1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Device Memory Migration functionality.
4  *
5  * Originally written by Jérôme Glisse.
6  */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19 
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)20 static int migrate_vma_collect_skip(unsigned long start,
21 				    unsigned long end,
22 				    struct mm_walk *walk)
23 {
24 	struct migrate_vma *migrate = walk->private;
25 	unsigned long addr;
26 
27 	for (addr = start; addr < end; addr += PAGE_SIZE) {
28 		migrate->dst[migrate->npages] = 0;
29 		migrate->src[migrate->npages++] = 0;
30 	}
31 
32 	return 0;
33 }
34 
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)35 static int migrate_vma_collect_hole(unsigned long start,
36 				    unsigned long end,
37 				    __always_unused int depth,
38 				    struct mm_walk *walk)
39 {
40 	struct migrate_vma *migrate = walk->private;
41 	unsigned long addr;
42 
43 	/* Only allow populating anonymous memory. */
44 	if (!vma_is_anonymous(walk->vma))
45 		return migrate_vma_collect_skip(start, end, walk);
46 
47 	for (addr = start; addr < end; addr += PAGE_SIZE) {
48 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 		migrate->dst[migrate->npages] = 0;
50 		migrate->npages++;
51 		migrate->cpages++;
52 	}
53 
54 	return 0;
55 }
56 
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 				   unsigned long start,
59 				   unsigned long end,
60 				   struct mm_walk *walk)
61 {
62 	struct migrate_vma *migrate = walk->private;
63 	struct vm_area_struct *vma = walk->vma;
64 	struct mm_struct *mm = vma->vm_mm;
65 	unsigned long addr = start, unmapped = 0;
66 	spinlock_t *ptl;
67 	pte_t *ptep;
68 
69 again:
70 	if (pmd_none(*pmdp))
71 		return migrate_vma_collect_hole(start, end, -1, walk);
72 
73 	if (pmd_trans_huge(*pmdp)) {
74 		struct page *page;
75 
76 		ptl = pmd_lock(mm, pmdp);
77 		if (unlikely(!pmd_trans_huge(*pmdp))) {
78 			spin_unlock(ptl);
79 			goto again;
80 		}
81 
82 		page = pmd_page(*pmdp);
83 		if (is_huge_zero_page(page)) {
84 			spin_unlock(ptl);
85 			split_huge_pmd(vma, pmdp, addr);
86 		} else {
87 			int ret;
88 
89 			get_page(page);
90 			spin_unlock(ptl);
91 			if (unlikely(!trylock_page(page)))
92 				return migrate_vma_collect_skip(start, end,
93 								walk);
94 			ret = split_huge_page(page);
95 			unlock_page(page);
96 			put_page(page);
97 			if (ret)
98 				return migrate_vma_collect_skip(start, end,
99 								walk);
100 		}
101 	}
102 
103 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
104 	if (!ptep)
105 		goto again;
106 	arch_enter_lazy_mmu_mode();
107 
108 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
109 		unsigned long mpfn = 0, pfn;
110 		struct page *page;
111 		swp_entry_t entry;
112 		pte_t pte;
113 
114 		pte = ptep_get(ptep);
115 
116 		if (pte_none(pte)) {
117 			if (vma_is_anonymous(vma)) {
118 				mpfn = MIGRATE_PFN_MIGRATE;
119 				migrate->cpages++;
120 			}
121 			goto next;
122 		}
123 
124 		if (!pte_present(pte)) {
125 			/*
126 			 * Only care about unaddressable device page special
127 			 * page table entry. Other special swap entries are not
128 			 * migratable, and we ignore regular swapped page.
