1 /* This is a small demo of the high-performance ThreadX kernel.  It includes examples of eight
2    threads of different priorities, using a message queue, semaphore, mutex, event flags group,
3    byte pool, and block pool.  */
4 
5 #include "tx_api.h"
6 
7 #define DEMO_STACK_SIZE         1024
8 #define DEMO_BYTE_POOL_SIZE     9120
9 #define DEMO_BLOCK_POOL_SIZE    100
10 #define DEMO_QUEUE_SIZE         100
11 
12 
13 /* Define the ThreadX object control blocks...  */
14 
15 TX_THREAD               thread_0;
16 TX_THREAD               thread_1;
17 TX_THREAD               thread_2;
18 TX_THREAD               thread_3;
19 TX_THREAD               thread_4;
20 TX_THREAD               thread_5;
21 TX_THREAD               thread_6;
22 TX_THREAD               thread_7;
23 TX_QUEUE                queue_0;
24 TX_SEMAPHORE            semaphore_0;
25 TX_MUTEX                mutex_0;
26 TX_EVENT_FLAGS_GROUP    event_flags_0;
27 TX_BYTE_POOL            byte_pool_0;
28 TX_BLOCK_POOL           block_pool_0;
29 UCHAR                   memory_area[DEMO_BYTE_POOL_SIZE];
30 
31 
32 /* Define the counters used in the demo application...  */
33 
34 ULONG                   thread_0_counter;
35 ULONG                   thread_1_counter;
36 ULONG                   thread_1_messages_sent;
37 ULONG                   thread_2_counter;
38 ULONG                   thread_2_messages_received;
39 ULONG                   thread_3_counter;
40 ULONG                   thread_4_counter;
41 ULONG                   thread_5_counter;
42 ULONG                   thread_6_counter;
43 ULONG                   thread_7_counter;
44 
45 
46 /* Define thread prototypes.  */
47 
48 void    thread_0_entry(ULONG thread_input);
49 void    thread_1_entry(ULONG thread_input);
50 void    thread_2_entry(ULONG thread_input);
51 void    thread_3_and_4_entry(ULONG thread_input);
52 void    thread_5_entry(ULONG thread_input);
53 void    thread_6_and_7_entry(ULONG thread_input);
54 
55 
56 /* Define main entry point.  */
57 
main()58 int main()
59 {
60 
61     /* Enter the ThreadX kernel.  */
62     tx_kernel_enter();
63 }
64 
65 
66 /* Define what the initial system looks like.  */
67 
tx_application_define(void * first_unused_memory)68 void    tx_application_define(void *first_unused_memory)
69 {
70 
71 CHAR    *pointer = TX_NULL;
72 
73 
74     /* Create a byte memory pool from which to allocate the thread stacks.  */
75     tx_byte_pool_create(&byte_pool_0, "byte pool 0", memory_area, DEMO_BYTE_POOL_SIZE);
76 
77     /* Put system definition stuff in here, e.g. thread creates and other assorted
78        create information.  */
79 
80     /* Allocate the stack for thread 0.  */
81     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
82 
83     /* Create the main thread.  */
84     tx_thread_create(&thread_0, "thread 0", thread_0_entry, 0,
85             pointer, DEMO_STACK_SIZE,
86             1, 1, TX_NO_TIME_SLICE, TX_AUTO_START);
87 
88 
89     /* Allocate the stack for thread 1.  */
90     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
91 
92     /* Create threads 1 and 2. These threads pass information through a ThreadX
93        message queue.  It is also interesting to note that these threads have a time
94        slice.  */
95     tx_thread_create(&thread_1, "thread 1", thread_1_entry, 1,
96             pointer, DEMO_STACK_SIZE,
97             16, 16, 4, TX_AUTO_START);
98 
99     /* Allocate the stack for thread 2.  */
100     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
101 
102     tx_thread_create(&thread_2, "thread 2", thread_2_entry, 2,
103             pointer, DEMO_STACK_SIZE,
104             16, 16, 4, TX_AUTO_START);
105 
106     /* Allocate the stack for thread 3.  */
107     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
108 
109     /* Create threads 3 and 4.  These threads compete for a ThreadX counting semaphore.
