  */
1590 __syscall void k_timer_stop(struct k_timer *timer);
1591 
1592 /**
1593  * @brief Read timer status.
1594  *
1595  * This routine reads the timer's status, which indicates the number of times
1596  * it has expired since its status was last read.
1597  *
1598  * Calling this routine resets the timer's status to zero.
1599  *
1600  * @param timer     Address of timer.
1601  *
1602  * @return Timer status.
1603  */
1604 __syscall uint32_t k_timer_status_get(struct k_timer *timer);
1605 
1606 /**
1607  * @brief Synchronize thread to timer expiration.
1608  *
1609  * This routine blocks the calling thread until the timer's status is non-zero
1610  * (indicating that it has expired at least once since it was last examined)
1611  * or the timer is stopped. If the timer status is already non-zero,
1612  * or the timer is already stopped, the caller continues without waiting.
1613  *
1614  * Calling this routine resets the timer's status to zero.
1615  *
1616  * This routine must not be used by interrupt handlers, since they are not
1617  * allowed to block.
1618  *
1619  * @param timer     Address of timer.
1620  *
1621  * @return Timer status.
1622  */
1623 __syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1624 
1625 #ifdef CONFIG_SYS_CLOCK_EXISTS
1626 
1627 /**
1628  * @brief Get next expiration time of a timer, in system ticks
1629  *
1630  * This routine returns the future system uptime reached at the next
1631  * time of expiration of the timer, in units of system ticks.  If the
1632  * timer is not running, current system time is returned.
1633  *
1634  * @param timer The timer object
1635  * @return Uptime of expiration, in ticks
1636  */
1637 __syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1638 
z_impl_k_timer_expires_ticks(const struct k_timer * timer)1639 static inline k_ticks_t z_impl_k_timer_expires_ticks(
1640 				       const struct k_timer *timer)
1641 {
1642 	return z_timeout_expires(&timer->timeout);
1643 }
1644 
1645 /**
1646  * @brief Get time remaining before a timer next expires, in system ticks
1647  *
1648  * This routine computes the time remaining before a running timer
1649  * next expires, in units of system ticks.  If the timer is not
1650  * running, it returns zero.
1651  */
1652 __syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1653 
z_impl_k_timer_remaining_ticks(const struct k_timer * timer)1654 static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1655 				       const struct k_timer *timer)
1656 {
1657 	return z_timeout_remaining(&timer->timeout);
1658 }
1659 
1660 /**
1661  * @brief Get time remaining before a timer next expires.
1662  *
1663  * This routine computes the (approximate) time remaining before a running
1664  * timer next expires. If the timer is not running, it returns zero.
1665  *
1666  * @param timer     Address of timer.
1667  *
1668  * @return Remaining time (in milliseconds).
1669  */
k_timer_remaining_get(struct k_timer * timer)1670 static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1671 {
1672 	return k_ticks_to_ms_floor32(k_timer_remaining_ticks(timer));
1673 }
1674 
1675 #endif /* CONFIG_SYS_CLOCK_EXISTS */
1676 
1677 /**
1678  * @brief Associate user-specific data with a timer.
1679  *
1680  * This routine records the @a user_data with the @a timer, to be retrieved
1681  * later.
1682  *
1683  * It can be used e.g. in a timer handler shared across multiple subsystems to
1684  * retrieve data specific to the subsystem this timer is associated with.
1685  *
1686  * @param timer     Address of timer.
1687  * @param user_data User data to associate with the timer.
1688  */
1689 __syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1690 
1691 /**
1692  * @internal
1693  */
z_impl_k_timer_user_data_set(struct k_timer * timer,void * user_data)1694 static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1695 					       void *user_data)
1696 {
1697 	timer->user_data = user_data;
1698 }
1699 
1700 /**
1701  * @brief Retrieve the user-specific data from a timer.
1702  *
1703  * @param timer     Address of timer.
1704  *
1705  * @return The user data.
1706  */
1707 __syscall void *k_timer_user_data_get(const struct k_timer *timer);
1708 
z_impl_k_timer_user_data_get(const struct k_timer * timer)1709 static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1710 {
1711 	return timer->user_data;
1712 }
1713 
1714 /** @} */
1715 
1716 /**
1717  * @addtogroup clock_apis
1718  * @ingroup kernel_apis
1719  * @{
1720  */
1721 
1722 /**
1723  * @brief Get system uptime, in system ticks.
1724  *
1725  * This routine returns the elapsed time since the system booted, in
1726  * ticks (c.f. @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC}), which is the
1727  * fundamental unit of resolution of kernel timekeeping.
1728  *
1729  * @return Current uptime in ticks.
1730  */
1731 __syscall int64_t k_uptime_ticks(void);
1732 
1733 /**
1734  * @brief Get system uptime.
1735  *
1736  * This routine returns the elapsed time since the system booted,
1737  * in milliseconds.
1738  *
1739  * @note
1740  *    While this function returns time in milliseconds, it does
1741  *    not mean it has millisecond resolution. The actual resolution depends on
1742  *    @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} config option.
1743  *
1744  * @return Current uptime in milliseconds.
1745  */
k_uptime_get(void)1746 static inline int64_t k_uptime_get(void)
1747 {
1748 	return k_ticks_to_ms_floor64(k_uptime_ticks());
1749 }
1750 
1751 /**
1752  * @brief Get system uptime (32-bit version).
1753  *
1754  * This routine returns the lower 32 bits of the system uptime in
1755  * milliseconds.
1756  *
1757  * Because correct conversion requires full precision of the system
1758  * clock there is no benefit to using this over k_uptime_get() unless
1759  * you know the application will never run long enough for the system
1760  * clock to approach 2^32 ticks.  Calls to this function may involve
1761  * interrupt blocking and 64-bit math.
1762  *
1763  * @note
1764  *    While this function returns time in milliseconds, it does
1765  *    not mean it has millisecond resolution. The actual resolution depends on
1766  *    @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} config option
1767  *
1768  * @return The low 32 bits of the current uptime, in milliseconds.
1769  */
k_uptime_get_32(void)1770 static inline uint32_t k_uptime_get_32(void)
1771 {
1772 	return (uint32_t)k_uptime_get();
1773 }
1774 
1775 /**
1776  * @brief Get elapsed time.
1777  *
1778  * This routine computes the elapsed time between the current system uptime
1779  * and an earlier reference time, in milliseconds.
1780  *
1781  * @param reftime Pointer to a reference time, which is updated to the current
1782  *                uptime upon return.
1783  *
1784  * @return Elapsed time.
1785  */
k_uptime_delta(int64_t * reftime)1786 static inline int64_t k_uptime_delta(int64_t *reftime)
1787 {
1788 	int64_t uptime, delta;
1789 
1790 	uptime = k_uptime_get();
1791 	delta = uptime - *reftime;
1792 	*reftime = uptime;
1793 
1794 	return delta;
1795 }
1796 
1797 /**
1798  * @brief Read the hardware clock.
1799  *
1800  * This routine returns the current time, as measured by the system's hardware
1801  * clock.
1802  *
1803  * @return Current hardware clock up-counter (in cycles).
1804  */
k_cycle_get_32(void)1805 static inline uint32_t k_cycle_get_32(void)
1806 {
1807 	return arch_k_cycle_get_32();
1808 }
1809 
1810 /**
1811  * @brief Read the 64-bit hardware clock.
1812  *
1813  * This routine returns the current time in 64-bits, as measured by the
1814  * system's hardware clock, if available.
1815  *
1816  * @see CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER
1817  *
1818  * @return Current hardware clock up-counter (in cycles).
1819  */
k_cycle_get_64(void)1820 static inline uint64_t k_cycle_get_64(void)
1821 {
1822 	if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1823 		__ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1824 			    "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1825 		return 0;
1826 	}
1827 
1828 	return arch_k_cycle_get_64();
1829 }
1830 
1831 /**
1832  * @}
1833  */
1834 
1835 struct k_queue {
1836 	sys_sflist_t data_q;
1837 	struct k_spinlock lock;
1838 	_wait_q_t wait_q;
1839 
1840 	Z_DECL_POLL_EVENT
1841 
1842 	SYS_PORT_TRACING_TRACKING_FIELD(k_queue)
1843 };
1844 
1845 /**
1846  * @cond INTERNAL_HIDDEN
1847  */
1848 
1849 #define Z_QUEUE_INITIALIZER(obj) \
1850 	{ \
1851 	.data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1852 	.lock = { }, \
1853 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q),	\
1854 	Z_POLL_EVENT_OBJ_INIT(obj)		\
1855 	}
1856 
1857 /**
1858  * INTERNAL_HIDDEN @endcond
1859  */
1860 
1861 /**
1862  * @defgroup queue_apis Queue APIs
1863  * @ingroup kernel_apis
1864  * @{
1865  */
1866 
1867 /**
1868  * @brief Initialize a queue.
1869  *
1870  * This routine initializes a queue object, prior to its first use.
1871  *
1872  * @param queue Address of the queue.
1873  */
1874 __syscall void k_queue_init(struct k_queue *queue);
1875 
1876 /**
1877  * @brief Cancel waiting on a queue.
1878  *
1879  * This routine causes first thread pending on @a queue, if any, to
1880  * return from k_queue_get() call with NULL value (as if timeout expired).
1881  * If the queue is being waited on by k_poll(), it will return with
1882  * -EINTR and K_POLL_STATE_CANCELLED state (and per above, subsequent
1883  * k_queue_get() will return NULL).
1884  *
1885  * @funcprops \isr_ok
1886  *
1887  * @param queue Address of the queue.
1888  */
1889 __syscall void k_queue_cancel_wait(struct k_queue *queue);
1890 
1891 /**
1892  * @brief Append an element to the end of a queue.
1893  *
1894  * This routine appends a data item to @a queue. A queue data item must be
1895  * aligned on a word boundary, and the first word of the item is reserved
1896  * for the kernel's use.
1897  *
1898  * @funcprops \isr_ok
1899  *
1900  * @param queue Address of the queue.
1901  * @param data Address of the data item.
1902  */
1903 void k_queue_append(struct k_queue *queue, void *data);
1904 
1905 /**
1906  * @brief Append an element to a queue.
1907  *
1908  * This routine appends a data item to @a queue. There is an implicit memory
1909  * allocation to create an additional temporary bookkeeping data structure from
1910  * the calling thread's resource pool, which is automatically freed when the
1911  * item is removed. The data itself is not copied.
1912  *
1913  * @funcprops \isr_ok
1914  *
1915  * @param queue Address of the queue.
1916  * @param data Address of the data item.
1917  *
1918  * @retval 0 on success
1919  * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
1920  */
1921 __syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1922 
1923 /**
1924  * @brief Prepend an element to a queue.
1925  *
1926  * This routine prepends a data item to @a queue. A queue data item must be
1927  * aligned on a word boundary, and the first word of the item is reserved
1928  * for the kernel's use.
1929  *
1930  * @funcprops \isr_ok
1931  *
1932  * @param queue Address of the queue.
1933  * @param data Address of the data item.
1934  */
1935 void k_queue_prepend(struct k_queue *queue, void *data);
1936 
1937 /**
1938  * @brief Prepend an element to a queue.
1939  *
1940  * This routine prepends a data item to @a queue. There is an implicit memory
1941  * allocation to create an additional temporary bookkeeping data structure from
1942  * the calling thread's resource pool, which is automatically freed when the
1943  * item is removed. The data itself is not copied.
1944  *
1945  * @funcprops \isr_ok
1946  *
1947  * @param queue Address of the queue.
1948  * @param data Address of the data item.
1949  *
1950  * @retval 0 on success
1951  * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
1952  */
1953 __syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1954 
1955 /**
1956  * @brief Inserts an element to a queue.
1957  *
1958  * This routine inserts a data item to @a queue after previous item. A queue
1959  * data item must be aligned on a word boundary, and the first word of
1960  * the item is reserved for the kernel's use.
1961  *
1962  * @funcprops \isr_ok
1963  *
1964  * @param queue Address of the queue.
1965  * @param prev Address of the previous data item.
1966  * @param data Address of the data item.
1967  */
1968 void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1969 
1970 /**
1971  * @brief Atomically append a list of elements to a queue.
1972  *
1973  * This routine adds a list of data items to @a queue in one operation.
1974  * The data items must be in a singly-linked list, with the first word
1975  * in each data item pointing to the next data item; the list must be
1976  * NULL-terminated.
1977  *
1978  * @funcprops \isr_ok
1979  *
1980  * @param queue Address of the queue.
1981  * @param head Pointer to first node in singly-linked list.
1982  * @param tail Pointer to last node in singly-linked list.
1983  *
1984  * @retval 0 on success
1985  * @retval -EINVAL on invalid supplied data
1986  *
1987  */
1988 int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1989 
1990 /**
1991  * @brief Atomically add a list of elements to a queue.
1992  *
1993  * This routine adds a list of data items to @a queue in one operation.
1994  * The data items must be in a singly-linked list implemented using a
1995  * sys_slist_t object. Upon completion, the original list is empty.
1996  *
1997  * @funcprops \isr_ok
1998  *
1999  * @param queue Address of the queue.
2000  * @param list Pointer to sys_slist_t object.
2001  *
2002  * @retval 0 on success
2003  * @retval -EINVAL on invalid data
2004  */
2005 int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2006 
2007 /**
2008  * @brief Get an element from a queue.
2009  *
2010  * This routine removes first data item from @a queue. The first word of the
2011  * data item is reserved for the kernel's use.
2012  *
2013  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2014  *
2015  * @funcprops \isr_ok
2016  *
2017  * @param queue Address of the queue.
2018  * @param timeout Non-negative waiting period to obtain a data item
2019  *                or one of the special values K_NO_WAIT and
2020  *                K_FOREVER.
2021  *
2022  * @return Address of the data item if successful; NULL if returned
2023  * without waiting, or waiting period timed out.
2024  */
2025 __syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2026 
2027 /**
2028  * @brief Remove an element from a queue.
2029  *
2030  * This routine removes data item from @a queue. The first word of the
2031  * data item is reserved for the kernel's use. Removing elements from k_queue
2032  * rely on sys_slist_find_and_remove which is not a constant time operation.
2033  *
2034  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2035  *
2036  * @funcprops \isr_ok
2037  *
2038  * @param queue Address of the queue.
2039  * @param data Address of the data item.
2040  *
2041  * @return true if data item was removed
2042  */
2043 bool k_queue_remove(struct k_queue *queue, void *data);
2044 
2045 /**
2046  * @brief Append an element to a queue only if it's not present already.
2047  *
2048  * This routine appends data item to @a queue. The first word of the data
2049  * item is reserved for the kernel's use. Appending elements to k_queue
2050  * relies on sys_slist_is_node_in_list which is not a constant time operation.
2051  *
2052  * @funcprops \isr_ok
2053  *
2054  * @param queue Address of the queue.
2055  * @param data Address of the data item.
2056  *
2057  * @return true if data item was added, false if not
2058  */
2059 bool k_queue_unique_append(struct k_queue *queue, void *data);
2060 
2061 /**
2062  * @brief Query a queue to see if it has data available.
2063  *
2064  * Note that the data might be already gone by the time this function returns
2065  * if other threads are also trying to read from the queue.
2066  *
2067  * @funcprops \isr_ok
2068  *
2069  * @param queue Address of the queue.
2070  *
2071  * @return Non-zero if the queue is empty.
2072  * @return 0 if data is available.
2073  */
2074 __syscall int k_queue_is_empty(struct k_queue *queue);
2075 
z_impl_k_queue_is_empty(struct k_queue * queue)2076 static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2077 {
2078 	return (int)sys_sflist_is_empty(&queue->data_q);
2079 }
2080 
2081 /**
2082  * @brief Peek element at the head of queue.
2083  *
2084  * Return element from the head of queue without removing it.
2085  *
2086  * @param queue Address of the queue.
2087  *
2088  * @return Head element, or NULL if queue is empty.
2089  */
2090 __syscall void *k_queue_peek_head(struct k_queue *queue);
2091 
2092 /**
2093  * @brief Peek element at the tail of queue.
2094  *
2095  * Return element from the tail of queue without removing it.
2096  *
2097  * @param queue Address of the queue.
2098  *
2099  * @return Tail element, or NULL if queue is empty.
2100  */
2101 __syscall void *k_queue_peek_tail(struct k_queue *queue);
2102 
2103 /**
2104  * @brief Statically define and initialize a queue.
2105  *
2106  * The queue can be accessed outside the module where it is defined using:
2107  *
2108  * @code extern struct k_queue <name>; @endcode
2109  *
2110  * @param name Name of the queue.
2111  */
2112 #define K_QUEUE_DEFINE(name) \
2113 	STRUCT_SECTION_ITERABLE(k_queue, name) = \
2114 		Z_QUEUE_INITIALIZER(name)
2115 
2116 /** @} */
2117 
2118 #ifdef CONFIG_USERSPACE
2119 /**
2120  * @brief futex structure
2121  *
2122  * A k_futex is a lightweight mutual exclusion primitive designed
2123  * to minimize kernel involvement. Uncontended operation relies
2124  * only on atomic access to shared memory. k_futex are tracked as
2125  * kernel objects and can live in user memory so that any access
2126  * bypasses the kernel object permission management mechanism.
2127  */
2128 struct k_futex {
2129 	atomic_t val;
2130 };
2131 
2132 /**
2133  * @brief futex kernel data structure
2134  *
2135  * z_futex_data are the helper data structure for k_futex to complete
2136  * futex contended operation on kernel side, structure z_futex_data
2137  * of every futex object is invisible in user mode.
2138  */
2139 struct z_futex_data {
2140 	_wait_q_t wait_q;
2141 	struct k_spinlock lock;
2142 };
2143 
2144 #define Z_FUTEX_DATA_INITIALIZER(obj) \
2145 	{ \
2146 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2147 	}
2148 
2149 /**
2150  * @defgroup futex_apis FUTEX APIs
2151  * @ingroup kernel_apis
2152  * @{
2153  */
2154 
2155 /**
2156  * @brief Pend the current thread on a futex
2157  *
2158  * Tests that the supplied futex contains the expected value, and if so,
2159  * goes to sleep until some other thread calls k_futex_wake() on it.
2160  *
2161  * @param futex Address of the futex.
2162  * @param expected Expected value of the futex, if it is different the caller
2163  *		   will not wait on it.
2164  * @param timeout Non-negative waiting period on the futex, or
2165  *		  one of the special values K_NO_WAIT or K_FOREVER.
2166  * @retval -EACCES Caller does not have read access to futex address.
2167  * @retval -EAGAIN If the futex value did not match the expected parameter.
2168  * @retval -EINVAL Futex parameter address not recognized by the kernel.
2169  * @retval -ETIMEDOUT Thread woke up due to timeout and not a futex wakeup.
2170  * @retval 0 if the caller went to sleep and was woken up. The caller
2171  *	     should check the futex's value on wakeup to determine if it needs
2172  *	     to block again.
2173  */
2174 __syscall int k_futex_wait(struct k_futex *futex, int expected,
2175 			   k_timeout_t timeout);
2176 
2177 /**
2178  * @brief Wake one/all threads pending on a futex
2179  *
2180  * Wake up the highest priority thread pending on the supplied futex, or
2181  * wakeup all the threads pending on the supplied futex, and the behavior
2182  * depends on wake_all.
2183  *
2184  * @param futex Futex to wake up pending threads.
2185  * @param wake_all If true, wake up all pending threads; If false,
2186  *                 wakeup the highest priority thread.