129 			 */
130 			entry = pte_to_swp_entry(pte);
131 			if (!is_device_private_entry(entry))
132 				goto next;
133 
134 			page = pfn_swap_entry_to_page(entry);
135 			if (!(migrate->flags &
136 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
137 			    page->pgmap->owner != migrate->pgmap_owner)
138 				goto next;
139 
140 			mpfn = migrate_pfn(page_to_pfn(page)) |
141 					MIGRATE_PFN_MIGRATE;
142 			if (is_writable_device_private_entry(entry))
143 				mpfn |= MIGRATE_PFN_WRITE;
144 		} else {
145 			pfn = pte_pfn(pte);
146 			if (is_zero_pfn(pfn) &&
147 			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
148 				mpfn = MIGRATE_PFN_MIGRATE;
149 				migrate->cpages++;
150 				goto next;
151 			}
152 			page = vm_normal_page(migrate->vma, addr, pte);
153 			if (page && !is_zone_device_page(page) &&
154 			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
155 				goto next;
156 			else if (page && is_device_coherent_page(page) &&
157 			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
158 			     page->pgmap->owner != migrate->pgmap_owner))
159 				goto next;
160 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
161 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
162 		}
163 
164 		/* FIXME support THP */
165 		if (!page || !page->mapping || PageTransCompound(page)) {
166 			mpfn = 0;
167 			goto next;
168 		}
169 
170 		/*
171 		 * By getting a reference on the page we pin it and that blocks
172 		 * any kind of migration. Side effect is that it "freezes" the
173 		 * pte.
174 		 *
175 		 * We drop this reference after isolating the page from the lru
176 		 * for non device page (device page are not on the lru and thus
177 		 * can't be dropped from it).
178 		 */
179 		get_page(page);
180 
181 		/*
182 		 * We rely on trylock_page() to avoid deadlock between
183 		 * concurrent migrations where each is waiting on the others
184 		 * page lock. If we can't immediately lock the page we fail this
185 		 * migration as it is only best effort anyway.
186 		 *
187 		 * If we can lock the page it's safe to set up a migration entry
188 		 * now. In the common case where the page is mapped once in a
189 		 * single process setting up the migration entry now is an
190 		 * optimisation to avoid walking the rmap later with
191 		 * try_to_migrate().
192 		 */
193 		if (trylock_page(page)) {
194 			bool anon_exclusive;
195 			pte_t swp_pte;
196 
197 			flush_cache_page(vma, addr, pte_pfn(pte));
198 			anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
199 			if (anon_exclusive) {
200 				pte = ptep_clear_flush(vma, addr, ptep);
201 
202 				if (page_try_share_anon_rmap(page)) {
203 					set_pte_at(mm, addr, ptep, pte);
204 					unlock_page(page);
205 					put_page(page);
206 					mpfn = 0;
207 					goto next;
208 				}
209 			} else {
210 				pte = ptep_get_and_clear(mm, addr, ptep);
211 			}
212 
213 			migrate->cpages++;
214 
215 			/* Set the dirty flag on the folio now the pte is gone. */
216 			if (pte_dirty(pte))
217 				folio_mark_dirty(page_folio(page));
218 
219 			/* Setup special migration page table entry */
220 			if (mpfn & MIGRATE_PFN_WRITE)
221 				entry = make_writable_migration_entry(
222 							page_to_pfn(page));
223 			else if (anon_exclusive)
224 				entry = make_readable_exclusive_migration_entry(
225 							page_to_pfn(page));
226 			else
227 				entry = make_readable_migration_entry(
228 							page_to_pfn(page));
229 			if (pte_present(pte)) {
230 				if (pte_young(pte))
231 					entry = make_migration_entry_young(entry);
232 				if (pte_dirty(pte))
233 					entry = make_migration_entry_dirty(entry);
234 			}
235 			swp_pte = swp_entry_to_pte(entry);
236 			if (pte_present(pte)) {
237 				if (pte_soft_dirty(pte))
238 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
239 				if (pte_uffd_wp(pte))
240 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
241 			} else {
242 				if (pte_swp_soft_dirty(pte))
243 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
244 				if (pte_swp_uffd_wp(pte))
245 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
246 			}
247 			set_pte_at(mm, addr, ptep, swp_pte);
248 
249 			/*
250 			 * This is like regular unmap: we remove the rmap and
251 			 * drop page refcount. Page won't be freed, as we took
252 			 * a reference just above.
