1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)100 static bool do_memsw_account(void)
101 {
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
task_is_dying(void)233 static inline bool task_is_dying(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
vmpressure_to_memcg(struct vmpressure * vmpr)247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
mem_cgroup_kmem_disabled(void)255 bool mem_cgroup_kmem_disabled(void)
256 {
257 return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
262
obj_cgroup_release(struct percpu_ref * ref)263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 if (nr_pages)
295 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297 spin_lock_irqsave(&objcg_lock, flags);
298 list_del(&objcg->list);
299 spin_unlock_irqrestore(&objcg_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303 }
304
obj_cgroup_alloc(void)305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322 }
323
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326 {
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&objcg_lock);
332
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @folio is returned. The returned css remains associated with @folio
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
mem_cgroup_css_from_folio(struct folio * folio)370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 struct mem_cgroup *memcg = folio_memcg(folio);
373
374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 memcg = root_mem_cgroup;
376
377 return &memcg->css;
378 }
379
380 /**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
page_cgroup_ino(struct page * page)393 ino_t page_cgroup_ino(struct page *page)
394 {
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
401
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408 }
409
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_node *mz_node;
417 bool rightmost = true;
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 tree_node);
429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 p = &(*p)->rb_left;
431 rightmost = false;
432 } else {
433 p = &(*p)->rb_right;
434 }
435 }
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443 }
444
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
447 {
448 if (!mz->on_tree)
449 return;
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456 }
457
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
460 {
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
464 __mem_cgroup_remove_exceeded(mz, mctz);
465 spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
soft_limit_excess(struct mem_cgroup * memcg)468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478 }
479
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 unsigned long excess;
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
485
486 if (lru_gen_enabled()) {
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(memcg, nid);
489 return;
490 }
491
492 mctz = soft_limit_tree.rb_tree_per_node[nid];
493 if (!mctz)
494 return;
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 mz = memcg->nodeinfo[nid];
501 excess = soft_limit_excess(memcg);
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
510 /* if on-tree, remove it */
511 if (mz->on_tree)
512 __mem_cgroup_remove_exceeded(mz, mctz);
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
518 spin_unlock_irqrestore(&mctz->lock, flags);
519 }
520 }
521 }
522
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
528
529 for_each_node(nid) {
530 mz = memcg->nodeinfo[nid];
531 mctz = soft_limit_tree.rb_tree_per_node[nid];
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
534 }
535 }
536
537 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 struct mem_cgroup_per_node *mz;
541
542 retry:
543 mz = NULL;
544 if (!mctz->rb_rightmost)
545 goto done; /* Nothing to reclaim from */
546
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
554 __mem_cgroup_remove_exceeded(mz, mctz);
555 if (!soft_limit_excess(mz->memcg) ||
556 !css_tryget(&mz->memcg->css))
557 goto retry;
558 done:
559 return mz;
560 }
561
562 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 struct mem_cgroup_per_node *mz;
566
567 spin_lock_irq(&mctz->lock);
568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 spin_unlock_irq(&mctz->lock);
570 return mz;
571 }
572
573 /*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
memcg_stats_lock(void)603 static void memcg_stats_lock(void)
604 {
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
607 }
608
__memcg_stats_lock(void)609 static void __memcg_stats_lock(void)
610 {
611 preempt_disable_nested();
612 }
613
memcg_stats_unlock(void)614 static void memcg_stats_unlock(void)
615 {
616 preempt_enable_nested();
617 }
618
memcg_rstat_updated(struct mem_cgroup * memcg,int val)619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 unsigned int x;
622
623 if (!val)
624 return;
625
626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 __this_cpu_write(stats_updates, 0);
639 }
640 }
641
do_flush_stats(void)642 static void do_flush_stats(void)
643 {
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
651 return;
652