2187  * @retval -EACCES Caller does not have access to the futex address.
2188  * @retval -EINVAL Futex parameter address not recognized by the kernel.
2189  * @retval Number of threads that were woken up.
2190  */
2191 __syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2192 
2193 /** @} */
2194 #endif
2195 
2196 /**
2197  * @defgroup event_apis Event APIs
2198  * @ingroup kernel_apis
2199  * @{
2200  */
2201 
2202 /**
2203  * Event Structure
2204  * @ingroup event_apis
2205  */
2206 
2207 struct k_event {
2208 	_wait_q_t         wait_q;
2209 	uint32_t          events;
2210 	struct k_spinlock lock;
2211 
2212 	SYS_PORT_TRACING_TRACKING_FIELD(k_event)
2213 
2214 #ifdef CONFIG_OBJ_CORE_EVENT
2215 	struct k_obj_core obj_core;
2216 #endif
2217 
2218 };
2219 
2220 #define Z_EVENT_INITIALIZER(obj) \
2221 	{ \
2222 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2223 	.events = 0 \
2224 	}
2225 
2226 /**
2227  * @brief Initialize an event object
2228  *
2229  * This routine initializes an event object, prior to its first use.
2230  *
2231  * @param event Address of the event object.
2232  */
2233 __syscall void k_event_init(struct k_event *event);
2234 
2235 /**
2236  * @brief Post one or more events to an event object
2237  *
2238  * This routine posts one or more events to an event object. All tasks waiting
2239  * on the event object @a event whose waiting conditions become met by this
2240  * posting immediately unpend.
2241  *
2242  * Posting differs from setting in that posted events are merged together with
2243  * the current set of events tracked by the event object.
2244  *
2245  * @param event Address of the event object
2246  * @param events Set of events to post to @a event
2247  *
2248  * @retval Previous value of the events in @a event
2249  */
2250 __syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2251 
2252 /**
2253  * @brief Set the events in an event object
2254  *
2255  * This routine sets the events stored in event object to the specified value.
2256  * All tasks waiting on the event object @a event whose waiting conditions
2257  * become met by this immediately unpend.
2258  *
2259  * Setting differs from posting in that set events replace the current set of
2260  * events tracked by the event object.
2261  *
2262  * @param event Address of the event object
2263  * @param events Set of events to set in @a event
2264  *
2265  * @retval Previous value of the events in @a event
2266  */
2267 __syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2268 
2269 /**
2270  * @brief Set or clear the events in an event object
2271  *
2272  * This routine sets the events stored in event object to the specified value.
2273  * All tasks waiting on the event object @a event whose waiting conditions
2274  * become met by this immediately unpend. Unlike @ref k_event_set, this routine
2275  * allows specific event bits to be set and cleared as determined by the mask.
2276  *
2277  * @param event Address of the event object
2278  * @param events Set of events to set/clear in @a event
2279  * @param events_mask Mask to be applied to @a events
2280  *
2281  * @retval Previous value of the events in @a events_mask
2282  */
2283 __syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2284 				  uint32_t events_mask);
2285 
2286 /**
2287  * @brief Clear the events in an event object
2288  *
2289  * This routine clears (resets) the specified events stored in an event object.
2290  *
2291  * @param event Address of the event object
2292  * @param events Set of events to clear in @a event
2293  *
2294  * @retval Previous value of the events in @a event
2295  */
2296 __syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2297 
2298 /**
2299  * @brief Wait for any of the specified events
2300  *
2301  * This routine waits on event object @a event until any of the specified
2302  * events have been delivered to the event object, or the maximum wait time
2303  * @a timeout has expired. A thread may wait on up to 32 distinctly numbered
2304  * events that are expressed as bits in a single 32-bit word.
2305  *
2306  * @note The caller must be careful when resetting if there are multiple threads
2307  * waiting for the event object @a event.
2308  *
2309  * @param event Address of the event object
2310  * @param events Set of desired events on which to wait
2311  * @param reset If true, clear the set of events tracked by the event object
2312  *              before waiting. If false, do not clear the events.
2313  * @param timeout Waiting period for the desired set of events or one of the
2314  *                special values K_NO_WAIT and K_FOREVER.
2315  *
2316  * @retval set of matching events upon success
2317  * @retval 0 if matching events were not received within the specified time
2318  */
2319 __syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2320 				bool reset, k_timeout_t timeout);
2321 
2322 /**
2323  * @brief Wait for all of the specified events
2324  *
2325  * This routine waits on event object @a event until all of the specified
2326  * events have been delivered to the event object, or the maximum wait time
2327  * @a timeout has expired. A thread may wait on up to 32 distinctly numbered
2328  * events that are expressed as bits in a single 32-bit word.
2329  *
2330  * @note The caller must be careful when resetting if there are multiple threads
2331  * waiting for the event object @a event.
2332  *
2333  * @param event Address of the event object
2334  * @param events Set of desired events on which to wait
2335  * @param reset If true, clear the set of events tracked by the event object
2336  *              before waiting. If false, do not clear the events.
2337  * @param timeout Waiting period for the desired set of events or one of the
2338  *                special values K_NO_WAIT and K_FOREVER.
2339  *
2340  * @retval set of matching events upon success
2341  * @retval 0 if matching events were not received within the specified time
2342  */
2343 __syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2344 				    bool reset, k_timeout_t timeout);
2345 
2346 /**
2347  * @brief Test the events currently tracked in the event object
2348  *
2349  * @param event Address of the event object
2350  * @param events_mask Set of desired events to test
2351  *
2352  * @retval Current value of events in @a events_mask
2353  */
k_event_test(struct k_event * event,uint32_t events_mask)2354 static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2355 {
2356 	return k_event_wait(event, events_mask, false, K_NO_WAIT);
2357 }
2358 
2359 /**
2360  * @brief Statically define and initialize an event object
2361  *
2362  * The event can be accessed outside the module where it is defined using:
2363  *
2364  * @code extern struct k_event <name>; @endcode
2365  *
2366  * @param name Name of the event object.
2367  */
2368 #define K_EVENT_DEFINE(name)                                   \
2369 	STRUCT_SECTION_ITERABLE(k_event, name) =               \
2370 		Z_EVENT_INITIALIZER(name);
2371 
2372 /** @} */
2373 
2374 struct k_fifo {
2375 	struct k_queue _queue;
2376 #ifdef CONFIG_OBJ_CORE_FIFO
2377 	struct k_obj_core  obj_core;
2378 #endif
2379 };
2380 
2381 /**
2382  * @cond INTERNAL_HIDDEN
2383  */
2384 #define Z_FIFO_INITIALIZER(obj) \
2385 	{ \
2386 	._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2387 	}
2388 
2389 /**
2390  * INTERNAL_HIDDEN @endcond
2391  */
2392 
2393 /**
2394  * @defgroup fifo_apis FIFO APIs
2395  * @ingroup kernel_apis
2396  * @{
2397  */
2398 
2399 /**
2400  * @brief Initialize a FIFO queue.
2401  *
2402  * This routine initializes a FIFO queue, prior to its first use.
2403  *
2404  * @param fifo Address of the FIFO queue.
2405  */
2406 #define k_fifo_init(fifo)                                    \
2407 	({                                                   \
2408 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2409 	k_queue_init(&(fifo)->_queue);                       \
2410 	K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo);   \
2411 	K_OBJ_CORE_LINK(K_OBJ_CORE(fifo));                   \
2412 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo);  \
2413 	})
2414 
2415 /**
2416  * @brief Cancel waiting on a FIFO queue.
2417  *
2418  * This routine causes first thread pending on @a fifo, if any, to
2419  * return from k_fifo_get() call with NULL value (as if timeout
2420  * expired).
2421  *
2422  * @funcprops \isr_ok
2423  *
2424  * @param fifo Address of the FIFO queue.
2425  */
2426 #define k_fifo_cancel_wait(fifo) \
2427 	({ \
2428 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2429 	k_queue_cancel_wait(&(fifo)->_queue); \
2430 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2431 	})
2432 
2433 /**
2434  * @brief Add an element to a FIFO queue.
2435  *
2436  * This routine adds a data item to @a fifo. A FIFO data item must be
2437  * aligned on a word boundary, and the first word of the item is reserved
2438  * for the kernel's use.
2439  *
2440  * @funcprops \isr_ok
2441  *
2442  * @param fifo Address of the FIFO.
2443  * @param data Address of the data item.
2444  */
2445 #define k_fifo_put(fifo, data) \
2446 	({ \
2447 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2448 	k_queue_append(&(fifo)->_queue, data); \
2449 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2450 	})
2451 
2452 /**
2453  * @brief Add an element to a FIFO queue.
2454  *
2455  * This routine adds a data item to @a fifo. There is an implicit memory
2456  * allocation to create an additional temporary bookkeeping data structure from
2457  * the calling thread's resource pool, which is automatically freed when the
2458  * item is removed. The data itself is not copied.
2459  *
2460  * @funcprops \isr_ok
2461  *
2462  * @param fifo Address of the FIFO.
2463  * @param data Address of the data item.
2464  *
2465  * @retval 0 on success
2466  * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
2467  */
2468 #define k_fifo_alloc_put(fifo, data) \
2469 	({ \
2470 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2471 	int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2472 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2473 	fap_ret; \
2474 	})
2475 
2476 /**
2477  * @brief Atomically add a list of elements to a FIFO.
2478  *
2479  * This routine adds a list of data items to @a fifo in one operation.
2480  * The data items must be in a singly-linked list, with the first word of
2481  * each data item pointing to the next data item; the list must be
2482  * NULL-terminated.
2483  *
2484  * @funcprops \isr_ok
2485  *
2486  * @param fifo Address of the FIFO queue.
2487  * @param head Pointer to first node in singly-linked list.
2488  * @param tail Pointer to last node in singly-linked list.
2489  */
2490 #define k_fifo_put_list(fifo, head, tail) \
2491 	({ \
2492 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2493 	k_queue_append_list(&(fifo)->_queue, head, tail); \
2494 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2495 	})
2496 
2497 /**
2498  * @brief Atomically add a list of elements to a FIFO queue.
2499  *
2500  * This routine adds a list of data items to @a fifo in one operation.
2501  * The data items must be in a singly-linked list implemented using a
2502  * sys_slist_t object. Upon completion, the sys_slist_t object is invalid
2503  * and must be re-initialized via sys_slist_init().
2504  *
2505  * @funcprops \isr_ok
2506  *
2507  * @param fifo Address of the FIFO queue.
2508  * @param list Pointer to sys_slist_t object.
2509  */
2510 #define k_fifo_put_slist(fifo, list) \
2511 	({ \
2512 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2513 	k_queue_merge_slist(&(fifo)->_queue, list); \
2514 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2515 	})
2516 
2517 /**
2518  * @brief Get an element from a FIFO queue.
2519  *
2520  * This routine removes a data item from @a fifo in a "first in, first out"
2521  * manner. The first word of the data item is reserved for the kernel's use.
2522  *
2523  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2524  *
2525  * @funcprops \isr_ok
2526  *
2527  * @param fifo Address of the FIFO queue.
2528  * @param timeout Waiting period to obtain a data item,
2529  *                or one of the special values K_NO_WAIT and K_FOREVER.
2530  *
2531  * @return Address of the data item if successful; NULL if returned
2532  * without waiting, or waiting period timed out.
2533  */
2534 #define k_fifo_get(fifo, timeout) \
2535 	({ \
2536 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2537 	void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2538 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2539 	fg_ret; \
2540 	})
2541 
2542 /**
2543  * @brief Query a FIFO queue to see if it has data available.
2544  *
2545  * Note that the data might be already gone by the time this function returns
2546  * if other threads is also trying to read from the FIFO.
2547  *
2548  * @funcprops \isr_ok
2549  *
2550  * @param fifo Address of the FIFO queue.
2551  *
2552  * @return Non-zero if the FIFO queue is empty.
2553  * @return 0 if data is available.
2554  */
2555 #define k_fifo_is_empty(fifo) \
2556 	k_queue_is_empty(&(fifo)->_queue)
2557 
2558 /**
2559  * @brief Peek element at the head of a FIFO queue.
2560  *
2561  * Return element from the head of FIFO queue without removing it. A usecase
2562  * for this is if elements of the FIFO object are themselves containers. Then
2563  * on each iteration of processing, a head container will be peeked,
2564  * and some data processed out of it, and only if the container is empty,
2565  * it will be completely remove from the FIFO queue.
2566  *
2567  * @param fifo Address of the FIFO queue.
2568  *
2569  * @return Head element, or NULL if the FIFO queue is empty.
2570  */
2571 #define k_fifo_peek_head(fifo) \
2572 	({ \
2573 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2574 	void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2575 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2576 	fph_ret; \
2577 	})
2578 
2579 /**
2580  * @brief Peek element at the tail of FIFO queue.
2581  *
2582  * Return element from the tail of FIFO queue (without removing it). A usecase
2583  * for this is if elements of the FIFO queue are themselves containers. Then
2584  * it may be useful to add more data to the last container in a FIFO queue.
2585  *
2586  * @param fifo Address of the FIFO queue.
2587  *
2588  * @return Tail element, or NULL if a FIFO queue is empty.
2589  */
2590 #define k_fifo_peek_tail(fifo) \
2591 	({ \
2592 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2593 	void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2594 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2595 	fpt_ret; \
2596 	})
2597 
2598 /**
2599  * @brief Statically define and initialize a FIFO queue.
2600  *
2601  * The FIFO queue can be accessed outside the module where it is defined using:
2602  *
2603  * @code extern struct k_fifo <name>; @endcode
2604  *
2605  * @param name Name of the FIFO queue.
2606  */
2607 #define K_FIFO_DEFINE(name) \
2608 	STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2609 		Z_FIFO_INITIALIZER(name)
2610 
2611 /** @} */
2612 
2613 struct k_lifo {
2614 	struct k_queue _queue;
2615 #ifdef CONFIG_OBJ_CORE_LIFO
2616 	struct k_obj_core  obj_core;
2617 #endif
2618 };
2619 
2620 /**
2621  * @cond INTERNAL_HIDDEN
2622  */
2623 
2624 #define Z_LIFO_INITIALIZER(obj) \
2625 	{ \
2626 	._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2627 	}
2628 
2629 /**
2630  * INTERNAL_HIDDEN @endcond
2631  */
2632 
2633 /**
2634  * @defgroup lifo_apis LIFO APIs
2635  * @ingroup kernel_apis
2636  * @{
2637  */
2638 
2639 /**
2640  * @brief Initialize a LIFO queue.
2641  *
2642  * This routine initializes a LIFO queue object, prior to its first use.
2643  *
2644  * @param lifo Address of the LIFO queue.
2645  */
2646 #define k_lifo_init(lifo)                                    \
2647 	({                                                   \
2648 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2649 	k_queue_init(&(lifo)->_queue);                       \
2650 	K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo);   \
2651 	K_OBJ_CORE_LINK(K_OBJ_CORE(lifo));                   \
2652 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo);  \
2653 	})
2654 
2655 /**
2656  * @brief Add an element to a LIFO queue.
2657  *
2658  * This routine adds a data item to @a lifo. A LIFO queue data item must be
2659  * aligned on a word boundary, and the first word of the item is
2660  * reserved for the kernel's use.
2661  *
2662  * @funcprops \isr_ok
2663  *
2664  * @param lifo Address of the LIFO queue.
2665  * @param data Address of the data item.
2666  */
2667 #define k_lifo_put(lifo, data) \
2668 	({ \
2669 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2670 	k_queue_prepend(&(lifo)->_queue, data); \
2671 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2672 	})
2673 
2674 /**
2675  * @brief Add an element to a LIFO queue.
2676  *
2677  * This routine adds a data item to @a lifo. There is an implicit memory
2678  * allocation to create an additional temporary bookkeeping data structure from
2679  * the calling thread's resource pool, which is automatically freed when the
2680  * item is removed. The data itself is not copied.
2681  *
2682  * @funcprops \isr_ok
2683  *
2684  * @param lifo Address of the LIFO.
2685  * @param data Address of the data item.
2686  *
2687  * @retval 0 on success
2688  * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
2689  */
2690 #define k_lifo_alloc_put(lifo, data) \
2691 	({ \
2692 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2693 	int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2694 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2695 	lap_ret; \
2696 	})
2697 
2698 /**
2699  * @brief Get an element from a LIFO queue.
2700  *
2701  * This routine removes a data item from @a LIFO in a "last in, first out"
2702  * manner. The first word of the data item is reserved for the kernel's use.
2703  *
2704  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2705  *
2706  * @funcprops \isr_ok
2707  *
2708  * @param lifo Address of the LIFO queue.
2709  * @param timeout Waiting period to obtain a data item,
2710  *                or one of the special values K_NO_WAIT and K_FOREVER.
2711  *
2712  * @return Address of the data item if successful; NULL if returned
2713  * without waiting, or waiting period timed out.
2714  */
2715 #define k_lifo_get(lifo, timeout) \
2716 	({ \
2717 	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2718 	void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2719 	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2720 	lg_ret; \
2721 	})
2722 
2723 /**
2724  * @brief Statically define and initialize a LIFO queue.
2725  *
2726  * The LIFO queue can be accessed outside the module where it is defined using:
2727  *
2728  * @code extern struct k_lifo <name>; @endcode
2729  *
2730  * @param name Name of the fifo.
2731  */
2732 #define K_LIFO_DEFINE(name) \
2733 	STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2734 		Z_LIFO_INITIALIZER(name)
2735 
2736 /** @} */
2737 
2738 /**
2739  * @cond INTERNAL_HIDDEN
2740  */
2741 #define K_STACK_FLAG_ALLOC	((uint8_t)1)	/* Buffer was allocated */
2742 
2743 typedef uintptr_t stack_data_t;
2744 
2745 struct k_stack {
2746 	_wait_q_t wait_q;
2747 	struct k_spinlock lock;
2748 	stack_data_t *base, *next, *top;
2749 
2750 	uint8_t flags;
2751 
2752 	SYS_PORT_TRACING_TRACKING_FIELD(k_stack)
2753 
2754 #ifdef CONFIG_OBJ_CORE_STACK
2755 	struct k_obj_core  obj_core;
2756 #endif
2757 };
2758 
2759 #define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2760 	{ \
2761 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q),	\
2762 	.base = stack_buffer, \
2763 	.next = stack_buffer, \
2764 	.top = stack_buffer + stack_num_entries, \
2765 	}
2766 
2767 /**
2768  * INTERNAL_HIDDEN @endcond
2769  */
2770 
2771 /**
2772  * @defgroup stack_apis Stack APIs
2773  * @ingroup kernel_apis
2774  * @{
2775  */
2776 
2777 /**
2778  * @brief Initialize a stack.
2779  *
2780  * This routine initializes a stack object, prior to its first use.
2781  *
2782  * @param stack Address of the stack.
2783  * @param buffer Address of array used to hold stacked values.
2784  * @param num_entries Maximum number of values that can be stacked.
2785  */
2786 void k_stack_init(struct k_stack *stack,
2787 		  stack_data_t *buffer, uint32_t num_entries);
2788 
2789 
2790 /**
2791  * @brief Initialize a stack.
2792  *
2793  * This routine initializes a stack object, prior to its first use. Internal
2794  * buffers will be allocated from the calling thread's resource pool.
2795  * This memory will be released if k_stack_cleanup() is called, or
2796  * userspace is enabled and the stack object loses all references to it.
2797  *
2798  * @param stack Address of the stack.