253 			 */
254 			page_remove_rmap(page, vma, false);
255 			put_page(page);
256 
257 			if (pte_present(pte))
258 				unmapped++;
259 		} else {
260 			put_page(page);
261 			mpfn = 0;
262 		}
263 
264 next:
265 		migrate->dst[migrate->npages] = 0;
266 		migrate->src[migrate->npages++] = mpfn;
267 	}
268 
269 	/* Only flush the TLB if we actually modified any entries */
270 	if (unmapped)
271 		flush_tlb_range(walk->vma, start, end);
272 
273 	arch_leave_lazy_mmu_mode();
274 	pte_unmap_unlock(ptep - 1, ptl);
275 
276 	return 0;
277 }
278 
279 static const struct mm_walk_ops migrate_vma_walk_ops = {
280 	.pmd_entry		= migrate_vma_collect_pmd,
281 	.pte_hole		= migrate_vma_collect_hole,
282 	.walk_lock		= PGWALK_RDLOCK,
283 };
284 
285 /*
286  * migrate_vma_collect() - collect pages over a range of virtual addresses
287  * @migrate: migrate struct containing all migration information
288  *
289  * This will walk the CPU page table. For each virtual address backed by a
290  * valid page, it updates the src array and takes a reference on the page, in
291  * order to pin the page until we lock it and unmap it.
292  */
migrate_vma_collect(struct migrate_vma * migrate)293 static void migrate_vma_collect(struct migrate_vma *migrate)
294 {
295 	struct mmu_notifier_range range;
296 
297 	/*
298 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
299 	 * that the registered device driver can skip invalidating device
300 	 * private page mappings that won't be migrated.
301 	 */
302 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
303 		migrate->vma->vm_mm, migrate->start, migrate->end,
304 		migrate->pgmap_owner);
305 	mmu_notifier_invalidate_range_start(&range);
306 
307 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
308 			&migrate_vma_walk_ops, migrate);
309 
310 	mmu_notifier_invalidate_range_end(&range);
311 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
312 }
313 
314 /*
315  * migrate_vma_check_page() - check if page is pinned or not
316  * @page: struct page to check
317  *
318  * Pinned pages cannot be migrated. This is the same test as in
319  * folio_migrate_mapping(), except that here we allow migration of a
320  * ZONE_DEVICE page.
321  */
migrate_vma_check_page(struct page * page,struct page * fault_page)322 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
323 {
324 	/*
325 	 * One extra ref because caller holds an extra reference, either from
326 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
327 	 * a device page.
328 	 */
329 	int extra = 1 + (page == fault_page);
330 
331 	/*
332 	 * FIXME support THP (transparent huge page), it is bit more complex to
333 	 * check them than regular pages, because they can be mapped with a pmd
334 	 * or with a pte (split pte mapping).
335 	 */
336 	if (PageCompound(page))
337 		return false;
338 
339 	/* Page from ZONE_DEVICE have one extra reference */
340 	if (is_zone_device_page(page))
341 		extra++;
342 
343 	/* For file back page */
344 	if (page_mapping(page))
345 		extra += 1 + page_has_private(page);
346 
347 	if ((page_count(page) - extra) > page_mapcount(page))
348 		return false;
349 
350 	return true;
351 }
352 
353 /*
354  * Unmaps pages for migration. Returns number of source pfns marked as
355  * migrating.