653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657 atomic_set(&stats_flush_threshold, 0);
658 atomic_set(&stats_flush_ongoing, 0);
659 }
660
mem_cgroup_flush_stats(void)661 void mem_cgroup_flush_stats(void)
662 {
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
665 }
666
mem_cgroup_flush_stats_ratelimited(void)667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 mem_cgroup_flush_stats();
671 }
672
flush_memcg_stats_dwork(struct work_struct * w)673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
679 do_flush_stats();
680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685 PGPGIN,
686 PGPGOUT,
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
689 PGSCAN_KHUGEPAGED,
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
692 PGSTEAL_KHUGEPAGED,
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
init_memcg_events(void)713 static void init_memcg_events(void)
714 {
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
memcg_events_index(enum vm_event_item idx)721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723 return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
729 unsigned long events[NR_MEMCG_EVENTS];
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
733 unsigned long events_prev[NR_MEMCG_EVENTS];
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
743 unsigned long events[NR_MEMCG_EVENTS];
744
745 /* Non-hierarchical (CPU aggregated) page state & events */
746 long state_local[MEMCG_NR_STAT];
747 unsigned long events_local[NR_MEMCG_EVENTS];
748
749 /* Pending child counts during tree propagation */
750 long state_pending[MEMCG_NR_STAT];
751 unsigned long events_pending[NR_MEMCG_EVENTS];
752 };
753
memcg_page_state(struct mem_cgroup * memcg,int idx)754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756 long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758 if (x < 0)
759 x = 0;
760 #endif
761 return x;
762 }
763
764 /**
765 * __mod_memcg_state - update cgroup memory statistics
766 * @memcg: the memory cgroup
767 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768 * @val: delta to add to the counter, can be negative
769 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772 if (mem_cgroup_disabled())
773 return;
774
775 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776 memcg_rstat_updated(memcg, val);
777 }
778
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784 #ifdef CONFIG_SMP
785 if (x < 0)
786 x = 0;
787 #endif
788 return x;
789 }
790
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792 int val)
793 {
794 struct mem_cgroup_per_node *pn;
795 struct mem_cgroup *memcg;
796
797 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798 memcg = pn->memcg;
799
800 /*
801 * The caller from rmap relay on disabled preemption becase they never
802 * update their counter from in-interrupt context. For these two
803 * counters we check that the update is never performed from an
804 * interrupt context while other caller need to have disabled interrupt.
805 */
806 __memcg_stats_lock();
807 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808 switch (idx) {
809 case NR_ANON_MAPPED:
810 case NR_FILE_MAPPED:
811 case NR_ANON_THPS:
812 case NR_SHMEM_PMDMAPPED:
813 case NR_FILE_PMDMAPPED:
814 WARN_ON_ONCE(!in_task());
815 break;
816 default:
817 VM_WARN_ON_IRQS_ENABLED();
818 }
819 }
820
821 /* Update memcg */
822 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824 /* Update lruvec */
825 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827 memcg_rstat_updated(memcg, val);
828 memcg_stats_unlock();
829 }
830
831 /**
832 * __mod_lruvec_state - update lruvec memory statistics
833 * @lruvec: the lruvec
834 * @idx: the stat item
835 * @val: delta to add to the counter, can be negative
836 *
837 * The lruvec is the intersection of the NUMA node and a cgroup. This
838 * function updates the all three counters that are affected by a
839 * change of state at this level: per-node, per-cgroup, per-lruvec.
840 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 int val)
843 {
844 /* Update node */
845 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847 /* Update memcg and lruvec */
848 if (!mem_cgroup_disabled())
849 __mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853 int val)
854 {
855 struct page *head = compound_head(page); /* rmap on tail pages */
856 struct mem_cgroup *memcg;
857 pg_data_t *pgdat = page_pgdat(page);
858 struct lruvec *lruvec;
859
860 rcu_read_lock();
861 memcg = page_memcg(head);
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
863 if (!memcg) {
864 rcu_read_unlock();
865 __mod_node_page_state(pgdat, idx, val);
866 return;
867 }
868
869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
870 __mod_lruvec_state(lruvec, idx, val);
871 rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 struct mem_cgroup *memcg;
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_slab_obj(p);
883
884 /*
885 * Untracked pages have no memcg, no lruvec. Update only the
886 * node. If we reparent the slab objects to the root memcg,
887 * when we free the slab object, we need to update the per-memcg
888 * vmstats to keep it correct for the root memcg.