2799  * @param num_entries Maximum number of values that can be stacked.
2800  *
2801  * @return -ENOMEM if memory couldn't be allocated
2802  */
2803 
2804 __syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2805 				   uint32_t num_entries);
2806 
2807 /**
2808  * @brief Release a stack's allocated buffer
2809  *
2810  * If a stack object was given a dynamically allocated buffer via
2811  * k_stack_alloc_init(), this will free it. This function does nothing
2812  * if the buffer wasn't dynamically allocated.
2813  *
2814  * @param stack Address of the stack.
2815  * @retval 0 on success
2816  * @retval -EAGAIN when object is still in use
2817  */
2818 int k_stack_cleanup(struct k_stack *stack);
2819 
2820 /**
2821  * @brief Push an element onto a stack.
2822  *
2823  * This routine adds a stack_data_t value @a data to @a stack.
2824  *
2825  * @funcprops \isr_ok
2826  *
2827  * @param stack Address of the stack.
2828  * @param data Value to push onto the stack.
2829  *
2830  * @retval 0 on success
2831  * @retval -ENOMEM if stack is full
2832  */
2833 __syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2834 
2835 /**
2836  * @brief Pop an element from a stack.
2837  *
2838  * This routine removes a stack_data_t value from @a stack in a "last in,
2839  * first out" manner and stores the value in @a data.
2840  *
2841  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
2842  *
2843  * @funcprops \isr_ok
2844  *
2845  * @param stack Address of the stack.
2846  * @param data Address of area to hold the value popped from the stack.
2847  * @param timeout Waiting period to obtain a value,
2848  *                or one of the special values K_NO_WAIT and
2849  *                K_FOREVER.
2850  *
2851  * @retval 0 Element popped from stack.
2852  * @retval -EBUSY Returned without waiting.
2853  * @retval -EAGAIN Waiting period timed out.
2854  */
2855 __syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2856 			  k_timeout_t timeout);
2857 
2858 /**
2859  * @brief Statically define and initialize a stack
2860  *
2861  * The stack can be accessed outside the module where it is defined using:
2862  *
2863  * @code extern struct k_stack <name>; @endcode
2864  *
2865  * @param name Name of the stack.
2866  * @param stack_num_entries Maximum number of values that can be stacked.
2867  */
2868 #define K_STACK_DEFINE(name, stack_num_entries)                \
2869 	stack_data_t __noinit                                  \
2870 		_k_stack_buf_##name[stack_num_entries];        \
2871 	STRUCT_SECTION_ITERABLE(k_stack, name) =               \
2872 		Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2873 				    stack_num_entries)
2874 
2875 /** @} */
2876 
2877 /**
2878  * @cond INTERNAL_HIDDEN
2879  */
2880 
2881 struct k_work;
2882 struct k_work_q;
2883 struct k_work_queue_config;
2884 extern struct k_work_q k_sys_work_q;
2885 
2886 /**
2887  * INTERNAL_HIDDEN @endcond
2888  */
2889 
2890 /**
2891  * @defgroup mutex_apis Mutex APIs
2892  * @ingroup kernel_apis
2893  * @{
2894  */
2895 
2896 /**
2897  * Mutex Structure
2898  * @ingroup mutex_apis
2899  */
2900 struct k_mutex {
2901 	/** Mutex wait queue */
2902 	_wait_q_t wait_q;
2903 	/** Mutex owner */
2904 	struct k_thread *owner;
2905 
2906 	/** Current lock count */
2907 	uint32_t lock_count;
2908 
2909 	/** Original thread priority */
2910 	int owner_orig_prio;
2911 
2912 	SYS_PORT_TRACING_TRACKING_FIELD(k_mutex)
2913 
2914 #ifdef CONFIG_OBJ_CORE_MUTEX
2915 	struct k_obj_core obj_core;
2916 #endif
2917 };
2918 
2919 /**
2920  * @cond INTERNAL_HIDDEN
2921  */
2922 #define Z_MUTEX_INITIALIZER(obj) \
2923 	{ \
2924 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2925 	.owner = NULL, \
2926 	.lock_count = 0, \
2927 	.owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2928 	}
2929 
2930 /**
2931  * INTERNAL_HIDDEN @endcond
2932  */
2933 
2934 /**
2935  * @brief Statically define and initialize a mutex.
2936  *
2937  * The mutex can be accessed outside the module where it is defined using:
2938  *
2939  * @code extern struct k_mutex <name>; @endcode
2940  *
2941  * @param name Name of the mutex.
2942  */
2943 #define K_MUTEX_DEFINE(name) \
2944 	STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2945 		Z_MUTEX_INITIALIZER(name)
2946 
2947 /**
2948  * @brief Initialize a mutex.
2949  *
2950  * This routine initializes a mutex object, prior to its first use.
2951  *
2952  * Upon completion, the mutex is available and does not have an owner.
2953  *
2954  * @param mutex Address of the mutex.
2955  *
2956  * @retval 0 Mutex object created
2957  *
2958  */
2959 __syscall int k_mutex_init(struct k_mutex *mutex);
2960 
2961 
2962 /**
2963  * @brief Lock a mutex.
2964  *
2965  * This routine locks @a mutex. If the mutex is locked by another thread,
2966  * the calling thread waits until the mutex becomes available or until
2967  * a timeout occurs.
2968  *
2969  * A thread is permitted to lock a mutex it has already locked. The operation
2970  * completes immediately and the lock count is increased by 1.
2971  *
2972  * Mutexes may not be locked in ISRs.
2973  *
2974  * @param mutex Address of the mutex.
2975  * @param timeout Waiting period to lock the mutex,
2976  *                or one of the special values K_NO_WAIT and
2977  *                K_FOREVER.
2978  *
2979  * @retval 0 Mutex locked.
2980  * @retval -EBUSY Returned without waiting.
2981  * @retval -EAGAIN Waiting period timed out.
2982  */
2983 __syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
2984 
2985 /**
2986  * @brief Unlock a mutex.
2987  *
2988  * This routine unlocks @a mutex. The mutex must already be locked by the
2989  * calling thread.
2990  *
2991  * The mutex cannot be claimed by another thread until it has been unlocked by
2992  * the calling thread as many times as it was previously locked by that
2993  * thread.
2994  *
2995  * Mutexes may not be unlocked in ISRs, as mutexes must only be manipulated
2996  * in thread context due to ownership and priority inheritance semantics.
2997  *
2998  * @param mutex Address of the mutex.
2999  *
3000  * @retval 0 Mutex unlocked.
3001  * @retval -EPERM The current thread does not own the mutex
3002  * @retval -EINVAL The mutex is not locked
3003  *
3004  */
3005 __syscall int k_mutex_unlock(struct k_mutex *mutex);
3006 
3007 /**
3008  * @}
3009  */
3010 
3011 
3012 struct k_condvar {
3013 	_wait_q_t wait_q;
3014 
3015 #ifdef CONFIG_OBJ_CORE_CONDVAR
3016 	struct k_obj_core  obj_core;
3017 #endif
3018 };
3019 
3020 #define Z_CONDVAR_INITIALIZER(obj)                                             \
3021 	{                                                                      \
3022 		.wait_q = Z_WAIT_Q_INIT(&obj.wait_q),                          \
3023 	}
3024 
3025 /**
3026  * @defgroup condvar_apis Condition Variables APIs
3027  * @ingroup kernel_apis
3028  * @{
3029  */
3030 
3031 /**
3032  * @brief Initialize a condition variable
3033  *
3034  * @param condvar pointer to a @p k_condvar structure
3035  * @retval 0 Condition variable created successfully
3036  */
3037 __syscall int k_condvar_init(struct k_condvar *condvar);
3038 
3039 /**
3040  * @brief Signals one thread that is pending on the condition variable
3041  *
3042  * @param condvar pointer to a @p k_condvar structure
3043  * @retval 0 On success
3044  */
3045 __syscall int k_condvar_signal(struct k_condvar *condvar);
3046 
3047 /**
3048  * @brief Unblock all threads that are pending on the condition
3049  * variable
3050  *
3051  * @param condvar pointer to a @p k_condvar structure
3052  * @return An integer with number of woken threads on success
3053  */
3054 __syscall int k_condvar_broadcast(struct k_condvar *condvar);
3055 
3056 /**
3057  * @brief Waits on the condition variable releasing the mutex lock
3058  *
3059  * Atomically releases the currently owned mutex, blocks the current thread
3060  * waiting on the condition variable specified by @a condvar,
3061  * and finally acquires the mutex again.
3062  *
3063  * The waiting thread unblocks only after another thread calls
3064  * k_condvar_signal, or k_condvar_broadcast with the same condition variable.
3065  *
3066  * @param condvar pointer to a @p k_condvar structure
3067  * @param mutex Address of the mutex.
3068  * @param timeout Waiting period for the condition variable
3069  *                or one of the special values K_NO_WAIT and K_FOREVER.
3070  * @retval 0 On success
3071  * @retval -EAGAIN Waiting period timed out.
3072  */
3073 __syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3074 			     k_timeout_t timeout);
3075 
3076 /**
3077  * @brief Statically define and initialize a condition variable.
3078  *
3079  * The condition variable can be accessed outside the module where it is
3080  * defined using:
3081  *
3082  * @code extern struct k_condvar <name>; @endcode
3083  *
3084  * @param name Name of the condition variable.
3085  */
3086 #define K_CONDVAR_DEFINE(name)                                                 \
3087 	STRUCT_SECTION_ITERABLE(k_condvar, name) =                             \
3088 		Z_CONDVAR_INITIALIZER(name)
3089 /**
3090  * @}
3091  */
3092 
3093 /**
3094  * @cond INTERNAL_HIDDEN
3095  */
3096 
3097 struct k_sem {
3098 	_wait_q_t wait_q;
3099 	unsigned int count;
3100 	unsigned int limit;
3101 
3102 	Z_DECL_POLL_EVENT
3103 
3104 	SYS_PORT_TRACING_TRACKING_FIELD(k_sem)
3105 
3106 #ifdef CONFIG_OBJ_CORE_SEM
3107 	struct k_obj_core  obj_core;
3108 #endif
3109 };
3110 
3111 #define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3112 	{ \
3113 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3114 	.count = initial_count, \
3115 	.limit = count_limit, \
3116 	Z_POLL_EVENT_OBJ_INIT(obj) \
3117 	}
3118 
3119 /**
3120  * INTERNAL_HIDDEN @endcond
3121  */
3122 
3123 /**
3124  * @defgroup semaphore_apis Semaphore APIs
3125  * @ingroup kernel_apis
3126  * @{
3127  */
3128 
3129 /**
3130  * @brief Maximum limit value allowed for a semaphore.
3131  *
3132  * This is intended for use when a semaphore does not have
3133  * an explicit maximum limit, and instead is just used for
3134  * counting purposes.
3135  *
3136  */
3137 #define K_SEM_MAX_LIMIT UINT_MAX
3138 
3139 /**
3140  * @brief Initialize a semaphore.
3141  *
3142  * This routine initializes a semaphore object, prior to its first use.
3143  *
3144  * @param sem Address of the semaphore.
3145  * @param initial_count Initial semaphore count.
3146  * @param limit Maximum permitted semaphore count.
3147  *
3148  * @see K_SEM_MAX_LIMIT
3149  *
3150  * @retval 0 Semaphore created successfully
3151  * @retval -EINVAL Invalid values
3152  *
3153  */
3154 __syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3155 			  unsigned int limit);
3156 
3157 /**
3158  * @brief Take a semaphore.
3159  *
3160  * This routine takes @a sem.
3161  *
3162  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
3163  *
3164  * @funcprops \isr_ok
3165  *
3166  * @param sem Address of the semaphore.
3167  * @param timeout Waiting period to take the semaphore,
3168  *                or one of the special values K_NO_WAIT and K_FOREVER.
3169  *
3170  * @retval 0 Semaphore taken.
3171  * @retval -EBUSY Returned without waiting.
3172  * @retval -EAGAIN Waiting period timed out,
3173  *			or the semaphore was reset during the waiting period.
3174  */
3175 __syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3176 
3177 /**
3178  * @brief Give a semaphore.
3179  *
3180  * This routine gives @a sem, unless the semaphore is already at its maximum
3181  * permitted count.
3182  *
3183  * @funcprops \isr_ok
3184  *
3185  * @param sem Address of the semaphore.
3186  */
3187 __syscall void k_sem_give(struct k_sem *sem);
3188 
3189 /**
3190  * @brief Resets a semaphore's count to zero.
3191  *
3192  * This routine sets the count of @a sem to zero.
3193  * Any outstanding semaphore takes will be aborted
3194  * with -EAGAIN.
3195  *
3196  * @param sem Address of the semaphore.
3197  */
3198 __syscall void k_sem_reset(struct k_sem *sem);
3199 
3200 /**
3201  * @brief Get a semaphore's count.
3202  *
3203  * This routine returns the current count of @a sem.
3204  *
3205  * @param sem Address of the semaphore.
3206  *
3207  * @return Current semaphore count.
3208  */
3209 __syscall unsigned int k_sem_count_get(struct k_sem *sem);
3210 
3211 /**
3212  * @internal
3213  */
z_impl_k_sem_count_get(struct k_sem * sem)3214 static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3215 {
3216 	return sem->count;
3217 }
3218 
3219 /**
3220  * @brief Statically define and initialize a semaphore.
3221  *
3222  * The semaphore can be accessed outside the module where it is defined using:
3223  *
3224  * @code extern struct k_sem <name>; @endcode
3225  *
3226  * @param name Name of the semaphore.
3227  * @param initial_count Initial semaphore count.
3228  * @param count_limit Maximum permitted semaphore count.
3229  */
3230 #define K_SEM_DEFINE(name, initial_count, count_limit) \
3231 	STRUCT_SECTION_ITERABLE(k_sem, name) = \
3232 		Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3233 	BUILD_ASSERT(((count_limit) != 0) && \
3234 		     ((initial_count) <= (count_limit)) && \
3235 			 ((count_limit) <= K_SEM_MAX_LIMIT));
3236 
3237 /** @} */
3238 
3239 /**
3240  * @cond INTERNAL_HIDDEN
3241  */
3242 
3243 struct k_work_delayable;
3244 struct k_work_sync;
3245 
3246 /**
3247  * INTERNAL_HIDDEN @endcond
3248  */
3249 
3250 /**
3251  * @defgroup workqueue_apis Work Queue APIs
3252  * @ingroup kernel_apis
3253  * @{
3254  */
3255 
3256 /** @brief The signature for a work item handler function.
3257  *
3258  * The function will be invoked by the thread animating a work queue.
3259  *
3260  * @param work the work item that provided the handler.
3261  */
3262 typedef void (*k_work_handler_t)(struct k_work *work);
3263 
3264 /** @brief Initialize a (non-delayable) work structure.
3265  *
3266  * This must be invoked before submitting a work structure for the first time.
3267  * It need not be invoked again on the same work structure.  It can be
3268  * re-invoked to change the associated handler, but this must be done when the
3269  * work item is idle.
3270  *
3271  * @funcprops \isr_ok
3272  *
3273  * @param work the work structure to be initialized.
3274  *
3275  * @param handler the handler to be invoked by the work item.
3276  */
3277 void k_work_init(struct k_work *work,
3278 		  k_work_handler_t handler);
3279 
3280 /** @brief Busy state flags from the work item.
3281  *
3282  * A zero return value indicates the work item appears to be idle.
3283  *
3284  * @note This is a live snapshot of state, which may change before the result
3285  * is checked.  Use locks where appropriate.
3286  *
3287  * @funcprops \isr_ok
3288  *
3289  * @param work pointer to the work item.
3290  *
3291  * @return a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
3292  * K_WORK_RUNNING, K_WORK_CANCELING, and K_WORK_FLUSHING.
3293  */
3294 int k_work_busy_get(const struct k_work *work);
3295 
3296 /** @brief Test whether a work item is currently pending.
3297  *
3298  * Wrapper to determine whether a work item is in a non-idle dstate.
3299  *
3300  * @note This is a live snapshot of state, which may change before the result
3301  * is checked.  Use locks where appropriate.
3302  *
3303  * @funcprops \isr_ok
3304  *
3305  * @param work pointer to the work item.
3306  *
3307  * @return true if and only if k_work_busy_get() returns a non-zero value.
3308  */
3309 static inline bool k_work_is_pending(const struct k_work *work);
3310 
3311 /** @brief Submit a work item to a queue.
3312  *
3313  * @param queue pointer to the work queue on which the item should run.  If
3314  * NULL the queue from the most recent submission will be used.
3315  *
3316  * @funcprops \isr_ok
3317  *
3318  * @param work pointer to the work item.
3319  *
3320  * @retval 0 if work was already submitted to a queue
3321  * @retval 1 if work was not submitted and has been queued to @p queue
3322  * @retval 2 if work was running and has been queued to the queue that was
3323  * running it
3324  * @retval -EBUSY
3325  * * if work submission was rejected because the work item is cancelling; or
3326  * * @p queue is draining; or
3327  * * @p queue is plugged.
3328  * @retval -EINVAL if @p queue is null and the work item has never been run.
3329  * @retval -ENODEV if @p queue has not been started.
3330  */
3331 int k_work_submit_to_queue(struct k_work_q *queue,
3332 			   struct k_work *work);
3333 
3334 /** @brief Submit a work item to the system queue.
3335  *
3336  * @funcprops \isr_ok
3337  *
3338  * @param work pointer to the work item.
3339  *
3340  * @return as with k_work_submit_to_queue().
3341  */
3342 int k_work_submit(struct k_work *work);
3343 
3344 /** @brief Wait for last-submitted instance to complete.
3345  *
3346  * Resubmissions may occur while waiting, including chained submissions (from
3347  * within the handler).
3348  *
3349  * @note Be careful of caller and work queue thread relative priority.  If
3350  * this function sleeps it will not return until the work queue thread
3351  * completes the tasks that allow this thread to resume.
3352  *
3353  * @note Behavior is undefined if this function is invoked on @p work from a
3354  * work queue running @p work.
3355  *
3356  * @param work pointer to the work item.
3357  *
3358  * @param sync pointer to an opaque item containing state related to the
3359  * pending cancellation.  The object must persist until the call returns, and
3360  * be accessible from both the caller thread and the work queue thread.  The
3361  * object must not be used for any other flush or cancel operation until this
3362  * one completes.  On architectures with CONFIG_KERNEL_COHERENCE the object
3363  * must be allocated in coherent memory.
3364  *
3365  * @retval true if call had to wait for completion
3366  * @retval false if work was already idle
3367  */
3368 bool k_work_flush(struct k_work *work,
3369 		  struct k_work_sync *sync);
3370 
3371 /** @brief Cancel a work item.
3372  *
3373  * This attempts to prevent a pending (non-delayable) work item from being
3374  * processed by removing it from the work queue.  If the item is being
3375  * processed, the work item will continue to be processed, but resubmissions
3376  * are rejected until cancellation completes.
3377  *
3378  * If this returns zero cancellation is complete, otherwise something
3379  * (probably a work queue thread) is still referencing the item.
3380  *
3381  * See also k_work_cancel_sync().
3382  *
3383  * @funcprops \isr_ok
3384  *
3385  * @param work pointer to the work item.
3386  *
3387  * @return the k_work_busy_get() status indicating the state of the item after all
3388  * cancellation steps performed by this call are completed.
3389  */
3390 int k_work_cancel(struct k_work *work);
3391 
3392 /** @brief Cancel a work item and wait for it to complete.