356  */
migrate_device_unmap(unsigned long * src_pfns,unsigned long npages,struct page * fault_page)357 static unsigned long migrate_device_unmap(unsigned long *src_pfns,
358 					  unsigned long npages,
359 					  struct page *fault_page)
360 {
361 	unsigned long i, restore = 0;
362 	bool allow_drain = true;
363 	unsigned long unmapped = 0;
364 
365 	lru_add_drain();
366 
367 	for (i = 0; i < npages; i++) {
368 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
369 		struct folio *folio;
370 
371 		if (!page) {
372 			if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
373 				unmapped++;
374 			continue;
375 		}
376 
377 		/* ZONE_DEVICE pages are not on LRU */
378 		if (!is_zone_device_page(page)) {
379 			if (!PageLRU(page) && allow_drain) {
380 				/* Drain CPU's lru cache */
381 				lru_add_drain_all();
382 				allow_drain = false;
383 			}
384 
385 			if (!isolate_lru_page(page)) {
386 				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
387 				restore++;
388 				continue;
389 			}
390 
391 			/* Drop the reference we took in collect */
392 			put_page(page);
393 		}
394 
395 		folio = page_folio(page);
396 		if (folio_mapped(folio))
397 			try_to_migrate(folio, 0);
398 
399 		if (page_mapped(page) ||
400 		    !migrate_vma_check_page(page, fault_page)) {
401 			if (!is_zone_device_page(page)) {
402 				get_page(page);
403 				putback_lru_page(page);
404 			}
405 
406 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
407 			restore++;
408 			continue;
409 		}
410 
411 		unmapped++;
412 	}
413 
414 	for (i = 0; i < npages && restore; i++) {
415 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
416 		struct folio *folio;
417 
418 		if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
419 			continue;
420 
421 		folio = page_folio(page);
422 		remove_migration_ptes(folio, folio, false);
423 
424 		src_pfns[i] = 0;
425 		folio_unlock(folio);
426 		folio_put(folio);
427 		restore--;
428 	}
429 
430 	return unmapped;
431 }
432 
433 /*
434  * migrate_vma_unmap() - replace page mapping with special migration pte entry
435  * @migrate: migrate struct containing all migration information
436  *
437  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
438  * special migration pte entry and check if it has been pinned. Pinned pages are
439  * restored because we cannot migrate them.
440  *
441  * This is the last step before we call the device driver callback to allocate
442  * destination memory and copy contents of original page over to new page.
443  */
migrate_vma_unmap(struct migrate_vma * migrate)444 static void migrate_vma_unmap(struct migrate_vma *migrate)
445 {
446 	migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
447 					migrate->fault_page);
448 }
449 
450 /**
451  * migrate_vma_setup() - prepare to migrate a range of memory
452  * @args: contains the vma, start, and pfns arrays for the migration
453  *
454  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
455  * without an error.
456  *
457  * Prepare to migrate a range of memory virtual address range by collecting all
458  * the pages backing each virtual address in the range, saving them inside the
459  * src array.  Then lock those pages and unmap them. Once the pages are locked
460  * and unmapped, check whether each page is pinned or not.  Pages that aren't
461  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
462  * corresponding src array entry.  Then restores any pages that are pinned, by
463  * remapping and unlocking those pages.
464  *
465  * The caller should then allocate destination memory and copy source memory to
466  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
467  * flag set).  Once these are allocated and copied, the caller must update each
468  * corresponding entry in the dst array with the pfn value of the destination
469  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
470  * lock_page().
471  *
472  * Note that the caller does not have to migrate all the pages that are marked
473  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
474  * device memory to system memory.  If the caller cannot migrate a device page
475  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
476  * consequences for the userspace process, so it must be avoided if at all
477  * possible.
478  *
479  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
480  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
481  * allowing the caller to allocate device memory for those unbacked virtual
482  * addresses.  For this the caller simply has to allocate device memory and
483  * properly set the destination entry like for regular migration.  Note that
484  * this can still fail, and thus inside the device driver you must check if the
485  * migration was successful for those entries after calling migrate_vma_pages(),
486  * just like for regular migration.
487  *
488  * After that, the callers must call migrate_vma_pages() to go over each entry
489  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
490  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
491  * then migrate_vma_pages() to migrate struct page information from the source
492  * struct page to the destination struct page.  If it fails to migrate the
493  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
494  * src array.
495  *
496  * At this point all successfully migrated pages have an entry in the src
497  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
498  * array entry with MIGRATE_PFN_VALID flag set.