110        An interesting thing here is that both threads share the same instruction area.  */
111     tx_thread_create(&thread_3, "thread 3", thread_3_and_4_entry, 3,
112             pointer, DEMO_STACK_SIZE,
113             8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
114 
115     /* Allocate the stack for thread 4.  */
116     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
117 
118     tx_thread_create(&thread_4, "thread 4", thread_3_and_4_entry, 4,
119             pointer, DEMO_STACK_SIZE,
120             8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
121 
122     /* Allocate the stack for thread 5.  */
123     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
124 
125     /* Create thread 5.  This thread simply pends on an event flag which will be set
126        by thread_0.  */
127     tx_thread_create(&thread_5, "thread 5", thread_5_entry, 5,
128             pointer, DEMO_STACK_SIZE,
129             4, 4, TX_NO_TIME_SLICE, TX_AUTO_START);
130 
131     /* Allocate the stack for thread 6.  */
132     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
133 
134     /* Create threads 6 and 7.  These threads compete for a ThreadX mutex.  */
135     tx_thread_create(&thread_6, "thread 6", thread_6_and_7_entry, 6,
136             pointer, DEMO_STACK_SIZE,
137             8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
138 
139     /* Allocate the stack for thread 7.  */
140     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
141 
142     tx_thread_create(&thread_7, "thread 7", thread_6_and_7_entry, 7,
143             pointer, DEMO_STACK_SIZE,
144             8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
145 
146     /* Allocate the message queue.  */
147     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_QUEUE_SIZE*sizeof(ULONG), TX_NO_WAIT);
148 
149     /* Create the message queue shared by threads 1 and 2.  */
150     tx_queue_create(&queue_0, "queue 0", TX_1_ULONG, pointer, DEMO_QUEUE_SIZE*sizeof(ULONG));
151 
152     /* Create the semaphore used by threads 3 and 4.  */
153     tx_semaphore_create(&semaphore_0, "semaphore 0", 1);
154 
155     /* Create the event flags group used by threads 1 and 5.  */
156     tx_event_flags_create(&event_flags_0, "event flags 0");
157 
158     /* Create the mutex used by thread 6 and 7 without priority inheritance.  */
159     tx_mutex_create(&mutex_0, "mutex 0", TX_NO_INHERIT);
160 
161     /* Allocate the memory for a small block pool.  */
162     tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_BLOCK_POOL_SIZE, TX_NO_WAIT);
163 
164     /* Create a block memory pool to allocate a message buffer from.  */
165     tx_block_pool_create(&block_pool_0, "block pool 0", sizeof(ULONG), pointer, DEMO_BLOCK_POOL_SIZE);
166 
167     /* Allocate a block and release the block memory.  */
168     tx_block_allocate(&block_pool_0, (VOID **) &pointer, TX_NO_WAIT);
169 
170     /* Release the block back to the pool.  */
171     tx_block_release(pointer);
172 }
173 
174 
175 
176 /* Define the test threads.  */
177 
thread_0_entry(ULONG thread_input)178 void    thread_0_entry(ULONG thread_input)
179 {
180 
181 UINT    status;
182 
183 
184     /* This thread simply sits in while-forever-sleep loop.  */
185     while(1)
186     {
187 
188         /* Increment the thread counter.  */
189         thread_0_counter++;
190 
191         /* Sleep for 10 ticks.  */
192         tx_thread_sleep(10);
193 
194         /* Set event flag 0 to wakeup thread 5.  */
195         status =  tx_event_flags_set(&event_flags_0, 0x1, TX_OR);
196 
197         /* Check status.  */
198         if (status != TX_SUCCESS)
199             break;
200     }
201 }
202 
203 
thread_1_entry(ULONG thread_input)204 void    thread_1_entry(ULONG thread_input)
205 {
206 
207 UINT    status;
208 
209 
210     /* This thread simply sends messages to a queue shared by thread 2.  */
211     while(1)
212     {
213 
214         /* Increment the thread counter.  */
215         thread_1_counter++;
216 
217         /* Send message to queue 0.  */
218         status =  tx_queue_send(&queue_0, &thread_1_messages_sent, TX_WAIT_FOREVER);
219 
220         /* Check completion status.  */
221         if (status != TX_SUCCESS)
222             break;
223 
224         /* Increment the message sent.  */