3393  *
3394  * Same as k_work_cancel() but does not return until cancellation is complete.
3395  * This can be invoked by a thread after k_work_cancel() to synchronize with a
3396  * previous cancellation.
3397  *
3398  * On return the work structure will be idle unless something submits it after
3399  * the cancellation was complete.
3400  *
3401  * @note Be careful of caller and work queue thread relative priority.  If
3402  * this function sleeps it will not return until the work queue thread
3403  * completes the tasks that allow this thread to resume.
3404  *
3405  * @note Behavior is undefined if this function is invoked on @p work from a
3406  * work queue running @p work.
3407  *
3408  * @param work pointer to the work item.
3409  *
3410  * @param sync pointer to an opaque item containing state related to the
3411  * pending cancellation.  The object must persist until the call returns, and
3412  * be accessible from both the caller thread and the work queue thread.  The
3413  * object must not be used for any other flush or cancel operation until this
3414  * one completes.  On architectures with CONFIG_KERNEL_COHERENCE the object
3415  * must be allocated in coherent memory.
3416  *
3417  * @retval true if work was pending (call had to wait for cancellation of a
3418  * running handler to complete, or scheduled or submitted operations were
3419  * cancelled);
3420  * @retval false otherwise
3421  */
3422 bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3423 
3424 /** @brief Initialize a work queue structure.
3425  *
3426  * This must be invoked before starting a work queue structure for the first time.
3427  * It need not be invoked again on the same work queue structure.
3428  *
3429  * @funcprops \isr_ok
3430  *
3431  * @param queue the queue structure to be initialized.
3432  */
3433 void k_work_queue_init(struct k_work_q *queue);
3434 
3435 /** @brief Initialize a work queue.
3436  *
3437  * This configures the work queue thread and starts it running.  The function
3438  * should not be re-invoked on a queue.
3439  *
3440  * @param queue pointer to the queue structure. It must be initialized
3441  *        in zeroed/bss memory or with @ref k_work_queue_init before
3442  *        use.
3443  *
3444  * @param stack pointer to the work thread stack area.
3445  *
3446  * @param stack_size size of the the work thread stack area, in bytes.
3447  *
3448  * @param prio initial thread priority
3449  *
3450  * @param cfg optional additional configuration parameters.  Pass @c
3451  * NULL if not required, to use the defaults documented in
3452  * k_work_queue_config.
3453  */
3454 void k_work_queue_start(struct k_work_q *queue,
3455 			k_thread_stack_t *stack, size_t stack_size,
3456 			int prio, const struct k_work_queue_config *cfg);
3457 
3458 /** @brief Access the thread that animates a work queue.
3459  *
3460  * This is necessary to grant a work queue thread access to things the work
3461  * items it will process are expected to use.
3462  *
3463  * @param queue pointer to the queue structure.
3464  *
3465  * @return the thread associated with the work queue.
3466  */
3467 static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3468 
3469 /** @brief Wait until the work queue has drained, optionally plugging it.
3470  *
3471  * This blocks submission to the work queue except when coming from queue
3472  * thread, and blocks the caller until no more work items are available in the
3473  * queue.
3474  *
3475  * If @p plug is true then submission will continue to be blocked after the
3476  * drain operation completes until k_work_queue_unplug() is invoked.
3477  *
3478  * Note that work items that are delayed are not yet associated with their
3479  * work queue.  They must be cancelled externally if a goal is to ensure the
3480  * work queue remains empty.  The @p plug feature can be used to prevent
3481  * delayed items from being submitted after the drain completes.
3482  *
3483  * @param queue pointer to the queue structure.
3484  *
3485  * @param plug if true the work queue will continue to block new submissions
3486  * after all items have drained.
3487  *
3488  * @retval 1 if call had to wait for the drain to complete
3489  * @retval 0 if call did not have to wait
3490  * @retval negative if wait was interrupted or failed
3491  */
3492 int k_work_queue_drain(struct k_work_q *queue, bool plug);
3493 
3494 /** @brief Release a work queue to accept new submissions.
3495  *
3496  * This releases the block on new submissions placed when k_work_queue_drain()
3497  * is invoked with the @p plug option enabled.  If this is invoked before the
3498  * drain completes new items may be submitted as soon as the drain completes.
3499  *
3500  * @funcprops \isr_ok
3501  *
3502  * @param queue pointer to the queue structure.
3503  *
3504  * @retval 0 if successfully unplugged
3505  * @retval -EALREADY if the work queue was not plugged.
3506  */
3507 int k_work_queue_unplug(struct k_work_q *queue);
3508 
3509 /** @brief Initialize a delayable work structure.
3510  *
3511  * This must be invoked before scheduling a delayable work structure for the
3512  * first time.  It need not be invoked again on the same work structure.  It
3513  * can be re-invoked to change the associated handler, but this must be done
3514  * when the work item is idle.
3515  *
3516  * @funcprops \isr_ok
3517  *
3518  * @param dwork the delayable work structure to be initialized.
3519  *
3520  * @param handler the handler to be invoked by the work item.
3521  */
3522 void k_work_init_delayable(struct k_work_delayable *dwork,
3523 			   k_work_handler_t handler);
3524 
3525 /**
3526  * @brief Get the parent delayable work structure from a work pointer.
3527  *
3528  * This function is necessary when a @c k_work_handler_t function is passed to
3529  * k_work_schedule_for_queue() and the handler needs to access data from the
3530  * container of the containing `k_work_delayable`.
3531  *
3532  * @param work Address passed to the work handler
3533  *
3534  * @return Address of the containing @c k_work_delayable structure.
3535  */
3536 static inline struct k_work_delayable *
3537 k_work_delayable_from_work(struct k_work *work);
3538 
3539 /** @brief Busy state flags from the delayable work item.
3540  *
3541  * @funcprops \isr_ok
3542  *
3543  * @note This is a live snapshot of state, which may change before the result
3544  * can be inspected.  Use locks where appropriate.
3545  *
3546  * @param dwork pointer to the delayable work item.
3547  *
3548  * @return a mask of flags K_WORK_DELAYED, K_WORK_QUEUED, K_WORK_RUNNING,
3549  * K_WORK_CANCELING, and K_WORK_FLUSHING.  A zero return value indicates the
3550  * work item appears to be idle.
3551  */
3552 int k_work_delayable_busy_get(const struct k_work_delayable *dwork);
3553 
3554 /** @brief Test whether a delayed work item is currently pending.
3555  *
3556  * Wrapper to determine whether a delayed work item is in a non-idle state.
3557  *
3558  * @note This is a live snapshot of state, which may change before the result
3559  * can be inspected.  Use locks where appropriate.
3560  *
3561  * @funcprops \isr_ok
3562  *
3563  * @param dwork pointer to the delayable work item.
3564  *
3565  * @return true if and only if k_work_delayable_busy_get() returns a non-zero
3566  * value.
3567  */
3568 static inline bool k_work_delayable_is_pending(
3569 	const struct k_work_delayable *dwork);
3570 
3571 /** @brief Get the absolute tick count at which a scheduled delayable work
3572  * will be submitted.
3573  *
3574  * @note This is a live snapshot of state, which may change before the result
3575  * can be inspected.  Use locks where appropriate.
3576  *
3577  * @funcprops \isr_ok
3578  *
3579  * @param dwork pointer to the delayable work item.
3580  *
3581  * @return the tick count when the timer that will schedule the work item will
3582  * expire, or the current tick count if the work is not scheduled.
3583  */
3584 static inline k_ticks_t k_work_delayable_expires_get(
3585 	const struct k_work_delayable *dwork);
3586 
3587 /** @brief Get the number of ticks until a scheduled delayable work will be
3588  * submitted.
3589  *
3590  * @note This is a live snapshot of state, which may change before the result
3591  * can be inspected.  Use locks where appropriate.
3592  *
3593  * @funcprops \isr_ok
3594  *
3595  * @param dwork pointer to the delayable work item.
3596  *
3597  * @return the number of ticks until the timer that will schedule the work
3598  * item will expire, or zero if the item is not scheduled.
3599  */
3600 static inline k_ticks_t k_work_delayable_remaining_get(
3601 	const struct k_work_delayable *dwork);
3602 
3603 /** @brief Submit an idle work item to a queue after a delay.
3604  *
3605  * Unlike k_work_reschedule_for_queue() this is a no-op if the work item is
3606  * already scheduled or submitted, even if @p delay is @c K_NO_WAIT.
3607  *
3608  * @funcprops \isr_ok
3609  *
3610  * @param queue the queue on which the work item should be submitted after the
3611  * delay.
3612  *
3613  * @param dwork pointer to the delayable work item.
3614  *
3615  * @param delay the time to wait before submitting the work item.  If @c
3616  * K_NO_WAIT and the work is not pending this is equivalent to
3617  * k_work_submit_to_queue().
3618  *
3619  * @retval 0 if work was already scheduled or submitted.
3620  * @retval 1 if work has been scheduled.
3621  * @retval -EBUSY if @p delay is @c K_NO_WAIT and
3622  *         k_work_submit_to_queue() fails with this code.
3623  * @retval -EINVAL if @p delay is @c K_NO_WAIT and
3624  *         k_work_submit_to_queue() fails with this code.
3625  * @retval -ENODEV if @p delay is @c K_NO_WAIT and
3626  *         k_work_submit_to_queue() fails with this code.
3627  */
3628 int k_work_schedule_for_queue(struct k_work_q *queue,
3629 			       struct k_work_delayable *dwork,
3630 			       k_timeout_t delay);
3631 
3632 /** @brief Submit an idle work item to the system work queue after a
3633  * delay.
3634  *
3635  * This is a thin wrapper around k_work_schedule_for_queue(), with all the API
3636  * characteristics of that function.
3637  *
3638  * @param dwork pointer to the delayable work item.
3639  *
3640  * @param delay the time to wait before submitting the work item.  If @c
3641  * K_NO_WAIT this is equivalent to k_work_submit_to_queue().
3642  *
3643  * @return as with k_work_schedule_for_queue().
3644  */
3645 int k_work_schedule(struct k_work_delayable *dwork,
3646 				   k_timeout_t delay);
3647 
3648 /** @brief Reschedule a work item to a queue after a delay.
3649  *
3650  * Unlike k_work_schedule_for_queue() this function can change the deadline of
3651  * a scheduled work item, and will schedule a work item that is in any state
3652  * (e.g. is idle, submitted, or running).  This function does not affect
3653  * ("unsubmit") a work item that has been submitted to a queue.
3654  *
3655  * @funcprops \isr_ok
3656  *
3657  * @param queue the queue on which the work item should be submitted after the
3658  * delay.
3659  *
3660  * @param dwork pointer to the delayable work item.
3661  *
3662  * @param delay the time to wait before submitting the work item.  If @c
3663  * K_NO_WAIT this is equivalent to k_work_submit_to_queue() after canceling
3664  * any previous scheduled submission.
3665  *
3666  * @note If delay is @c K_NO_WAIT ("no delay") the return values are as with
3667  * k_work_submit_to_queue().
3668  *
3669  * @retval 0 if delay is @c K_NO_WAIT and work was already on a queue
3670  * @retval 1 if
3671  * * delay is @c K_NO_WAIT and work was not submitted but has now been queued
3672  *   to @p queue; or
3673  * * delay not @c K_NO_WAIT and work has been scheduled
3674  * @retval 2 if delay is @c K_NO_WAIT and work was running and has been queued
3675  * to the queue that was running it
3676  * @retval -EBUSY if @p delay is @c K_NO_WAIT and
3677  *         k_work_submit_to_queue() fails with this code.
3678  * @retval -EINVAL if @p delay is @c K_NO_WAIT and
3679  *         k_work_submit_to_queue() fails with this code.
3680  * @retval -ENODEV if @p delay is @c K_NO_WAIT and
3681  *         k_work_submit_to_queue() fails with this code.
3682  */
3683 int k_work_reschedule_for_queue(struct k_work_q *queue,
3684 				 struct k_work_delayable *dwork,
3685 				 k_timeout_t delay);
3686 
3687 /** @brief Reschedule a work item to the system work queue after a
3688  * delay.
3689  *
3690  * This is a thin wrapper around k_work_reschedule_for_queue(), with all the
3691  * API characteristics of that function.
3692  *
3693  * @param dwork pointer to the delayable work item.
3694  *
3695  * @param delay the time to wait before submitting the work item.
3696  *
3697  * @return as with k_work_reschedule_for_queue().
3698  */
3699 int k_work_reschedule(struct k_work_delayable *dwork,
3700 				     k_timeout_t delay);
3701 
3702 /** @brief Flush delayable work.
3703  *
3704  * If the work is scheduled, it is immediately submitted.  Then the caller
3705  * blocks until the work completes, as with k_work_flush().
3706  *
3707  * @note Be careful of caller and work queue thread relative priority.  If
3708  * this function sleeps it will not return until the work queue thread
3709  * completes the tasks that allow this thread to resume.
3710  *
3711  * @note Behavior is undefined if this function is invoked on @p dwork from a
3712  * work queue running @p dwork.
3713  *
3714  * @param dwork pointer to the delayable work item.
3715  *
3716  * @param sync pointer to an opaque item containing state related to the
3717  * pending cancellation.  The object must persist until the call returns, and
3718  * be accessible from both the caller thread and the work queue thread.  The
3719  * object must not be used for any other flush or cancel operation until this
3720  * one completes.  On architectures with CONFIG_KERNEL_COHERENCE the object
3721  * must be allocated in coherent memory.
3722  *
3723  * @retval true if call had to wait for completion
3724  * @retval false if work was already idle
3725  */
3726 bool k_work_flush_delayable(struct k_work_delayable *dwork,
3727 			    struct k_work_sync *sync);
3728 
3729 /** @brief Cancel delayable work.
3730  *
3731  * Similar to k_work_cancel() but for delayable work.  If the work is
3732  * scheduled or submitted it is canceled.  This function does not wait for the
3733  * cancellation to complete.
3734  *
3735  * @note The work may still be running when this returns.  Use
3736  * k_work_flush_delayable() or k_work_cancel_delayable_sync() to ensure it is
3737  * not running.
3738  *
3739  * @note Canceling delayable work does not prevent rescheduling it.  It does
3740  * prevent submitting it until the cancellation completes.
3741  *
3742  * @funcprops \isr_ok
3743  *
3744  * @param dwork pointer to the delayable work item.
3745  *
3746  * @return the k_work_delayable_busy_get() status indicating the state of the
3747  * item after all cancellation steps performed by this call are completed.
3748  */
3749 int k_work_cancel_delayable(struct k_work_delayable *dwork);
3750 
3751 /** @brief Cancel delayable work and wait.
3752  *
3753  * Like k_work_cancel_delayable() but waits until the work becomes idle.
3754  *
3755  * @note Canceling delayable work does not prevent rescheduling it.  It does
3756  * prevent submitting it until the cancellation completes.
3757  *
3758  * @note Be careful of caller and work queue thread relative priority.  If
3759  * this function sleeps it will not return until the work queue thread
3760  * completes the tasks that allow this thread to resume.
3761  *
3762  * @note Behavior is undefined if this function is invoked on @p dwork from a
3763  * work queue running @p dwork.
3764  *
3765  * @param dwork pointer to the delayable work item.
3766  *
3767  * @param sync pointer to an opaque item containing state related to the
3768  * pending cancellation.  The object must persist until the call returns, and
3769  * be accessible from both the caller thread and the work queue thread.  The
3770  * object must not be used for any other flush or cancel operation until this
3771  * one completes.  On architectures with CONFIG_KERNEL_COHERENCE the object
3772  * must be allocated in coherent memory.
3773  *
3774  * @retval true if work was not idle (call had to wait for cancellation of a
3775  * running handler to complete, or scheduled or submitted operations were
3776  * cancelled);
3777  * @retval false otherwise
3778  */
3779 bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork,
3780 				  struct k_work_sync *sync);
3781 
3782 enum {
3783 /**
3784  * @cond INTERNAL_HIDDEN
3785  */
3786 
3787 	/* The atomic API is used for all work and queue flags fields to
3788 	 * enforce sequential consistency in SMP environments.
3789 	 */
3790 
3791 	/* Bits that represent the work item states.  At least nine of the
3792 	 * combinations are distinct valid stable states.
3793 	 */
3794 	K_WORK_RUNNING_BIT = 0,
3795 	K_WORK_CANCELING_BIT = 1,
3796 	K_WORK_QUEUED_BIT = 2,
3797 	K_WORK_DELAYED_BIT = 3,
3798 	K_WORK_FLUSHING_BIT = 4,
3799 
3800 	K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3801 		| BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
3802 
3803 	/* Static work flags */
3804 	K_WORK_DELAYABLE_BIT = 8,
3805 	K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3806 
3807 	/* Dynamic work queue flags */
3808 	K_WORK_QUEUE_STARTED_BIT = 0,
3809 	K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3810 	K_WORK_QUEUE_BUSY_BIT = 1,
3811 	K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3812 	K_WORK_QUEUE_DRAIN_BIT = 2,
3813 	K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3814 	K_WORK_QUEUE_PLUGGED_BIT = 3,
3815 	K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3816 
3817 	/* Static work queue flags */
3818 	K_WORK_QUEUE_NO_YIELD_BIT = 8,
3819 	K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3820 
3821 /**
3822  * INTERNAL_HIDDEN @endcond
3823  */
3824 	/* Transient work flags */
3825 
3826 	/** @brief Flag indicating a work item that is running under a work
3827 	 * queue thread.
3828 	 *
3829 	 * Accessed via k_work_busy_get().  May co-occur with other flags.
3830 	 */
3831 	K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3832 
3833 	/** @brief Flag indicating a work item that is being canceled.
3834 	 *
3835 	 * Accessed via k_work_busy_get().  May co-occur with other flags.
3836 	 */
3837 	K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3838 
3839 	/** @brief Flag indicating a work item that has been submitted to a
3840 	 * queue but has not started running.
3841 	 *
3842 	 * Accessed via k_work_busy_get().  May co-occur with other flags.
3843 	 */
3844 	K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3845 
3846 	/** @brief Flag indicating a delayed work item that is scheduled for
3847 	 * submission to a queue.
3848 	 *
3849 	 * Accessed via k_work_busy_get().  May co-occur with other flags.
3850 	 */
3851 	K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3852 
3853 	/** @brief Flag indicating a synced work item that is being flushed.
3854 	 *
3855 	 * Accessed via k_work_busy_get().  May co-occur with other flags.
3856 	 */
3857 	K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
3858 };
3859 
3860 /** @brief A structure used to submit work. */
3861 struct k_work {
3862 	/* All fields are protected by the work module spinlock.  No fields
3863 	 * are to be accessed except through kernel API.
3864 	 */
3865 
3866 	/* Node to link into k_work_q pending list. */
3867 	sys_snode_t node;
3868 
3869 	/* The function to be invoked by the work queue thread. */
3870 	k_work_handler_t handler;
3871 
3872 	/* The queue on which the work item was last submitted. */
3873 	struct k_work_q *queue;
3874 
3875 	/* State of the work item.
3876 	 *
3877 	 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3878 	 *
3879 	 * It can be RUNNING and CANCELING simultaneously.