499  *
500  * Once migrate_vma_pages() returns the caller may inspect which pages were
501  * successfully migrated, and which were not.  Successfully migrated pages will
502  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
503  *
504  * It is safe to update device page table after migrate_vma_pages() because
505  * both destination and source page are still locked, and the mmap_lock is held
506  * in read mode (hence no one can unmap the range being migrated).
507  *
508  * Once the caller is done cleaning up things and updating its page table (if it
509  * chose to do so, this is not an obligation) it finally calls
510  * migrate_vma_finalize() to update the CPU page table to point to new pages
511  * for successfully migrated pages or otherwise restore the CPU page table to
512  * point to the original source pages.
513  */
migrate_vma_setup(struct migrate_vma * args)514 int migrate_vma_setup(struct migrate_vma *args)
515 {
516 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
517 
518 	args->start &= PAGE_MASK;
519 	args->end &= PAGE_MASK;
520 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
521 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
522 		return -EINVAL;
523 	if (nr_pages <= 0)
524 		return -EINVAL;
525 	if (args->start < args->vma->vm_start ||
526 	    args->start >= args->vma->vm_end)
527 		return -EINVAL;
528 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
529 		return -EINVAL;
530 	if (!args->src || !args->dst)
531 		return -EINVAL;
532 	if (args->fault_page && !is_device_private_page(args->fault_page))
533 		return -EINVAL;
534 
535 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
536 	args->cpages = 0;
537 	args->npages = 0;
538 
539 	migrate_vma_collect(args);
540 
541 	if (args->cpages)
542 		migrate_vma_unmap(args);
543 
544 	/*
545 	 * At this point pages are locked and unmapped, and thus they have
546 	 * stable content and can safely be copied to destination memory that
547 	 * is allocated by the drivers.
548 	 */
549 	return 0;
550 
551 }
552 EXPORT_SYMBOL(migrate_vma_setup);
553 
554 /*
555  * This code closely matches the code in:
556  *   __handle_mm_fault()
557  *     handle_pte_fault()
558  *       do_anonymous_page()
559  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
560  * private or coherent page.
561  */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src)562 static void migrate_vma_insert_page(struct migrate_vma *migrate,
563 				    unsigned long addr,
564 				    struct page *page,
565 				    unsigned long *src)
566 {
567 	struct vm_area_struct *vma = migrate->vma;
568 	struct mm_struct *mm = vma->vm_mm;
569 	bool flush = false;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 	pgd_t *pgdp;
573 	p4d_t *p4dp;
574 	pud_t *pudp;
575 	pmd_t *pmdp;
576 	pte_t *ptep;
577 	pte_t orig_pte;
578 
579 	/* Only allow populating anonymous memory */
580 	if (!vma_is_anonymous(vma))
581 		goto abort;
582 
583 	pgdp = pgd_offset(mm, addr);
584 	p4dp = p4d_alloc(mm, pgdp, addr);
585 	if (!p4dp)
586 		goto abort;
587 	pudp = pud_alloc(mm, p4dp, addr);
588 	if (!pudp)
589 		goto abort;
590 	pmdp = pmd_alloc(mm, pudp, addr);
591 	if (!pmdp)
592 		goto abort;
593 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
594 		goto abort;
595 	if (pte_alloc(mm, pmdp))
596 		goto abort;
597 	if (unlikely(anon_vma_prepare(vma)))
598 		goto abort;
599 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
600 		goto abort;
601 
602 	/*
603 	 * The memory barrier inside __SetPageUptodate makes sure that
604 	 * preceding stores to the page contents become visible before
605 	 * the set_pte_at() write.