225         thread_1_messages_sent++;
226     }
227 }
228 
229 
thread_2_entry(ULONG thread_input)230 void    thread_2_entry(ULONG thread_input)
231 {
232 
233 ULONG   received_message;
234 UINT    status;
235 
236     /* This thread retrieves messages placed on the queue by thread 1.  */
237     while(1)
238     {
239 
240         /* Increment the thread counter.  */
241         thread_2_counter++;
242 
243         /* Retrieve a message from the queue.  */
244         status = tx_queue_receive(&queue_0, &received_message, TX_WAIT_FOREVER);
245 
246         /* Check completion status and make sure the message is what we
247            expected.  */
248         if ((status != TX_SUCCESS) || (received_message != thread_2_messages_received))
249             break;
250 
251         /* Otherwise, all is okay.  Increment the received message count.  */
252         thread_2_messages_received++;
253     }
254 }
255 
256 
thread_3_and_4_entry(ULONG thread_input)257 void    thread_3_and_4_entry(ULONG thread_input)
258 {
259 
260 UINT    status;
261 
262 
263     /* This function is executed from thread 3 and thread 4.  As the loop
264        below shows, these function compete for ownership of semaphore_0.  */
265     while(1)
266     {
267 
268         /* Increment the thread counter.  */
269         if (thread_input == 3)
270             thread_3_counter++;
271         else
272             thread_4_counter++;
273 
274         /* Get the semaphore with suspension.  */
275         status =  tx_semaphore_get(&semaphore_0, TX_WAIT_FOREVER);
276 
277         /* Check status.  */
278         if (status != TX_SUCCESS)
279             break;
280 
281         /* Sleep for 2 ticks to hold the semaphore.  */
282         tx_thread_sleep(2);
283 
284         /* Release the semaphore.  */
285         status =  tx_semaphore_put(&semaphore_0);
286 
287         /* Check status.  */
288         if (status != TX_SUCCESS)
289             break;
290     }
291 }
292 
293 
thread_5_entry(ULONG thread_input)294 void    thread_5_entry(ULONG thread_input)
295 {
296 
297 UINT    status;
298 ULONG   actual_flags;
299 
300 
301     /* This thread simply waits for an event in a forever loop.  */
302     while(1)
303     {
304 
305         /* Increment the thread counter.  */
306         thread_5_counter++;
307 
308         /* Wait for event flag 0.  */
309         status =  tx_event_flags_get(&event_flags_0, 0x1, TX_OR_CLEAR,
310                                                 &actual_flags, TX_WAIT_FOREVER);
311 
312         /* Check status.  */
313         if ((status != TX_SUCCESS) || (actual_flags != 0x1))
314             break;
315     }
316 }
317 
318 
thread_6_and_7_entry(ULONG thread_input)319 void    thread_6_and_7_entry(ULONG thread_input)
320 {
321 
322 UINT    status;
323 
324 
325     /* This function is executed from thread 6 and thread 7.  As the loop
326        below shows, these function compete for ownership of mutex_0.  */
327     while(1)
328     {
329 
330         /* Increment the thread counter.  */
331         if (thread_input == 6)
332             thread_6_counter++;
333         else
334             thread_7_counter++;
335 
336         /* Get the mutex with suspension.  */
337         status =  tx_mutex_get(&mutex_0, TX_WAIT_FOREVER);
338 
339         /* Check status.  */
340         if (status != TX_SUCCESS)
341             break;
342 
343         /* Get the mutex again with suspension.  This shows
344            that an owning thread may retrieve the mutex it
345            owns multiple times.  */
346         status =  tx_mutex_get(&mutex_0, TX_WAIT_FOREVER);
347 
348         /* Check status.  */
349         if (status != TX_SUCCESS)
350             break;
351 
352         /* Sleep for 2 ticks to hold the mutex.  */
353         tx_thread_sleep(2);
354 
355         /* Release the mutex.  */
356         status =  tx_mutex_put(&mutex_0);
357 
358         /* Check status.  */
359         if (status != TX_SUCCESS)
360             break;
361 
362         /* Release the mutex again.  This will actually
363            release ownership since it was obtained twice.  */
364         status =  tx_mutex_put(&mutex_0);
365 
366         /* Check status.  */
367         if (status != TX_SUCCESS)
368             break;
369     }
370 }
371