3880 	 */
3881 	uint32_t flags;
3882 };
3883 
3884 #define Z_WORK_INITIALIZER(work_handler) { \
3885 	.handler = work_handler, \
3886 }
3887 
3888 /** @brief A structure used to submit work after a delay. */
3889 struct k_work_delayable {
3890 	/* The work item. */
3891 	struct k_work work;
3892 
3893 	/* Timeout used to submit work after a delay. */
3894 	struct _timeout timeout;
3895 
3896 	/* The queue to which the work should be submitted. */
3897 	struct k_work_q *queue;
3898 };
3899 
3900 #define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3901 	.work = { \
3902 		.handler = work_handler, \
3903 		.flags = K_WORK_DELAYABLE, \
3904 	}, \
3905 }
3906 
3907 /**
3908  * @brief Initialize a statically-defined delayable work item.
3909  *
3910  * This macro can be used to initialize a statically-defined delayable
3911  * work item, prior to its first use. For example,
3912  *
3913  * @code static K_WORK_DELAYABLE_DEFINE(<dwork>, <work_handler>); @endcode
3914  *
3915  * Note that if the runtime dependencies support initialization with
3916  * k_work_init_delayable() using that will eliminate the initialized
3917  * object in ROM that is produced by this macro and copied in at
3918  * system startup.
3919  *
3920  * @param work Symbol name for delayable work item object
3921  * @param work_handler Function to invoke each time work item is processed.
3922  */
3923 #define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3924 	struct k_work_delayable work \
3925 	  = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3926 
3927 /**
3928  * @cond INTERNAL_HIDDEN
3929  */
3930 
3931 /* Record used to wait for work to flush.
3932  *
3933  * The work item is inserted into the queue that will process (or is
3934  * processing) the item, and will be processed as soon as the item
3935  * completes.  When the flusher is processed the semaphore will be
3936  * signaled, releasing the thread waiting for the flush.
3937  */
3938 struct z_work_flusher {
3939 	struct k_work work;
3940 	struct k_sem sem;
3941 };
3942 
3943 /* Record used to wait for work to complete a cancellation.
3944  *
3945  * The work item is inserted into a global queue of pending cancels.
3946  * When a cancelling work item goes idle any matching waiters are
3947  * removed from pending_cancels and are woken.
3948  */
3949 struct z_work_canceller {
3950 	sys_snode_t node;
3951 	struct k_work *work;
3952 	struct k_sem sem;
3953 };
3954 
3955 /**
3956  * INTERNAL_HIDDEN @endcond
3957  */
3958 
3959 /** @brief A structure holding internal state for a pending synchronous
3960  * operation on a work item or queue.
3961  *
3962  * Instances of this type are provided by the caller for invocation of
3963  * k_work_flush(), k_work_cancel_sync() and sibling flush and cancel APIs.  A
3964  * referenced object must persist until the call returns, and be accessible
3965  * from both the caller thread and the work queue thread.
3966  *
3967  * @note If CONFIG_KERNEL_COHERENCE is enabled the object must be allocated in
3968  * coherent memory; see arch_mem_coherent().  The stack on these architectures
3969  * is generally not coherent.  be stack-allocated.  Violations are detected by
3970  * runtime assertion.
3971  */
3972 struct k_work_sync {
3973 	union {
3974 		struct z_work_flusher flusher;
3975 		struct z_work_canceller canceller;
3976 	};
3977 };
3978 
3979 /** @brief A structure holding optional configuration items for a work
3980  * queue.
3981  *
3982  * This structure, and values it references, are not retained by
3983  * k_work_queue_start().
3984  */
3985 struct k_work_queue_config {
3986 	/** The name to be given to the work queue thread.
3987 	 *
3988 	 * If left null the thread will not have a name.
3989 	 */
3990 	const char *name;
3991 
3992 	/** Control whether the work queue thread should yield between
3993 	 * items.
3994 	 *
3995 	 * Yielding between items helps guarantee the work queue
3996 	 * thread does not starve other threads, including cooperative
3997 	 * ones released by a work item.  This is the default behavior.
3998 	 *
3999 	 * Set this to @c true to prevent the work queue thread from
4000 	 * yielding between items.  This may be appropriate when a
4001 	 * sequence of items should complete without yielding
4002 	 * control.
4003 	 */
4004 	bool no_yield;
4005 };
4006 
4007 /** @brief A structure used to hold work until it can be processed. */
4008 struct k_work_q {
4009 	/* The thread that animates the work. */
4010 	struct k_thread thread;
4011 
4012 	/* All the following fields must be accessed only while the
4013 	 * work module spinlock is held.
4014 	 */
4015 
4016 	/* List of k_work items to be worked. */
4017 	sys_slist_t pending;
4018 
4019 	/* Wait queue for idle work thread. */
4020 	_wait_q_t notifyq;
4021 
4022 	/* Wait queue for threads waiting for the queue to drain. */
4023 	_wait_q_t drainq;
4024 
4025 	/* Flags describing queue state. */
4026 	uint32_t flags;
4027 };
4028 
4029 /* Provide the implementation for inline functions declared above */
4030 
k_work_is_pending(const struct k_work * work)4031 static inline bool k_work_is_pending(const struct k_work *work)
4032 {
4033 	return k_work_busy_get(work) != 0;
4034 }
4035 
4036 static inline struct k_work_delayable *
k_work_delayable_from_work(struct k_work * work)4037 k_work_delayable_from_work(struct k_work *work)
4038 {
4039 	return CONTAINER_OF(work, struct k_work_delayable, work);
4040 }
4041 
k_work_delayable_is_pending(const struct k_work_delayable * dwork)4042 static inline bool k_work_delayable_is_pending(
4043 	const struct k_work_delayable *dwork)
4044 {
4045 	return k_work_delayable_busy_get(dwork) != 0;
4046 }
4047 
k_work_delayable_expires_get(const struct k_work_delayable * dwork)4048 static inline k_ticks_t k_work_delayable_expires_get(
4049 	const struct k_work_delayable *dwork)
4050 {
4051 	return z_timeout_expires(&dwork->timeout);
4052 }
4053 
k_work_delayable_remaining_get(const struct k_work_delayable * dwork)4054 static inline k_ticks_t k_work_delayable_remaining_get(
4055 	const struct k_work_delayable *dwork)
4056 {
4057 	return z_timeout_remaining(&dwork->timeout);
4058 }
4059 
k_work_queue_thread_get(struct k_work_q * queue)4060 static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
4061 {
4062 	return &queue->thread;
4063 }
4064 
4065 /** @} */
4066 
4067 struct k_work_user;
4068 
4069 /**
4070  * @addtogroup workqueue_apis
4071  * @{
4072  */
4073 
4074 /**
4075  * @typedef k_work_user_handler_t
4076  * @brief Work item handler function type for user work queues.
4077  *
4078  * A work item's handler function is executed by a user workqueue's thread
4079  * when the work item is processed by the workqueue.
4080  *
4081  * @param work Address of the work item.
4082  */
4083 typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4084 
4085 /**
4086  * @cond INTERNAL_HIDDEN
4087  */
4088 
4089 struct k_work_user_q {
4090 	struct k_queue queue;
4091 	struct k_thread thread;
4092 };
4093 
4094 enum {
4095 	K_WORK_USER_STATE_PENDING,	/* Work item pending state */
4096 };
4097 
4098 struct k_work_user {
4099 	void *_reserved;		/* Used by k_queue implementation. */
4100 	k_work_user_handler_t handler;
4101 	atomic_t flags;
4102 };
4103 
4104 /**
4105  * INTERNAL_HIDDEN @endcond
4106  */
4107 
4108 #if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4109 #define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4110 #else
4111 #define Z_WORK_USER_INITIALIZER(work_handler) \
4112 	{ \
4113 	._reserved = NULL, \
4114 	.handler = work_handler, \
4115 	.flags = 0 \
4116 	}
4117 #endif
4118 
4119 /**
4120  * @brief Initialize a statically-defined user work item.
4121  *
4122  * This macro can be used to initialize a statically-defined user work
4123  * item, prior to its first use. For example,
4124  *
4125  * @code static K_WORK_USER_DEFINE(<work>, <work_handler>); @endcode
4126  *
4127  * @param work Symbol name for work item object
4128  * @param work_handler Function to invoke each time work item is processed.
4129  */
4130 #define K_WORK_USER_DEFINE(work, work_handler) \
4131 	struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4132 
4133 /**
4134  * @brief Initialize a userspace work item.
4135  *
4136  * This routine initializes a user workqueue work item, prior to its
4137  * first use.
4138  *
4139  * @param work Address of work item.
4140  * @param handler Function to invoke each time work item is processed.
4141  */
k_work_user_init(struct k_work_user * work,k_work_user_handler_t handler)4142 static inline void k_work_user_init(struct k_work_user *work,
4143 				    k_work_user_handler_t handler)
4144 {
4145 	*work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4146 }
4147 
4148 /**
4149  * @brief Check if a userspace work item is pending.
4150  *
4151  * This routine indicates if user work item @a work is pending in a workqueue's
4152  * queue.
4153  *
4154  * @note Checking if the work is pending gives no guarantee that the
4155  *       work will still be pending when this information is used. It is up to
4156  *       the caller to make sure that this information is used in a safe manner.
4157  *
4158  * @funcprops \isr_ok
4159  *
4160  * @param work Address of work item.
4161  *
4162  * @return true if work item is pending, or false if it is not pending.
4163  */
k_work_user_is_pending(struct k_work_user * work)4164 static inline bool k_work_user_is_pending(struct k_work_user *work)
4165 {
4166 	return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4167 }
4168 
4169 /**
4170  * @brief Submit a work item to a user mode workqueue
4171  *
4172  * Submits a work item to a workqueue that runs in user mode. A temporary
4173  * memory allocation is made from the caller's resource pool which is freed
4174  * once the worker thread consumes the k_work item. The workqueue
4175  * thread must have memory access to the k_work item being submitted. The caller
4176  * must have permission granted on the work_q parameter's queue object.
4177  *
4178  * @funcprops \isr_ok
4179  *
4180  * @param work_q Address of workqueue.
4181  * @param work Address of work item.
4182  *
4183  * @retval -EBUSY if the work item was already in some workqueue
4184  * @retval -ENOMEM if no memory for thread resource pool allocation
4185  * @retval 0 Success
4186  */
k_work_user_submit_to_queue(struct k_work_user_q * work_q,struct k_work_user * work)4187 static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4188 					      struct k_work_user *work)
4189 {
4190 	int ret = -EBUSY;
4191 
4192 	if (!atomic_test_and_set_bit(&work->flags,
4193 				     K_WORK_USER_STATE_PENDING)) {
4194 		ret = k_queue_alloc_append(&work_q->queue, work);
4195 
4196 		/* Couldn't insert into the queue. Clear the pending bit
4197 		 * so the work item can be submitted again
4198 		 */
4199 		if (ret != 0) {
4200 			atomic_clear_bit(&work->flags,
4201 					 K_WORK_USER_STATE_PENDING);
4202 		}
4203 	}
4204 
4205 	return ret;
4206 }
4207 
4208 /**
4209  * @brief Start a workqueue in user mode
4210  *
4211  * This works identically to k_work_queue_start() except it is callable from
4212  * user mode, and the worker thread created will run in user mode.  The caller
4213  * must have permissions granted on both the work_q parameter's thread and
4214  * queue objects, and the same restrictions on priority apply as
4215  * k_thread_create().
4216  *
4217  * @param work_q Address of workqueue.
4218  * @param stack Pointer to work queue thread's stack space, as defined by
4219  *		K_THREAD_STACK_DEFINE()
4220  * @param stack_size Size of the work queue thread's stack (in bytes), which
4221  *		should either be the same constant passed to
4222  *		K_THREAD_STACK_DEFINE() or the value of K_THREAD_STACK_SIZEOF().
4223  * @param prio Priority of the work queue's thread.
4224  * @param name optional thread name.  If not null a copy is made into the
4225  *		thread's name buffer.
4226  */
4227 void k_work_user_queue_start(struct k_work_user_q *work_q,
4228 				    k_thread_stack_t *stack,
4229 				    size_t stack_size, int prio,
4230 				    const char *name);
4231 
4232 /**
4233  * @brief Access the user mode thread that animates a work queue.
4234  *
4235  * This is necessary to grant a user mode work queue thread access to things
4236  * the work items it will process are expected to use.
4237  *
4238  * @param work_q pointer to the user mode queue structure.
4239  *
4240  * @return the user mode thread associated with the work queue.
4241  */
k_work_user_queue_thread_get(struct k_work_user_q * work_q)4242 static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4243 {
4244 	return &work_q->thread;
4245 }
4246 
4247 /** @} */
4248 
4249 /**
4250  * @cond INTERNAL_HIDDEN
4251  */
4252 
4253 struct k_work_poll {
4254 	struct k_work work;
4255 	struct k_work_q *workq;
4256 	struct z_poller poller;
4257 	struct k_poll_event *events;
4258 	int num_events;
4259 	k_work_handler_t real_handler;
4260 	struct _timeout timeout;
4261 	int poll_result;
4262 };
4263 
4264 /**
4265  * INTERNAL_HIDDEN @endcond
4266  */
4267 
4268 /**
4269  * @addtogroup workqueue_apis
4270  * @{
4271  */
4272 
4273 /**
4274  * @brief Initialize a statically-defined work item.
4275  *
4276  * This macro can be used to initialize a statically-defined workqueue work
4277  * item, prior to its first use. For example,
4278  *
4279  * @code static K_WORK_DEFINE(<work>, <work_handler>); @endcode
4280  *
4281  * @param work Symbol name for work item object
4282  * @param work_handler Function to invoke each time work item is processed.
4283  */
4284 #define K_WORK_DEFINE(work, work_handler) \
4285 	struct k_work work = Z_WORK_INITIALIZER(work_handler)
4286 
4287 /**
4288  * @brief Initialize a triggered work item.
4289  *
4290  * This routine initializes a workqueue triggered work item, prior to
4291  * its first use.
4292  *
4293  * @param work Address of triggered work item.
4294  * @param handler Function to invoke each time work item is processed.
4295  */
4296 void k_work_poll_init(struct k_work_poll *work,
4297 			     k_work_handler_t handler);
4298 
4299 /**
4300  * @brief Submit a triggered work item.
4301  *
4302  * This routine schedules work item @a work to be processed by workqueue
4303  * @a work_q when one of the given @a events is signaled. The routine
4304  * initiates internal poller for the work item and then returns to the caller.
4305  * Only when one of the watched events happen the work item is actually
4306  * submitted to the workqueue and becomes pending.
4307  *
4308  * Submitting a previously submitted triggered work item that is still
4309  * waiting for the event cancels the existing submission and reschedules it
4310  * the using the new event list. Note that this behavior is inherently subject
4311  * to race conditions with the pre-existing triggered work item and work queue,
4312  * so care must be taken to synchronize such resubmissions externally.
4313  *
4314  * @funcprops \isr_ok
4315  *
4316  * @warning
4317  * Provided array of events as well as a triggered work item must be placed
4318  * in persistent memory (valid until work handler execution or work
4319  * cancellation) and cannot be modified after submission.
4320  *
4321  * @param work_q Address of workqueue.
4322  * @param work Address of delayed work item.
4323  * @param events An array of events which trigger the work.
4324  * @param num_events The number of events in the array.
4325  * @param timeout Timeout after which the work will be scheduled
4326  *		  for execution even if not triggered.
4327  *
4328  *
4329  * @retval 0 Work item started watching for events.
4330  * @retval -EINVAL Work item is being processed or has completed its work.
4331  * @retval -EADDRINUSE Work item is pending on a different workqueue.
4332  */
4333 int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4334 				       struct k_work_poll *work,
4335 				       struct k_poll_event *events,
4336 				       int num_events,
4337 				       k_timeout_t timeout);
4338 
4339 /**
4340  * @brief Submit a triggered work item to the system workqueue.
4341  *
4342  * This routine schedules work item @a work to be processed by system
4343  * workqueue when one of the given @a events is signaled. The routine
4344  * initiates internal poller for the work item and then returns to the caller.
4345  * Only when one of the watched events happen the work item is actually
4346  * submitted to the workqueue and becomes pending.
4347  *
4348  * Submitting a previously submitted triggered work item that is still
4349  * waiting for the event cancels the existing submission and reschedules it
4350  * the using the new event list. Note that this behavior is inherently subject
4351  * to race conditions with the pre-existing triggered work item and work queue,
4352  * so care must be taken to synchronize such resubmissions externally.
4353  *
4354  * @funcprops \isr_ok
4355  *
4356  * @warning
4357  * Provided array of events as well as a triggered work item must not be
4358  * modified until the item has been processed by the workqueue.
4359  *
4360  * @param work Address of delayed work item.
4361  * @param events An array of events which trigger the work.
4362  * @param num_events The number of events in the array.
4363  * @param timeout Timeout after which the work will be scheduled
4364  *		  for execution even if not triggered.
4365  *
4366  * @retval 0 Work item started watching for events.
4367  * @retval -EINVAL Work item is being processed or has completed its work.
4368  * @retval -EADDRINUSE Work item is pending on a different workqueue.
4369  */
4370 int k_work_poll_submit(struct k_work_poll *work,
4371 				     struct k_poll_event *events,
4372 				     int num_events,
4373 				     k_timeout_t timeout);
4374 
4375 /**
4376  * @brief Cancel a triggered work item.
4377  *
4378  * This routine cancels the submission of triggered work item @a work.
4379  * A triggered work item can only be canceled if no event triggered work
4380  * submission.
4381  *
4382  * @funcprops \isr_ok
4383  *
4384  * @param work Address of delayed work item.
4385  *
4386  * @retval 0 Work item canceled.
4387  * @retval -EINVAL Work item is being processed or has completed its work.
4388  */
4389 int k_work_poll_cancel(struct k_work_poll *work);
4390 
4391 /** @} */
4392 
4393 /**
4394  * @defgroup msgq_apis Message Queue APIs
4395  * @ingroup kernel_apis
4396  * @{
4397  */
4398 
4399 /**
4400  * @brief Message Queue Structure
4401  */
4402 struct k_msgq {
4403 	/** Message queue wait queue */
4404 	_wait_q_t wait_q;
4405 	/** Lock */
4406 	struct k_spinlock lock;
4407 	/** Message size */
4408 	size_t msg_size;
4409 	/** Maximal number of messages */
4410 	uint32_t max_msgs;
4411 	/** Start of message buffer */
4412 	char *buffer_start;
4413 	/** End of message buffer */
4414 	char *buffer_end;
4415 	/** Read pointer */
4416 	char *read_ptr;
4417 	/** Write pointer */
4418 	char *write_ptr;
4419 	/** Number of used messages */
4420 	uint32_t used_msgs;
4421 
4422 	Z_DECL_POLL_EVENT
4423 
4424 	/** Message queue */
4425 	uint8_t flags;
4426 
4427 	SYS_PORT_TRACING_TRACKING_FIELD(k_msgq)
4428 
4429 #ifdef CONFIG_OBJ_CORE_MSGQ
4430 	struct k_obj_core  obj_core;
4431 #endif
4432 };
4433 /**
4434  * @cond INTERNAL_HIDDEN
4435  */
4436 
4437 
4438 #define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4439 	{ \
4440 	.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4441 	.msg_size = q_msg_size, \
4442 	.max_msgs = q_max_msgs, \
4443 	.buffer_start = q_buffer, \
4444 	.buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4445 	.read_ptr = q_buffer, \
4446 	.write_ptr = q_buffer, \
4447 	.used_msgs = 0, \
4448 	Z_POLL_EVENT_OBJ_INIT(obj) \
4449 	}
4450 
4451 /**
4452  * INTERNAL_HIDDEN @endcond
4453  */
4454 
4455 
4456 #define K_MSGQ_FLAG_ALLOC	BIT(0)
4457 
4458 /**
4459  * @brief Message Queue Attributes
4460  */
4461 struct k_msgq_attrs {
4462 	/** Message Size */
4463 	size_t msg_size;
4464 	/** Maximal number of messages */
4465 	uint32_t max_msgs;
4466 	/** Used messages */
4467 	uint32_t used_msgs;
4468 };
4469 
4470 
4471 /**
4472  * @brief Statically define and initialize a message queue.