606 	 */
607 	__SetPageUptodate(page);
608 
609 	if (is_device_private_page(page)) {
610 		swp_entry_t swp_entry;
611 
612 		if (vma->vm_flags & VM_WRITE)
613 			swp_entry = make_writable_device_private_entry(
614 						page_to_pfn(page));
615 		else
616 			swp_entry = make_readable_device_private_entry(
617 						page_to_pfn(page));
618 		entry = swp_entry_to_pte(swp_entry);
619 	} else {
620 		if (is_zone_device_page(page) &&
621 		    !is_device_coherent_page(page)) {
622 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
623 			goto abort;
624 		}
625 		entry = mk_pte(page, vma->vm_page_prot);
626 		if (vma->vm_flags & VM_WRITE)
627 			entry = pte_mkwrite(pte_mkdirty(entry), vma);
628 	}
629 
630 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
631 	if (!ptep)
632 		goto abort;
633 	orig_pte = ptep_get(ptep);
634 
635 	if (check_stable_address_space(mm))
636 		goto unlock_abort;
637 
638 	if (pte_present(orig_pte)) {
639 		unsigned long pfn = pte_pfn(orig_pte);
640 
641 		if (!is_zero_pfn(pfn))
642 			goto unlock_abort;
643 		flush = true;
644 	} else if (!pte_none(orig_pte))
645 		goto unlock_abort;
646 
647 	/*
648 	 * Check for userfaultfd but do not deliver the fault. Instead,
649 	 * just back off.
650 	 */
651 	if (userfaultfd_missing(vma))
652 		goto unlock_abort;
653 
654 	inc_mm_counter(mm, MM_ANONPAGES);
655 	page_add_new_anon_rmap(page, vma, addr);
656 	if (!is_zone_device_page(page))
657 		lru_cache_add_inactive_or_unevictable(page, vma);
658 	get_page(page);
659 
660 	if (flush) {
661 		flush_cache_page(vma, addr, pte_pfn(orig_pte));
662 		ptep_clear_flush(vma, addr, ptep);
663 		set_pte_at_notify(mm, addr, ptep, entry);
664 		update_mmu_cache(vma, addr, ptep);
665 	} else {
666 		/* No need to invalidate - it was non-present before */
667 		set_pte_at(mm, addr, ptep, entry);
668 		update_mmu_cache(vma, addr, ptep);
669 	}
670 
671 	pte_unmap_unlock(ptep, ptl);
672 	*src = MIGRATE_PFN_MIGRATE;
673 	return;
674 
675 unlock_abort:
676 	pte_unmap_unlock(ptep, ptl);
677 abort:
678 	*src &= ~MIGRATE_PFN_MIGRATE;
679 }
680 
__migrate_device_pages(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages,struct migrate_vma * migrate)681 static void __migrate_device_pages(unsigned long *src_pfns,
682 				unsigned long *dst_pfns, unsigned long npages,
683 				struct migrate_vma *migrate)
684 {
685 	struct mmu_notifier_range range;
686 	unsigned long i;
687 	bool notified = false;
688 
689 	for (i = 0; i < npages; i++) {
690 		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
691 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
692 		struct address_space *mapping;
693 		int r;
694 
695 		if (!newpage) {
696 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
697 			continue;
698 		}
699 
700 		if (!page) {
701 			unsigned long addr;
702 
703 			if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
704 				continue;
705 
706 			/*
707 			 * The only time there is no vma is when called from
708 			 * migrate_device_coherent_page(). However this isn't
709 			 * called if the page could not be unmapped.
710 			 */
711 			VM_BUG_ON(!migrate);
712 			addr = migrate->start + i*PAGE_SIZE;
713 			if (!notified) {
714 				notified = true;
715 
716 				mmu_notifier_range_init_owner(&range,
717 					MMU_NOTIFY_MIGRATE, 0,
718 					migrate->vma->vm_mm, addr, migrate->end,
719 					migrate->pgmap_owner);
720 				mmu_notifier_invalidate_range_start(&range);
721 			}
722 			migrate_vma_insert_page(migrate, addr, newpage,
723 						&src_pfns[i]);
724 			continue;
725 		}
726 
727 		mapping = page_mapping(page);
728 
729 		if (is_device_private_page(newpage) ||
730 		    is_device_coherent_page(newpage)) {
731 			if (mapping) {
732 				struct folio *folio;
733 
734 				folio = page_folio(page);
735 
736 				/*
737 				 * For now only support anonymous memory migrating to
738 				 * device private or coherent memory.