4473  *
4474  * The message queue's ring buffer contains space for @a q_max_msgs messages,
4475  * each of which is @a q_msg_size bytes long. Alignment of the message queue's
4476  * ring buffer is not necessary, setting @a q_align to 1 is sufficient.
4477  *
4478  * The message queue can be accessed outside the module where it is defined
4479  * using:
4480  *
4481  * @code extern struct k_msgq <name>; @endcode
4482  *
4483  * @param q_name Name of the message queue.
4484  * @param q_msg_size Message size (in bytes).
4485  * @param q_max_msgs Maximum number of messages that can be queued.
4486  * @param q_align Alignment of the message queue's ring buffer (power of 2).
4487  *
4488  */
4489 #define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align)		\
4490 	static char __noinit __aligned(q_align)				\
4491 		_k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)];	\
4492 	STRUCT_SECTION_ITERABLE(k_msgq, q_name) =			\
4493 	       Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name,	\
4494 				  (q_msg_size), (q_max_msgs))
4495 
4496 /**
4497  * @brief Initialize a message queue.
4498  *
4499  * This routine initializes a message queue object, prior to its first use.
4500  *
4501  * The message queue's ring buffer must contain space for @a max_msgs messages,
4502  * each of which is @a msg_size bytes long. Alignment of the message queue's
4503  * ring buffer is not necessary.
4504  *
4505  * @param msgq Address of the message queue.
4506  * @param buffer Pointer to ring buffer that holds queued messages.
4507  * @param msg_size Message size (in bytes).
4508  * @param max_msgs Maximum number of messages that can be queued.
4509  */
4510 void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4511 		 uint32_t max_msgs);
4512 
4513 /**
4514  * @brief Initialize a message queue.
4515  *
4516  * This routine initializes a message queue object, prior to its first use,
4517  * allocating its internal ring buffer from the calling thread's resource
4518  * pool.
4519  *
4520  * Memory allocated for the ring buffer can be released by calling
4521  * k_msgq_cleanup(), or if userspace is enabled and the msgq object loses
4522  * all of its references.
4523  *
4524  * @param msgq Address of the message queue.
4525  * @param msg_size Message size (in bytes).
4526  * @param max_msgs Maximum number of messages that can be queued.
4527  *
4528  * @return 0 on success, -ENOMEM if there was insufficient memory in the
4529  *	thread's resource pool, or -EINVAL if the size parameters cause
4530  *	an integer overflow.
4531  */
4532 __syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4533 				uint32_t max_msgs);
4534 
4535 /**
4536  * @brief Release allocated buffer for a queue
4537  *
4538  * Releases memory allocated for the ring buffer.
4539  *
4540  * @param msgq message queue to cleanup
4541  *
4542  * @retval 0 on success
4543  * @retval -EBUSY Queue not empty
4544  */
4545 int k_msgq_cleanup(struct k_msgq *msgq);
4546 
4547 /**
4548  * @brief Send a message to a message queue.
4549  *
4550  * This routine sends a message to message queue @a q.
4551  *
4552  * @note The message content is copied from @a data into @a msgq and the @a data
4553  * pointer is not retained, so the message content will not be modified
4554  * by this function.
4555  *
4556  * @funcprops \isr_ok
4557  *
4558  * @param msgq Address of the message queue.
4559  * @param data Pointer to the message.
4560  * @param timeout Non-negative waiting period to add the message,
4561  *                or one of the special values K_NO_WAIT and
4562  *                K_FOREVER.
4563  *
4564  * @retval 0 Message sent.
4565  * @retval -ENOMSG Returned without waiting or queue purged.
4566  * @retval -EAGAIN Waiting period timed out.
4567  */
4568 __syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4569 
4570 /**
4571  * @brief Receive a message from a message queue.
4572  *
4573  * This routine receives a message from message queue @a q in a "first in,
4574  * first out" manner.
4575  *
4576  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
4577  *
4578  * @funcprops \isr_ok
4579  *
4580  * @param msgq Address of the message queue.
4581  * @param data Address of area to hold the received message.
4582  * @param timeout Waiting period to receive the message,
4583  *                or one of the special values K_NO_WAIT and
4584  *                K_FOREVER.
4585  *
4586  * @retval 0 Message received.
4587  * @retval -ENOMSG Returned without waiting.
4588  * @retval -EAGAIN Waiting period timed out.
4589  */
4590 __syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4591 
4592 /**
4593  * @brief Peek/read a message from a message queue.
4594  *
4595  * This routine reads a message from message queue @a q in a "first in,
4596  * first out" manner and leaves the message in the queue.
4597  *
4598  * @funcprops \isr_ok
4599  *
4600  * @param msgq Address of the message queue.
4601  * @param data Address of area to hold the message read from the queue.
4602  *
4603  * @retval 0 Message read.
4604  * @retval -ENOMSG Returned when the queue has no message.
4605  */
4606 __syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4607 
4608 /**
4609  * @brief Peek/read a message from a message queue at the specified index
4610  *
4611  * This routine reads a message from message queue at the specified index
4612  * and leaves the message in the queue.
4613  * k_msgq_peek_at(msgq, data, 0) is equivalent to k_msgq_peek(msgq, data)
4614  *
4615  * @funcprops \isr_ok
4616  *
4617  * @param msgq Address of the message queue.
4618  * @param data Address of area to hold the message read from the queue.
4619  * @param idx Message queue index at which to peek
4620  *
4621  * @retval 0 Message read.
4622  * @retval -ENOMSG Returned when the queue has no message at index.
4623  */
4624 __syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4625 
4626 /**
4627  * @brief Purge a message queue.
4628  *
4629  * This routine discards all unreceived messages in a message queue's ring
4630  * buffer. Any threads that are blocked waiting to send a message to the
4631  * message queue are unblocked and see an -ENOMSG error code.
4632  *
4633  * @param msgq Address of the message queue.
4634  */
4635 __syscall void k_msgq_purge(struct k_msgq *msgq);
4636 
4637 /**
4638  * @brief Get the amount of free space in a message queue.
4639  *
4640  * This routine returns the number of unused entries in a message queue's
4641  * ring buffer.
4642  *
4643  * @param msgq Address of the message queue.
4644  *
4645  * @return Number of unused ring buffer entries.
4646  */
4647 __syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4648 
4649 /**
4650  * @brief Get basic attributes of a message queue.
4651  *
4652  * This routine fetches basic attributes of message queue into attr argument.
4653  *
4654  * @param msgq Address of the message queue.
4655  * @param attrs pointer to message queue attribute structure.
4656  */
4657 __syscall void  k_msgq_get_attrs(struct k_msgq *msgq,
4658 				 struct k_msgq_attrs *attrs);
4659 
4660 
z_impl_k_msgq_num_free_get(struct k_msgq * msgq)4661 static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4662 {
4663 	return msgq->max_msgs - msgq->used_msgs;
4664 }
4665 
4666 /**
4667  * @brief Get the number of messages in a message queue.
4668  *
4669  * This routine returns the number of messages in a message queue's ring buffer.
4670  *
4671  * @param msgq Address of the message queue.
4672  *
4673  * @return Number of messages.
4674  */
4675 __syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4676 
z_impl_k_msgq_num_used_get(struct k_msgq * msgq)4677 static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4678 {
4679 	return msgq->used_msgs;
4680 }
4681 
4682 /** @} */
4683 
4684 /**
4685  * @defgroup mailbox_apis Mailbox APIs
4686  * @ingroup kernel_apis
4687  * @{
4688  */
4689 
4690 /**
4691  * @brief Mailbox Message Structure
4692  *
4693  */
4694 struct k_mbox_msg {
4695 	/** size of message (in bytes) */
4696 	size_t size;
4697 	/** application-defined information value */
4698 	uint32_t info;
4699 	/** sender's message data buffer */
4700 	void *tx_data;
4701 	/** source thread id */
4702 	k_tid_t rx_source_thread;
4703 	/** target thread id */
4704 	k_tid_t tx_target_thread;
4705 	/** internal use only - thread waiting on send (may be a dummy) */
4706 	k_tid_t _syncing_thread;
4707 #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4708 	/** internal use only - semaphore used during asynchronous send */
4709 	struct k_sem *_async_sem;
4710 #endif
4711 };
4712 /**
4713  * @brief Mailbox Structure
4714  *
4715  */
4716 struct k_mbox {
4717 	/** Transmit messages queue */
4718 	_wait_q_t tx_msg_queue;
4719 	/** Receive message queue */
4720 	_wait_q_t rx_msg_queue;
4721 	struct k_spinlock lock;
4722 
4723 	SYS_PORT_TRACING_TRACKING_FIELD(k_mbox)
4724 
4725 #ifdef CONFIG_OBJ_CORE_MAILBOX
4726 	struct k_obj_core  obj_core;
4727 #endif
4728 };
4729 /**
4730  * @cond INTERNAL_HIDDEN
4731  */
4732 
4733 #define Z_MBOX_INITIALIZER(obj) \
4734 	{ \
4735 	.tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4736 	.rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4737 	}
4738 
4739 /**
4740  * INTERNAL_HIDDEN @endcond
4741  */
4742 
4743 /**
4744  * @brief Statically define and initialize a mailbox.
4745  *
4746  * The mailbox is to be accessed outside the module where it is defined using:
4747  *
4748  * @code extern struct k_mbox <name>; @endcode
4749  *
4750  * @param name Name of the mailbox.
4751  */
4752 #define K_MBOX_DEFINE(name) \
4753 	STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4754 		Z_MBOX_INITIALIZER(name) \
4755 
4756 /**
4757  * @brief Initialize a mailbox.
4758  *
4759  * This routine initializes a mailbox object, prior to its first use.
4760  *
4761  * @param mbox Address of the mailbox.
4762  */
4763 void k_mbox_init(struct k_mbox *mbox);
4764 
4765 /**
4766  * @brief Send a mailbox message in a synchronous manner.
4767  *
4768  * This routine sends a message to @a mbox and waits for a receiver to both
4769  * receive and process it. The message data may be in a buffer or non-existent
4770  * (i.e. an empty message).
4771  *
4772  * @param mbox Address of the mailbox.
4773  * @param tx_msg Address of the transmit message descriptor.
4774  * @param timeout Waiting period for the message to be received,
4775  *                or one of the special values K_NO_WAIT
4776  *                and K_FOREVER. Once the message has been received,
4777  *                this routine waits as long as necessary for the message
4778  *                to be completely processed.
4779  *
4780  * @retval 0 Message sent.
4781  * @retval -ENOMSG Returned without waiting.
4782  * @retval -EAGAIN Waiting period timed out.
4783  */
4784 int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4785 		      k_timeout_t timeout);
4786 
4787 /**
4788  * @brief Send a mailbox message in an asynchronous manner.
4789  *
4790  * This routine sends a message to @a mbox without waiting for a receiver
4791  * to process it. The message data may be in a buffer or non-existent
4792  * (i.e. an empty message). Optionally, the semaphore @a sem will be given
4793  * when the message has been both received and completely processed by
4794  * the receiver.
4795  *
4796  * @param mbox Address of the mailbox.
4797  * @param tx_msg Address of the transmit message descriptor.
4798  * @param sem Address of a semaphore, or NULL if none is needed.
4799  */
4800 void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4801 			     struct k_sem *sem);
4802 
4803 /**
4804  * @brief Receive a mailbox message.
4805  *
4806  * This routine receives a message from @a mbox, then optionally retrieves
4807  * its data and disposes of the message.
4808  *
4809  * @param mbox Address of the mailbox.
4810  * @param rx_msg Address of the receive message descriptor.
4811  * @param buffer Address of the buffer to receive data, or NULL to defer data
4812  *               retrieval and message disposal until later.
4813  * @param timeout Waiting period for a message to be received,
4814  *                or one of the special values K_NO_WAIT and K_FOREVER.
4815  *
4816  * @retval 0 Message received.
4817  * @retval -ENOMSG Returned without waiting.
4818  * @retval -EAGAIN Waiting period timed out.
4819  */
4820 int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4821 		      void *buffer, k_timeout_t timeout);
4822 
4823 /**
4824  * @brief Retrieve mailbox message data into a buffer.
4825  *
4826  * This routine completes the processing of a received message by retrieving
4827  * its data into a buffer, then disposing of the message.
4828  *
4829  * Alternatively, this routine can be used to dispose of a received message
4830  * without retrieving its data.
4831  *
4832  * @param rx_msg Address of the receive message descriptor.
4833  * @param buffer Address of the buffer to receive data, or NULL to discard
4834  *               the data.
4835  */
4836 void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4837 
4838 /** @} */
4839 
4840 /**
4841  * @defgroup pipe_apis Pipe APIs
4842  * @ingroup kernel_apis
4843  * @{
4844  */
4845 
4846 /** Pipe Structure */
4847 struct k_pipe {
4848 	unsigned char *buffer;          /**< Pipe buffer: may be NULL */
4849 	size_t         size;            /**< Buffer size */
4850 	size_t         bytes_used;      /**< # bytes used in buffer */
4851 	size_t         read_index;      /**< Where in buffer to read from */
4852 	size_t         write_index;     /**< Where in buffer to write */
4853 	struct k_spinlock lock;		/**< Synchronization lock */
4854 
4855 	struct {
4856 		_wait_q_t      readers; /**< Reader wait queue */
4857 		_wait_q_t      writers; /**< Writer wait queue */
4858 	} wait_q;			/** Wait queue */
4859 
4860 	Z_DECL_POLL_EVENT
4861 
4862 	uint8_t	       flags;		/**< Flags */
4863 
4864 	SYS_PORT_TRACING_TRACKING_FIELD(k_pipe)
4865 
4866 #ifdef CONFIG_OBJ_CORE_PIPE
4867 	struct k_obj_core  obj_core;
4868 #endif
4869 };
4870 
4871 /**
4872  * @cond INTERNAL_HIDDEN
4873  */
4874 #define K_PIPE_FLAG_ALLOC	BIT(0)	/** Buffer was allocated */
4875 
4876 #define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size)     \
4877 	{                                                           \
4878 	.buffer = pipe_buffer,                                      \
4879 	.size = pipe_buffer_size,                                   \
4880 	.bytes_used = 0,                                            \
4881 	.read_index = 0,                                            \
4882 	.write_index = 0,                                           \
4883 	.lock = {},                                                 \
4884 	.wait_q = {                                                 \
4885 		.readers = Z_WAIT_Q_INIT(&obj.wait_q.readers),       \
4886 		.writers = Z_WAIT_Q_INIT(&obj.wait_q.writers)        \
4887 	},                                                          \
4888 	Z_POLL_EVENT_OBJ_INIT(obj)                                   \
4889 	.flags = 0,                                                 \
4890 	}
4891 
4892 /**
4893  * INTERNAL_HIDDEN @endcond
4894  */
4895 
4896 /**
4897  * @brief Statically define and initialize a pipe.
4898  *
4899  * The pipe can be accessed outside the module where it is defined using:
4900  *
4901  * @code extern struct k_pipe <name>; @endcode
4902  *
4903  * @param name Name of the pipe.
4904  * @param pipe_buffer_size Size of the pipe's ring buffer (in bytes),
4905  *                         or zero if no ring buffer is used.
4906  * @param pipe_align Alignment of the pipe's ring buffer (power of 2).
4907  *
4908  */
4909 #define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align)		\
4910 	static unsigned char __noinit __aligned(pipe_align)		\
4911 		_k_pipe_buf_##name[pipe_buffer_size];			\
4912 	STRUCT_SECTION_ITERABLE(k_pipe, name) =				\
4913 		Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4914 
4915 /**
4916  * @brief Initialize a pipe.
4917  *
4918  * This routine initializes a pipe object, prior to its first use.
4919  *
4920  * @param pipe Address of the pipe.
4921  * @param buffer Address of the pipe's ring buffer, or NULL if no ring buffer
4922  *               is used.
4923  * @param size Size of the pipe's ring buffer (in bytes), or zero if no ring
4924  *             buffer is used.
4925  */
4926 void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4927 
4928 /**
4929  * @brief Release a pipe's allocated buffer
4930  *
4931  * If a pipe object was given a dynamically allocated buffer via
4932  * k_pipe_alloc_init(), this will free it. This function does nothing
4933  * if the buffer wasn't dynamically allocated.
4934  *
4935  * @param pipe Address of the pipe.
4936  * @retval 0 on success
4937  * @retval -EAGAIN nothing to cleanup
4938  */
4939 int k_pipe_cleanup(struct k_pipe *pipe);
4940 
4941 /**
4942  * @brief Initialize a pipe and allocate a buffer for it
4943  *
4944  * Storage for the buffer region will be allocated from the calling thread's
4945  * resource pool. This memory will be released if k_pipe_cleanup() is called,
4946  * or userspace is enabled and the pipe object loses all references to it.
4947  *
4948  * This function should only be called on uninitialized pipe objects.
4949  *
4950  * @param pipe Address of the pipe.
4951  * @param size Size of the pipe's ring buffer (in bytes), or zero if no ring
4952  *             buffer is used.
4953  * @retval 0 on success
4954  * @retval -ENOMEM if memory couldn't be allocated
4955  */
4956 __syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4957 
4958 /**
4959  * @brief Write data to a pipe.
4960  *
4961  * This routine writes up to @a bytes_to_write bytes of data to @a pipe.
4962  *
4963  * @param pipe Address of the pipe.
4964  * @param data Address of data to write.
4965  * @param bytes_to_write Size of data (in bytes).
4966  * @param bytes_written Address of area to hold the number of bytes written.
4967  * @param min_xfer Minimum number of bytes to write.
4968  * @param timeout Waiting period to wait for the data to be written,
4969  *                or one of the special values K_NO_WAIT and K_FOREVER.
4970  *
4971  * @retval 0 At least @a min_xfer bytes of data were written.
4972  * @retval -EIO Returned without waiting; zero data bytes were written.
4973  * @retval -EAGAIN Waiting period timed out; between zero and @a min_xfer
4974  *                 minus one data bytes were written.
4975  */
4976 __syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
4977 			 size_t bytes_to_write, size_t *bytes_written,
4978 			 size_t min_xfer, k_timeout_t timeout);
4979 
4980 /**
4981  * @brief Read data from a pipe.
4982  *
4983  * This routine reads up to @a bytes_to_read bytes of data from @a pipe.
4984  *
4985  * @param pipe Address of the pipe.
4986  * @param data Address to place the data read from pipe.
4987  * @param bytes_to_read Maximum number of data bytes to read.
4988  * @param bytes_read Address of area to hold the number of bytes read.
4989  * @param min_xfer Minimum number of data bytes to read.
4990  * @param timeout Waiting period to wait for the data to be read,
4991  *                or one of the special values K_NO_WAIT and K_FOREVER.
4992  *
4993  * @retval 0 At least @a min_xfer bytes of data were read.
4994  * @retval -EINVAL invalid parameters supplied
4995  * @retval -EIO Returned without waiting; zero data bytes were read.
4996  * @retval -EAGAIN Waiting period timed out; between zero and @a min_xfer
4997  *                 minus one data bytes were read.
4998  */
4999 __syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5000 			 size_t bytes_to_read, size_t *bytes_read,
5001 			 size_t min_xfer, k_timeout_t timeout);
5002 
5003 /**
5004  * @brief Query the number of bytes that may be read from @a pipe.
5005  *
5006  * @param pipe Address of the pipe.
5007  *
5008  * @retval a number n such that 0 <= n <= @ref k_pipe.size; the
5009  *         result is zero for unbuffered pipes.
5010  */
5011 __syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5012 
5013 /**
5014  * @brief Query the number of bytes that may be written to @a pipe
5015  *
5016  * @param pipe Address of the pipe.
5017  *
5018  * @retval a number n such that 0 <= n <= @ref k_pipe.size; the
5019  *         result is zero for unbuffered pipes.
5020  */
5021 __syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5022 
5023 /**
5024  * @brief Flush the pipe of write data
5025  *
5026  * This routine flushes the pipe. Flushing the pipe is equivalent to reading
5027  * both all the data in the pipe's buffer and all the data waiting to go into
5028  * that pipe into a large temporary buffer and discarding the buffer. Any
5029  * writers that were previously pended become unpended.
5030  *
5031  * @param pipe Address of the pipe.
5032  */
5033 __syscall void k_pipe_flush(struct k_pipe *pipe);
5034 
5035 /**
5036  * @brief Flush the pipe's internal buffer
5037  *
5038  * This routine flushes the pipe's internal buffer. This is equivalent to
5039  * reading up to N bytes from the pipe (where N is the size of the pipe's
5040  * buffer) into a temporary buffer and then discarding that buffer. If there
5041  * were writers previously pending, then some may unpend as they try to fill
5042  * up the pipe's emptied buffer.
5043  *
5044  * @param pipe Address of the pipe.
5045  */
5046 __syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5047 
5048 /** @} */
5049 
5050 /**
5051  * @cond INTERNAL_HIDDEN
5052  */
5053 
5054 struct k_mem_slab_info {
5055 	uint32_t num_blocks;
5056 	size_t   block_size;
5057 	uint32_t num_used;
5058 #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5059 	uint32_t max_used;
5060 #endif
5061 };
5062 
5063 struct k_mem_slab {
5064 	_wait_q_t wait_q;
5065 	struct k_spinlock lock;
5066 	char *buffer;
5067 	char *free_list;
5068 	struct k_mem_slab_info info;
5069 
5070 	SYS_PORT_TRACING_TRACKING_FIELD(k_mem_slab)
5071 
5072 #ifdef CONFIG_OBJ_CORE_MEM_SLAB
5073 	struct k_obj_core  obj_core;
5074 #endif
5075 };
5076 
5077 #define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5078 			       _slab_num_blocks)                      \
5079 	{                                                             \
5080 	.wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q),                     \
5081 	.lock = {},                                                   \
5082 	.buffer = _slab_buffer,                                       \
5083 	.free_list = NULL,                                            \
5084 	.info = {_slab_num_blocks, _slab_block_size, 0}               \
5085 	}
5086 
5087 
5088 /**
5089  * INTERNAL_HIDDEN @endcond
5090  */
5091 
5092 /**
5093  * @defgroup mem_slab_apis Memory Slab APIs
5094  * @ingroup kernel_apis
5095  * @{
5096  */
5097 
5098 /**
5099  * @brief Statically define and initialize a memory slab in a public (non-static) scope.
5100  *
5101  * The memory slab's buffer contains @a slab_num_blocks memory blocks
5102  * that are @a slab_block_size bytes long. The buffer is aligned to a
5103  * @a slab_align -byte boundary. To ensure that each memory block is similarly
5104  * aligned to this boundary, @a slab_block_size must also be a multiple of
5105  * @a slab_align.
5106  *
5107  * The memory slab can be accessed outside the module where it is defined
5108  * using:
5109  *
5110  * @code extern struct k_mem_slab <name>; @endcode
5111  *
5112  * @note This macro cannot be used together with a static keyword.
5113  *       If such a use-case is desired, use @ref K_MEM_SLAB_DEFINE_STATIC
5114  *       instead.
5115  *
5116  * @param name Name of the memory slab.
5117  * @param slab_block_size Size of each memory block (in bytes).
5118  * @param slab_num_blocks Number memory blocks.
5119  * @param slab_align Alignment of the memory slab's buffer (power of 2).
5120  */
5121 #define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5122 	char __noinit_named(k_mem_slab_buf_##name) \
5123 	   __aligned(WB_UP(slab_align)) \
5124 	   _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5125 	STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5126 		Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5127 					WB_UP(slab_block_size), slab_num_blocks)
5128 
5129 /**
5130  * @brief Statically define and initialize a memory slab in a private (static) scope.
5131  *
5132  * The memory slab's buffer contains @a slab_num_blocks memory blocks
5133  * that are @a slab_block_size bytes long. The buffer is aligned to a
5134  * @a slab_align -byte boundary. To ensure that each memory block is similarly
5135  * aligned to this boundary, @a slab_block_size must also be a multiple of
5136  * @a slab_align.
5137  *
5138  * @param name Name of the memory slab.
5139  * @param slab_block_size Size of each memory block (in bytes).
5140  * @param slab_num_blocks Number memory blocks.
5141  * @param slab_align Alignment of the memory slab's buffer (power of 2).
5142  */
5143 #define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5144 	static char __noinit_named(k_mem_slab_buf_##name) \
5145 	   __aligned(WB_UP(slab_align)) \
5146 	   _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5147 	static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5148 		Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5149 					WB_UP(slab_block_size), slab_num_blocks)
5150 
5151 /**
5152  * @brief Initialize a memory slab.
5153  *
5154  * Initializes a memory slab, prior to its first use.
5155  *
5156  * The memory slab's buffer contains @a slab_num_blocks memory blocks
5157  * that are @a slab_block_size bytes long. The buffer must be aligned to an
5158  * N-byte boundary matching a word boundary, where N is a power of 2
5159  * (i.e. 4 on 32-bit systems, 8, 16, ...).
5160  * To ensure that each memory block is similarly aligned to this boundary,
5161  * @a slab_block_size must also be a multiple of N.
5162  *
5163  * @param slab Address of the memory slab.
5164  * @param buffer Pointer to buffer used for the memory blocks.
5165  * @param block_size Size of each memory block (in bytes).
5166  * @param num_blocks Number of memory blocks.
5167  *
5168  * @retval 0 on success
5169  * @retval -EINVAL invalid data supplied
5170  *
5171  */
5172 int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5173 			   size_t block_size, uint32_t num_blocks);
5174 
5175 /**
5176  * @brief Allocate memory from a memory slab.
5177  *
5178  * This routine allocates a memory block from a memory slab.
5179  *
5180  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
5181  * @note When CONFIG_MULTITHREADING=n any @a timeout is treated as K_NO_WAIT.
5182  *
5183  * @funcprops \isr_ok
5184  *
5185  * @param slab Address of the memory slab.
5186  * @param mem Pointer to block address area.
5187  * @param timeout Non-negative waiting period to wait for operation to complete.
5188  *        Use K_NO_WAIT to return without waiting,
5189  *        or K_FOREVER to wait as long as necessary.
5190  *
5191  * @retval 0 Memory allocated. The block address area pointed at by @a mem
5192  *         is set to the starting address of the memory block.
5193  * @retval -ENOMEM Returned without waiting.
5194  * @retval -EAGAIN Waiting period timed out.
5195  * @retval -EINVAL Invalid data supplied
5196  */
5197 int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5198 			    k_timeout_t timeout);
5199 
5200 /**
5201  * @brief Free memory allocated from a memory slab.
5202  *
5203  * This routine releases a previously allocated memory block back to its
5204  * associated memory slab.
5205  *
5206  * @param slab Address of the memory slab.
5207  * @param mem Pointer to the memory block (as returned by k_mem_slab_alloc()).
5208  */
5209 void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5210 
5211 /**
5212  * @brief Get the number of used blocks in a memory slab.
5213  *
5214  * This routine gets the number of memory blocks that are currently
5215  * allocated in @a slab.
5216  *
5217  * @param slab Address of the memory slab.
5218  *
5219  * @return Number of allocated memory blocks.
5220  */
k_mem_slab_num_used_get(struct k_mem_slab * slab)5221 static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5222 {
5223 	return slab->info.num_used;
5224 }
5225 
5226 /**
5227  * @brief Get the number of maximum used blocks so far in a memory slab.
5228  *
5229  * This routine gets the maximum number of memory blocks that were
5230  * allocated in @a slab.
5231  *
5232  * @param slab Address of the memory slab.
5233  *
5234  * @return Maximum number of allocated memory blocks.
5235  */
k_mem_slab_max_used_get(struct k_mem_slab * slab)5236 static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5237 {
5238 #ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5239 	return slab->info.max_used;
5240 #else
5241 	ARG_UNUSED(slab);
5242 	return 0;
5243 #endif
5244 }
5245 
5246 /**
5247  * @brief Get the number of unused blocks in a memory slab.
5248  *
5249  * This routine gets the number of memory blocks that are currently
5250  * unallocated in @a slab.
5251  *
5252  * @param slab Address of the memory slab.
5253  *
5254  * @return Number of unallocated memory blocks.
5255  */
k_mem_slab_num_free_get(struct k_mem_slab * slab)5256 static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5257 {
5258 	return slab->info.num_blocks - slab->info.num_used;
5259 }
5260 
5261 /**
5262  * @brief Get the memory stats for a memory slab
5263  *
5264  * This routine gets the runtime memory usage stats for the slab @a slab.
5265  *
5266  * @param slab Address of the memory slab
5267  * @param stats Pointer to memory into which to copy memory usage statistics
5268  *
5269  * @retval 0 Success
5270  * @retval -EINVAL Any parameter points to NULL
5271  */
5272 
5273 int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5274 
5275 /**
5276  * @brief Reset the maximum memory usage for a slab
5277  *
5278  * This routine resets the maximum memory usage for the slab @a slab to its
5279  * current usage.
5280  *
5281  * @param slab Address of the memory slab
5282  *
5283  * @retval 0 Success
5284  * @retval -EINVAL Memory slab is NULL
5285  */
5286 int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5287 
5288 /** @} */
5289 
5290 /**
5291  * @addtogroup heap_apis
5292  * @{
5293  */
5294 
5295 /* kernel synchronized heap struct */
5296 
5297 struct k_heap {
5298 	struct sys_heap heap;
5299 	_wait_q_t wait_q;
5300 	struct k_spinlock lock;
5301 };
5302 
5303 /**
5304  * @brief Initialize a k_heap
5305  *
5306  * This constructs a synchronized k_heap object over a memory region
5307  * specified by the user.  Note that while any alignment and size can
5308  * be passed as valid parameters, internal alignment restrictions
5309  * inside the inner sys_heap mean that not all bytes may be usable as
5310  * allocated memory.
5311  *
5312  * @param h Heap struct to initialize
5313  * @param mem Pointer to memory.
5314  * @param bytes Size of memory region, in bytes
5315  */
5316 void k_heap_init(struct k_heap *h, void *mem,
5317 		size_t bytes) __attribute_nonnull(1);
5318 
5319 /** @brief Allocate aligned memory from a k_heap
5320  *
5321  * Behaves in all ways like k_heap_alloc(), except that the returned
5322  * memory (if available) will have a starting address in memory which
5323  * is a multiple of the specified power-of-two alignment value in
5324  * bytes.  The resulting memory can be returned to the heap using
5325  * k_heap_free().
5326  *
5327  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
5328  * @note When CONFIG_MULTITHREADING=n any @a timeout is treated as K_NO_WAIT.
5329  *
5330  * @funcprops \isr_ok
5331  *
5332  * @param h Heap from which to allocate
5333  * @param align Alignment in bytes, must be a power of two
5334  * @param bytes Number of bytes requested
5335  * @param timeout How long to wait, or K_NO_WAIT
5336  * @return Pointer to memory the caller can now use
5337  */
5338 void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5339 			k_timeout_t timeout) __attribute_nonnull(1);
5340 
5341 /**
5342  * @brief Allocate memory from a k_heap
5343  *
5344  * Allocates and returns a memory buffer from the memory region owned
5345  * by the heap.  If no memory is available immediately, the call will
5346  * block for the specified timeout (constructed via the standard
5347  * timeout API, or K_NO_WAIT or K_FOREVER) waiting for memory to be
5348  * freed.  If the allocation cannot be performed by the expiration of
5349  * the timeout, NULL will be returned.
5350  * Allocated memory is aligned on a multiple of pointer sizes.
5351  *
5352  * @note @a timeout must be set to K_NO_WAIT if called from ISR.
5353  * @note When CONFIG_MULTITHREADING=n any @a timeout is treated as K_NO_WAIT.
5354  *
5355  * @funcprops \isr_ok
5356  *
5357  * @param h Heap from which to allocate
5358  * @param bytes Desired size of block to allocate
5359  * @param timeout How long to wait, or K_NO_WAIT
5360  * @return A pointer to valid heap memory, or NULL
5361  */
5362 void *k_heap_alloc(struct k_heap *h, size_t bytes,
5363 		k_timeout_t timeout) __attribute_nonnull(1);
5364 
5365 /**
5366  * @brief Free memory allocated by k_heap_alloc()
5367  *
5368  * Returns the specified memory block, which must have been returned
5369  * from k_heap_alloc(), to the heap for use by other callers.  Passing
5370  * a NULL block is legal, and has no effect.
5371  *
5372  * @param h Heap to which to return the memory
5373  * @param mem A valid memory block, or NULL
5374  */
5375 void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5376 
5377 /* Hand-calculated minimum heap sizes needed to return a successful
5378  * 1-byte allocation.  See details in lib/os/heap.[ch]
5379  */
5380 #define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5381 
5382 /**
5383  * @brief Define a static k_heap in the specified linker section
5384  *
5385  * This macro defines and initializes a static memory region and
5386  * k_heap of the requested size in the specified linker section.
5387  * After kernel start, &name can be used as if k_heap_init() had
5388  * been called.
5389  *
5390  * Note that this macro enforces a minimum size on the memory region
5391  * to accommodate metadata requirements.  Very small heaps will be
5392  * padded to fit.
5393  *
5394  * @param name Symbol name for the struct k_heap object
5395  * @param bytes Size of memory region, in bytes
5396  * @param in_section __attribute__((section(name))
5397  */
5398 #define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section)		\
5399 	char in_section						\
5400 	     __aligned(8) /* CHUNK_UNIT */			\
5401 	     kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)];		\
5402 	STRUCT_SECTION_ITERABLE(k_heap, name) = {		\
5403 		.heap = {					\
5404 			.init_mem = kheap_##name,		\
5405 			.init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5406 		 },						\
5407 	}
5408 
5409 /**
5410  * @brief Define a static k_heap
5411  *
5412  * This macro defines and initializes a static memory region and
5413  * k_heap of the requested size.  After kernel start, &name can be
5414  * used as if k_heap_init() had been called.
5415  *
5416  * Note that this macro enforces a minimum size on the memory region
5417  * to accommodate metadata requirements.  Very small heaps will be
5418  * padded to fit.
5419  *
5420  * @param name Symbol name for the struct k_heap object
5421  * @param bytes Size of memory region, in bytes
5422  */
5423 #define K_HEAP_DEFINE(name, bytes)				\
5424 	Z_HEAP_DEFINE_IN_SECT(name, bytes,			\
5425 			      __noinit_named(kheap_buf_##name))
5426 
5427 /**
5428  * @brief Define a static k_heap in uncached memory
5429  *
5430  * This macro defines and initializes a static memory region and
5431  * k_heap of the requested size in uncached memory.  After kernel
5432  * start, &name can be used as if k_heap_init() had been called.
5433  *
5434  * Note that this macro enforces a minimum size on the memory region
5435  * to accommodate metadata requirements.  Very small heaps will be
5436  * padded to fit.
5437  *
5438  * @param name Symbol name for the struct k_heap object
5439  * @param bytes Size of memory region, in bytes
5440  */
5441 #define K_HEAP_DEFINE_NOCACHE(name, bytes)			\
5442 	Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5443 
5444 /**
5445  * @}
5446  */
5447 
5448 /**
5449  * @defgroup heap_apis Heap APIs
5450  * @ingroup kernel_apis
5451  * @{
5452  */
5453 
5454 /**
5455  * @brief Allocate memory from the heap with a specified alignment.
5456  *
5457  * This routine provides semantics similar to aligned_alloc(); memory is
5458  * allocated from the heap with a specified alignment. However, one minor
5459  * difference is that k_aligned_alloc() accepts any non-zero @p size,
5460  * whereas aligned_alloc() only accepts a @p size that is an integral
5461  * multiple of @p align.
5462  *
5463  * Above, aligned_alloc() refers to:
5464  * C11 standard (ISO/IEC 9899:2011): 7.22.3.1
5465  * The aligned_alloc function (p: 347-348)
5466  *
5467  * @param align Alignment of memory requested (in bytes).
5468  * @param size Amount of memory requested (in bytes).
5469  *
5470  * @return Address of the allocated memory if successful; otherwise NULL.
5471  */
5472 void *k_aligned_alloc(size_t align, size_t size);
5473 
5474 /**
5475  * @brief Allocate memory from the heap.
5476  *
5477  * This routine provides traditional malloc() semantics. Memory is
5478  * allocated from the heap memory pool.
5479  * Allocated memory is aligned on a multiple of pointer sizes.
5480  *
5481  * @param size Amount of memory requested (in bytes).
5482  *
5483  * @return Address of the allocated memory if successful; otherwise NULL.
5484  */
5485 void *k_malloc(size_t size);
5486 
5487 /**
5488  * @brief Free memory allocated from heap.
5489  *
5490  * This routine provides traditional free() semantics. The memory being
5491  * returned must have been allocated from the heap memory pool.
5492  *
5493  * If @a ptr is NULL, no operation is performed.
5494  *
5495  * @param ptr Pointer to previously allocated memory.
5496  */
5497 void k_free(void *ptr);
5498 
5499 /**
5500  * @brief Allocate memory from heap, array style
5501  *
5502  * This routine provides traditional calloc() semantics. Memory is
5503  * allocated from the heap memory pool and zeroed.
5504  *
5505  * @param nmemb Number of elements in the requested array
5506  * @param size Size of each array element (in bytes).
5507  *
5508  * @return Address of the allocated memory if successful; otherwise NULL.