739 				 *
740 				 * Try to get rid of swap cache if possible.
741 				 */
742 				if (!folio_test_anon(folio) ||
743 				    !folio_free_swap(folio)) {
744 					src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
745 					continue;
746 				}
747 			}
748 		} else if (is_zone_device_page(newpage)) {
749 			/*
750 			 * Other types of ZONE_DEVICE page are not supported.
751 			 */
752 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
753 			continue;
754 		}
755 
756 		if (migrate && migrate->fault_page == page)
757 			r = migrate_folio_extra(mapping, page_folio(newpage),
758 						page_folio(page),
759 						MIGRATE_SYNC_NO_COPY, 1);
760 		else
761 			r = migrate_folio(mapping, page_folio(newpage),
762 					page_folio(page), MIGRATE_SYNC_NO_COPY);
763 		if (r != MIGRATEPAGE_SUCCESS)
764 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
765 	}
766 
767 	if (notified)
768 		mmu_notifier_invalidate_range_end(&range);
769 }
770 
771 /**
772  * migrate_device_pages() - migrate meta-data from src page to dst page
773  * @src_pfns: src_pfns returned from migrate_device_range()
774  * @dst_pfns: array of pfns allocated by the driver to migrate memory to
775  * @npages: number of pages in the range
776  *
777  * Equivalent to migrate_vma_pages(). This is called to migrate struct page
778  * meta-data from source struct page to destination.
779  */
migrate_device_pages(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages)780 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
781 			unsigned long npages)
782 {
783 	__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
784 }
785 EXPORT_SYMBOL(migrate_device_pages);
786 
787 /**
788  * migrate_vma_pages() - migrate meta-data from src page to dst page
789  * @migrate: migrate struct containing all migration information
790  *
791  * This migrates struct page meta-data from source struct page to destination
792  * struct page. This effectively finishes the migration from source page to the
793  * destination page.
794  */
migrate_vma_pages(struct migrate_vma * migrate)795 void migrate_vma_pages(struct migrate_vma *migrate)
796 {
797 	__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
798 }
799 EXPORT_SYMBOL(migrate_vma_pages);
800 
801 /*
802  * migrate_device_finalize() - complete page migration
803  * @src_pfns: src_pfns returned from migrate_device_range()
804  * @dst_pfns: array of pfns allocated by the driver to migrate memory to
805  * @npages: number of pages in the range
806  *
807  * Completes migration of the page by removing special migration entries.
808  * Drivers must ensure copying of page data is complete and visible to the CPU
809  * before calling this.
810  */
migrate_device_finalize(unsigned long * src_pfns,unsigned long * dst_pfns,unsigned long npages)811 void migrate_device_finalize(unsigned long *src_pfns,
812 			unsigned long *dst_pfns, unsigned long npages)
813 {
814 	unsigned long i;
815 
816 	for (i = 0; i < npages; i++) {
817 		struct folio *dst, *src;
818 		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
819 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
820 
821 		if (!page) {
822 			if (newpage) {
823 				unlock_page(newpage);
824 				put_page(newpage);
825 			}
826 			continue;
827 		}
828 
829 		if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
830 			if (newpage) {
831 				unlock_page(newpage);
832 				put_page(newpage);
833 			}
834 			newpage = page;
835 		}
836 
837 		src = page_folio(page);
838 		dst = page_folio(newpage);
839 		remove_migration_ptes(src, dst, false);
840 		folio_unlock(src);
841 
842 		if (is_zone_device_page(page))
843 			put_page(page);
844 		else
845 			putback_lru_page(page);
846 
847 		if (newpage != page) {
848 			unlock_page(newpage);
849 			if (is_zone_device_page(newpage))
850 				put_page(newpage);
851 			else
852 				putback_lru_page(newpage);
853 		}
854 	}
855 }
856 EXPORT_SYMBOL(migrate_device_finalize);
857 
858 /**
859  * migrate_vma_finalize() - restore CPU page table entry
860  * @migrate: migrate struct containing all migration information
861  *
862  * This replaces the special migration pte entry with either a mapping to the
863  * new page if migration was successful for that page, or to the original page
864  * otherwise.