5509  */
5510 void *k_calloc(size_t nmemb, size_t size);
5511 
5512 /** @} */
5513 
5514 /* polling API - PRIVATE */
5515 
5516 #ifdef CONFIG_POLL
5517 #define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5518 #else
5519 #define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5520 #endif
5521 
5522 /* private - types bit positions */
5523 enum _poll_types_bits {
5524 	/* can be used to ignore an event */
5525 	_POLL_TYPE_IGNORE,
5526 
5527 	/* to be signaled by k_poll_signal_raise() */
5528 	_POLL_TYPE_SIGNAL,
5529 
5530 	/* semaphore availability */
5531 	_POLL_TYPE_SEM_AVAILABLE,
5532 
5533 	/* queue/FIFO/LIFO data availability */
5534 	_POLL_TYPE_DATA_AVAILABLE,
5535 
5536 	/* msgq data availability */
5537 	_POLL_TYPE_MSGQ_DATA_AVAILABLE,
5538 
5539 	/* pipe data availability */
5540 	_POLL_TYPE_PIPE_DATA_AVAILABLE,
5541 
5542 	_POLL_NUM_TYPES
5543 };
5544 
5545 #define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5546 
5547 /* private - states bit positions */
5548 enum _poll_states_bits {
5549 	/* default state when creating event */
5550 	_POLL_STATE_NOT_READY,
5551 
5552 	/* signaled by k_poll_signal_raise() */
5553 	_POLL_STATE_SIGNALED,
5554 
5555 	/* semaphore is available */
5556 	_POLL_STATE_SEM_AVAILABLE,
5557 
5558 	/* data is available to read on queue/FIFO/LIFO */
5559 	_POLL_STATE_DATA_AVAILABLE,
5560 
5561 	/* queue/FIFO/LIFO wait was cancelled */
5562 	_POLL_STATE_CANCELLED,
5563 
5564 	/* data is available to read on a message queue */
5565 	_POLL_STATE_MSGQ_DATA_AVAILABLE,
5566 
5567 	/* data is available to read from a pipe */
5568 	_POLL_STATE_PIPE_DATA_AVAILABLE,
5569 
5570 	_POLL_NUM_STATES
5571 };
5572 
5573 #define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5574 
5575 #define _POLL_EVENT_NUM_UNUSED_BITS \
5576 	(32 - (0 \
5577 	       + 8 /* tag */ \
5578 	       + _POLL_NUM_TYPES \
5579 	       + _POLL_NUM_STATES \
5580 	       + 1 /* modes */ \
5581 	      ))
5582 
5583 /* end of polling API - PRIVATE */
5584 
5585 
5586 /**
5587  * @defgroup poll_apis Async polling APIs
5588  * @ingroup kernel_apis
5589  * @{
5590  */
5591 
5592 /* Public polling API */
5593 
5594 /* public - values for k_poll_event.type bitfield */
5595 #define K_POLL_TYPE_IGNORE 0
5596 #define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5597 #define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5598 #define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5599 #define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5600 #define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5601 #define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5602 
5603 /* public - polling modes */
5604 enum k_poll_modes {
5605 	/* polling thread does not take ownership of objects when available */
5606 	K_POLL_MODE_NOTIFY_ONLY = 0,
5607 
5608 	K_POLL_NUM_MODES
5609 };
5610 
5611 /* public - values for k_poll_event.state bitfield */
5612 #define K_POLL_STATE_NOT_READY 0
5613 #define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5614 #define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5615 #define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5616 #define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5617 #define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5618 #define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5619 #define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5620 
5621 /* public - poll signal object */
5622 struct k_poll_signal {
5623 	/** PRIVATE - DO NOT TOUCH */
5624 	sys_dlist_t poll_events;
5625 
5626 	/**
5627 	 * 1 if the event has been signaled, 0 otherwise. Stays set to 1 until
5628 	 * user resets it to 0.
5629 	 */
5630 	unsigned int signaled;
5631 
5632 	/** custom result value passed to k_poll_signal_raise() if needed */
5633 	int result;
5634 };
5635 
5636 #define K_POLL_SIGNAL_INITIALIZER(obj) \
5637 	{ \
5638 	.poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5639 	.signaled = 0, \
5640 	.result = 0, \
5641 	}
5642 /**
5643  * @brief Poll Event
5644  *
5645  */
5646 struct k_poll_event {
5647 	/** PRIVATE - DO NOT TOUCH */
5648 	sys_dnode_t _node;
5649 
5650 	/** PRIVATE - DO NOT TOUCH */
5651 	struct z_poller *poller;
5652 
5653 	/** optional user-specified tag, opaque, untouched by the API */
5654 	uint32_t tag:8;
5655 
5656 	/** bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values) */
5657 	uint32_t type:_POLL_NUM_TYPES;
5658 
5659 	/** bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values) */
5660 	uint32_t state:_POLL_NUM_STATES;
5661 
5662 	/** mode of operation, from enum k_poll_modes */
5663 	uint32_t mode:1;
5664 
5665 	/** unused bits in 32-bit word */
5666 	uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5667 
5668 	/** per-type data */
5669 	union {
5670 		void *obj;
5671 		struct k_poll_signal *signal;
5672 		struct k_sem *sem;
5673 		struct k_fifo *fifo;
5674 		struct k_queue *queue;
5675 		struct k_msgq *msgq;
5676 #ifdef CONFIG_PIPES
5677 		struct k_pipe *pipe;
5678 #endif
5679 	};
5680 };
5681 
5682 #define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5683 	{ \
5684 	.poller = NULL, \
5685 	.type = _event_type, \
5686 	.state = K_POLL_STATE_NOT_READY, \
5687 	.mode = _event_mode, \
5688 	.unused = 0, \
5689 	{ \
5690 		.obj = _event_obj, \
5691 	}, \
5692 	}
5693 
5694 #define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5695 					event_tag) \
5696 	{ \
5697 	.tag = event_tag, \
5698 	.type = _event_type, \
5699 	.state = K_POLL_STATE_NOT_READY, \
5700 	.mode = _event_mode, \
5701 	.unused = 0, \
5702 	{ \
5703 		.obj = _event_obj, \
5704 	}, \
5705 	}
5706 
5707 /**
5708  * @brief Initialize one struct k_poll_event instance
5709  *
5710  * After this routine is called on a poll event, the event it ready to be
5711  * placed in an event array to be passed to k_poll().
5712  *
5713  * @param event The event to initialize.
5714  * @param type A bitfield of the types of event, from the K_POLL_TYPE_xxx
5715  *             values. Only values that apply to the same object being polled
5716  *             can be used together. Choosing K_POLL_TYPE_IGNORE disables the
5717  *             event.
5718  * @param mode Future. Use K_POLL_MODE_NOTIFY_ONLY.
5719  * @param obj Kernel object or poll signal.
5720  */
5721 
5722 void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5723 			      int mode, void *obj);
5724 
5725 /**
5726  * @brief Wait for one or many of multiple poll events to occur
5727  *
5728  * This routine allows a thread to wait concurrently for one or many of
5729  * multiple poll events to have occurred. Such events can be a kernel object
5730  * being available, like a semaphore, or a poll signal event.
5731  *
5732  * When an event notifies that a kernel object is available, the kernel object
5733  * is not "given" to the thread calling k_poll(): it merely signals the fact
5734  * that the object was available when the k_poll() call was in effect. Also,
5735  * all threads trying to acquire an object the regular way, i.e. by pending on
5736  * the object, have precedence over the thread polling on the object. This
5737  * means that the polling thread will never get the poll event on an object
5738  * until the object becomes available and its pend queue is empty. For this
5739  * reason, the k_poll() call is more effective when the objects being polled
5740  * only have one thread, the polling thread, trying to acquire them.
5741  *
5742  * When k_poll() returns 0, the caller should loop on all the events that were
5743  * passed to k_poll() and check the state field for the values that were
5744  * expected and take the associated actions.
5745  *
5746  * Before being reused for another call to k_poll(), the user has to reset the
5747  * state field to K_POLL_STATE_NOT_READY.
5748  *
5749  * When called from user mode, a temporary memory allocation is required from
5750  * the caller's resource pool.
5751  *
5752  * @param events An array of events to be polled for.
5753  * @param num_events The number of events in the array.
5754  * @param timeout Waiting period for an event to be ready,
5755  *                or one of the special values K_NO_WAIT and K_FOREVER.
5756  *
5757  * @retval 0 One or more events are ready.
5758  * @retval -EAGAIN Waiting period timed out.
5759  * @retval -EINTR Polling has been interrupted, e.g. with
5760  *         k_queue_cancel_wait(). All output events are still set and valid,
5761  *         cancelled event(s) will be set to K_POLL_STATE_CANCELLED. In other
5762  *         words, -EINTR status means that at least one of output events is
5763  *         K_POLL_STATE_CANCELLED.
5764  * @retval -ENOMEM Thread resource pool insufficient memory (user mode only)
5765  * @retval -EINVAL Bad parameters (user mode only)
5766  */
5767 
5768 __syscall int k_poll(struct k_poll_event *events, int num_events,
5769 		     k_timeout_t timeout);
5770 
5771 /**
5772  * @brief Initialize a poll signal object.
5773  *
5774  * Ready a poll signal object to be signaled via k_poll_signal_raise().
5775  *
5776  * @param sig A poll signal.
5777  */
5778 
5779 __syscall void k_poll_signal_init(struct k_poll_signal *sig);
5780 
5781 /*
5782  * @brief Reset a poll signal object's state to unsignaled.
5783  *
5784  * @param sig A poll signal object
5785  */
5786 __syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5787 
5788 /**
5789  * @brief Fetch the signaled state and result value of a poll signal
5790  *
5791  * @param sig A poll signal object
5792  * @param signaled An integer buffer which will be written nonzero if the
5793  *		   object was signaled
5794  * @param result An integer destination buffer which will be written with the
5795  *		   result value if the object was signaled, or an undefined
5796  *		   value if it was not.
5797  */
5798 __syscall void k_poll_signal_check(struct k_poll_signal *sig,
5799 				   unsigned int *signaled, int *result);
5800 
5801 /**
5802  * @brief Signal a poll signal object.
5803  *
5804  * This routine makes ready a poll signal, which is basically a poll event of
5805  * type K_POLL_TYPE_SIGNAL. If a thread was polling on that event, it will be
5806  * made ready to run. A @a result value can be specified.
5807  *
5808  * The poll signal contains a 'signaled' field that, when set by
5809  * k_poll_signal_raise(), stays set until the user sets it back to 0 with
5810  * k_poll_signal_reset(). It thus has to be reset by the user before being
5811  * passed again to k_poll() or k_poll() will consider it being signaled, and
5812  * will return immediately.
5813  *
5814  * @note The result is stored and the 'signaled' field is set even if
5815  * this function returns an error indicating that an expiring poll was
5816  * not notified.  The next k_poll() will detect the missed raise.
5817  *
5818  * @param sig A poll signal.
5819  * @param result The value to store in the result field of the signal.
5820  *
5821  * @retval 0 The signal was delivered successfully.
5822  * @retval -EAGAIN The polling thread's timeout is in the process of expiring.
5823  */
5824 
5825 __syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5826 
5827 /** @} */
5828 
5829 /**
5830  * @defgroup cpu_idle_apis CPU Idling APIs
5831  * @ingroup kernel_apis
5832  * @{
5833  */
5834 /**
5835  * @brief Make the CPU idle.
5836  *
5837  * This function makes the CPU idle until an event wakes it up.
5838  *
5839  * In a regular system, the idle thread should be the only thread responsible
5840  * for making the CPU idle and triggering any type of power management.
5841  * However, in some more constrained systems, such as a single-threaded system,
5842  * the only thread would be responsible for this if needed.
5843  *
5844  * @note In some architectures, before returning, the function unmasks interrupts
5845  * unconditionally.
5846  */
k_cpu_idle(void)5847 static inline void k_cpu_idle(void)
5848 {
5849 	arch_cpu_idle();
5850 }
5851 
5852 /**
5853  * @brief Make the CPU idle in an atomic fashion.
5854  *
5855  * Similar to k_cpu_idle(), but must be called with interrupts locked.
5856  *
5857  * Enabling interrupts and entering a low-power mode will be atomic,
5858  * i.e. there will be no period of time where interrupts are enabled before
5859  * the processor enters a low-power mode.
5860  *
5861  * After waking up from the low-power mode, the interrupt lockout state will
5862  * be restored as if by irq_unlock(key).
5863  *
5864  * @param key Interrupt locking key obtained from irq_lock().
5865  */
k_cpu_atomic_idle(unsigned int key)5866 static inline void k_cpu_atomic_idle(unsigned int key)
5867 {
5868 	arch_cpu_atomic_idle(key);
5869 }
5870 
5871 /**
5872  * @}
5873  */
5874 
5875 /**
5876  * @cond INTERNAL_HIDDEN
5877  * @internal
5878  */
5879 #ifdef ARCH_EXCEPT
5880 /* This architecture has direct support for triggering a CPU exception */
5881 #define z_except_reason(reason)	ARCH_EXCEPT(reason)
5882 #else
5883 
5884 #if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5885 #define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5886 #else
5887 #define __EXCEPT_LOC()
5888 #endif
5889 
5890 /* NOTE: This is the implementation for arches that do not implement
5891  * ARCH_EXCEPT() to generate a real CPU exception.
5892  *
5893  * We won't have a real exception frame to determine the PC value when
5894  * the oops occurred, so print file and line number before we jump into
5895  * the fatal error handler.
5896  */
5897 #define z_except_reason(reason) do { \
5898 		__EXCEPT_LOC();              \
5899 		z_fatal_error(reason, NULL); \
5900 	} while (false)
5901 
5902 #endif /* _ARCH__EXCEPT */
5903 /**
5904  * INTERNAL_HIDDEN @endcond
5905  */
5906 
5907 /**
5908  * @brief Fatally terminate a thread
5909  *
5910  * This should be called when a thread has encountered an unrecoverable
5911  * runtime condition and needs to terminate. What this ultimately
5912  * means is determined by the _fatal_error_handler() implementation, which
5913  * will be called will reason code K_ERR_KERNEL_OOPS.
5914  *
5915  * If this is called from ISR context, the default system fatal error handler
5916  * will treat it as an unrecoverable system error, just like k_panic().
5917  */
5918 #define k_oops()	z_except_reason(K_ERR_KERNEL_OOPS)
5919 
5920 /**
5921  * @brief Fatally terminate the system
5922  *
5923  * This should be called when the Zephyr kernel has encountered an
5924  * unrecoverable runtime condition and needs to terminate. What this ultimately
5925  * means is determined by the _fatal_error_handler() implementation, which
5926  * will be called will reason code K_ERR_KERNEL_PANIC.
5927  */
5928 #define k_panic()	z_except_reason(K_ERR_KERNEL_PANIC)
5929 
5930 /**
5931  * @cond INTERNAL_HIDDEN
5932  */
5933 
5934 /*
5935  * private APIs that are utilized by one or more public APIs
5936  */
5937 
5938 /**
5939  * @internal
5940  */
5941 #ifdef CONFIG_MULTITHREADING
5942 /**
5943  * @internal
5944  */
5945 void z_init_static_threads(void);
5946 #else
5947 /**
5948  * @internal
5949  */
5950 #define z_init_static_threads() do { } while (false)
5951 #endif
5952 
5953 /**
5954  * @internal
5955  */
5956 void z_timer_expiration_handler(struct _timeout *t);
5957 /**
5958  * INTERNAL_HIDDEN @endcond
5959  */
5960 
5961 #ifdef CONFIG_PRINTK
5962 /**
5963  * @brief Emit a character buffer to the console device
5964  *
5965  * @param c String of characters to print
5966  * @param n The length of the string
5967  *
5968  */
5969 __syscall void k_str_out(char *c, size_t n);
5970 #endif
5971 
5972 /**
5973  * @defgroup float_apis Floating Point APIs
5974  * @ingroup kernel_apis
5975  * @{
5976  */
5977 
5978 /**
5979  * @brief Disable preservation of floating point context information.
5980  *
5981  * This routine informs the kernel that the specified thread
5982  * will no longer be using the floating point registers.
5983  *
5984  * @warning
5985  * Some architectures apply restrictions on how the disabling of floating
5986  * point preservation may be requested, see arch_float_disable.
5987  *
5988  * @warning
5989  * This routine should only be used to disable floating point support for
5990  * a thread that currently has such support enabled.
5991  *
5992  * @param thread ID of thread.
5993  *
5994  * @retval 0        On success.
5995  * @retval -ENOTSUP If the floating point disabling is not implemented.
5996  *         -EINVAL  If the floating point disabling could not be performed.
5997  */
5998 __syscall int k_float_disable(struct k_thread *thread);
5999 
6000 /**
6001  * @brief Enable preservation of floating point context information.
6002  *
6003  * This routine informs the kernel that the specified thread
6004  * will use the floating point registers.
6005 
6006  * Invoking this routine initializes the thread's floating point context info
6007  * to that of an FPU that has been reset. The next time the thread is scheduled
6008  * by z_swap() it will either inherit an FPU that is guaranteed to be in a
6009  * "sane" state (if the most recent user of the FPU was cooperatively swapped
6010  * out) or the thread's own floating point context will be loaded (if the most
6011  * recent user of the FPU was preempted, or if this thread is the first user
6012  * of the FPU). Thereafter, the kernel will protect the thread's FP context
6013  * so that it is not altered during a preemptive context switch.
6014  *
6015  * The @a options parameter indicates which floating point register sets will
6016  * be used by the specified thread.
6017  *
6018  * For x86 options:
6019  *
6020  * - K_FP_REGS  indicates x87 FPU and MMX registers only
6021  * - K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers)
6022  *
6023  * @warning
6024  * Some architectures apply restrictions on how the enabling of floating
6025  * point preservation may be requested, see arch_float_enable.
6026  *
6027  * @warning
6028  * This routine should only be used to enable floating point support for
6029  * a thread that currently has such support enabled.
6030  *
6031  * @param thread  ID of thread.
6032  * @param options architecture dependent options
6033  *
6034  * @retval 0        On success.
6035  * @retval -ENOTSUP If the floating point enabling is not implemented.
6036  *         -EINVAL  If the floating point enabling could not be performed.
6037  */
6038 __syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6039 
6040 /**
6041  * @}
6042  */
6043 
6044 /**
6045  * @brief Get the runtime statistics of a thread
6046  *
6047  * @param thread ID of thread.
6048  * @param stats Pointer to struct to copy statistics into.
6049  * @return -EINVAL if null pointers, otherwise 0
6050  */
6051 int k_thread_runtime_stats_get(k_tid_t thread,
6052 			       k_thread_runtime_stats_t *stats);
6053 
6054 /**
6055  * @brief Get the runtime statistics of all threads
6056  *
6057  * @param stats Pointer to struct to copy statistics into.
6058  * @return -EINVAL if null pointers, otherwise 0
6059  */
6060 int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats);
6061 
6062 /**
6063  * @brief Enable gathering of runtime statistics for specified thread
6064  *
6065  * This routine enables the gathering of runtime statistics for the specified
6066  * thread.
6067  *
6068  * @param thread ID of thread
6069  * @return -EINVAL if invalid thread ID, otherwise 0
6070  */
6071 int k_thread_runtime_stats_enable(k_tid_t thread);
6072 
6073 /**
6074  * @brief Disable gathering of runtime statistics for specified thread
6075  *
6076  * This routine disables the gathering of runtime statistics for the specified
6077  * thread.
6078  *
6079  * @param thread ID of thread
6080  * @return -EINVAL if invalid thread ID, otherwise 0
6081  */
6082 int k_thread_runtime_stats_disable(k_tid_t thread);
6083 
6084 /**
6085  * @brief Enable gathering of system runtime statistics
6086  *
6087  * This routine enables the gathering of system runtime statistics. Note that
6088  * it does not affect the gathering of similar statistics for individual
6089  * threads.
6090  */
6091 void k_sys_runtime_stats_enable(void);
6092 
6093 /**
6094  * @brief Disable gathering of system runtime statistics
6095  *
6096  * This routine disables the gathering of system runtime statistics. Note that
6097  * it does not affect the gathering of similar statistics for individual
6098  * threads.
6099  */
6100 void k_sys_runtime_stats_disable(void);
6101 
6102 #ifdef __cplusplus
6103 }
6104 #endif
6105 
6106 #include <zephyr/tracing/tracing.h>
6107 #include <syscalls/kernel.h>
6108 
6109 #endif /* !_ASMLANGUAGE */
6110 
6111 #endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
6112