865  *
866  * This also unlocks the pages and puts them back on the lru, or drops the extra
867  * refcount, for device pages.
868  */
migrate_vma_finalize(struct migrate_vma * migrate)869 void migrate_vma_finalize(struct migrate_vma *migrate)
870 {
871 	migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
872 }
873 EXPORT_SYMBOL(migrate_vma_finalize);
874 
875 /**
876  * migrate_device_range() - migrate device private pfns to normal memory.
877  * @src_pfns: array large enough to hold migrating source device private pfns.
878  * @start: starting pfn in the range to migrate.
879  * @npages: number of pages to migrate.
880  *
881  * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
882  * instead of looking up pages based on virtual address mappings a range of
883  * device pfns that should be migrated to system memory is used instead.
884  *
885  * This is useful when a driver needs to free device memory but doesn't know the
886  * virtual mappings of every page that may be in device memory. For example this
887  * is often the case when a driver is being unloaded or unbound from a device.
888  *
889  * Like migrate_vma_setup() this function will take a reference and lock any
890  * migrating pages that aren't free before unmapping them. Drivers may then
891  * allocate destination pages and start copying data from the device to CPU
892  * memory before calling migrate_device_pages().
893  */
migrate_device_range(unsigned long * src_pfns,unsigned long start,unsigned long npages)894 int migrate_device_range(unsigned long *src_pfns, unsigned long start,
895 			unsigned long npages)
896 {
897 	unsigned long i, pfn;
898 
899 	for (pfn = start, i = 0; i < npages; pfn++, i++) {
900 		struct page *page = pfn_to_page(pfn);
901 
902 		if (!get_page_unless_zero(page)) {
903 			src_pfns[i] = 0;
904 			continue;
905 		}
906 
907 		if (!trylock_page(page)) {
908 			src_pfns[i] = 0;
909 			put_page(page);
910 			continue;
911 		}
912 
913 		src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
914 	}
915 
916 	migrate_device_unmap(src_pfns, npages, NULL);
917 
918 	return 0;
919 }
920 EXPORT_SYMBOL(migrate_device_range);
921 
922 /*
923  * Migrate a device coherent page back to normal memory. The caller should have
924  * a reference on page which will be copied to the new page if migration is
925  * successful or dropped on failure.
926  */
migrate_device_coherent_page(struct page * page)927 int migrate_device_coherent_page(struct page *page)
928 {
929 	unsigned long src_pfn, dst_pfn = 0;
930 	struct page *dpage;
931 
932 	WARN_ON_ONCE(PageCompound(page));
933 
934 	lock_page(page);
935 	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
936 
937 	/*
938 	 * We don't have a VMA and don't need to walk the page tables to find
939 	 * the source page. So call migrate_vma_unmap() directly to unmap the
940 	 * page as migrate_vma_setup() will fail if args.vma == NULL.
941 	 */
942 	migrate_device_unmap(&src_pfn, 1, NULL);
943 	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
944 		return -EBUSY;
945 
946 	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
947 	if (dpage) {
948 		lock_page(dpage);
949 		dst_pfn = migrate_pfn(page_to_pfn(dpage));
950 	}
951 
952 	migrate_device_pages(&src_pfn, &dst_pfn, 1);
953 	if (src_pfn & MIGRATE_PFN_MIGRATE)
954 		copy_highpage(dpage, page);
955 	migrate_device_finalize(&src_pfn, &dst_pfn, 1);
956 
957 	if (src_pfn & MIGRATE_PFN_MIGRATE)
958 		return 0;
959 	return -EBUSY;
960 }
961