889 */
890 if (!memcg) {
891 __mod_node_page_state(pgdat, idx, val);
892 } else {
893 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 __mod_lruvec_state(lruvec, idx, val);
895 }
896 rcu_read_unlock();
897 }
898
899 /**
900 * __count_memcg_events - account VM events in a cgroup
901 * @memcg: the memory cgroup
902 * @idx: the event item
903 * @count: the number of events that occurred
904 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906 unsigned long count)
907 {
908 int index = memcg_events_index(idx);
909
910 if (mem_cgroup_disabled() || index < 0)
911 return;
912
913 memcg_stats_lock();
914 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915 memcg_rstat_updated(memcg, count);
916 memcg_stats_unlock();
917 }
918
memcg_events(struct mem_cgroup * memcg,int event)919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921 int index = memcg_events_index(event);
922
923 if (index < 0)
924 return 0;
925 return READ_ONCE(memcg->vmstats->events[index]);
926 }
927
memcg_events_local(struct mem_cgroup * memcg,int event)928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 int index = memcg_events_index(event);
931
932 if (index < 0)
933 return 0;
934
935 return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 int nr_pages)
940 {
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
943 __count_memcg_events(memcg, PGPGIN, 1);
944 else {
945 __count_memcg_events(memcg, PGPGOUT, 1);
946 nr_pages = -nr_pages; /* for event */
947 }
948
949 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)(next - val) < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 default:
969 break;
970 }
971 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972 return true;
973 }
974 return false;
975 }
976
977 /*
978 * Check events in order.
979 *
980 */
memcg_check_events(struct mem_cgroup * memcg,int nid)981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983 if (IS_ENABLED(CONFIG_PREEMPT_RT))
984 return;
985
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990
991 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992 MEM_CGROUP_TARGET_SOFTLIMIT);
993 mem_cgroup_threshold(memcg);
994 if (unlikely(do_softlimit))
995 mem_cgroup_update_tree(memcg, nid);
996 }
997 }
998
mem_cgroup_from_task(struct task_struct * p)999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001 /*
1002 * mm_update_next_owner() may clear mm->owner to NULL
1003 * if it races with swapoff, page migration, etc.
1004 * So this can be called with p == NULL.
1005 */
1006 if (unlikely(!p))
1007 return NULL;
1008
1009 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012
active_memcg(void)1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015 if (!in_task())
1016 return this_cpu_read(int_active_memcg);
1017 else
1018 return current->active_memcg;
1019 }
1020
1021 /**
1022 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023 * @mm: mm from which memcg should be extracted. It can be NULL.
1024 *
1025 * Obtain a reference on mm->memcg and returns it if successful. If mm
1026 * is NULL, then the memcg is chosen as follows:
1027 * 1) The active memcg, if set.
1028 * 2) current->mm->memcg, if available
1029 * 3) root memcg
1030 * If mem_cgroup is disabled, NULL is returned.
1031 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034 struct mem_cgroup *memcg;
1035
1036 if (mem_cgroup_disabled())
1037 return NULL;
1038
1039 /*
1040 * Page cache insertions can happen without an
1041 * actual mm context, e.g. during disk probing
1042 * on boot, loopback IO, acct() writes etc.
1043 *
1044 * No need to css_get on root memcg as the reference
1045 * counting is disabled on the root level in the
1046 * cgroup core. See CSS_NO_REF.
1047 */
1048 if (unlikely(!mm)) {
1049 memcg = active_memcg();
1050 if (unlikely(memcg)) {
1051 /* remote memcg must hold a ref */
1052 css_get(&memcg->css);
1053 return memcg;
1054 }
1055 mm = current->mm;
1056 if (unlikely(!mm))
1057 return root_mem_cgroup;
1058 }
1059
1060 rcu_read_lock();
1061 do {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1065 } while (!css_tryget(&memcg->css));
1066 rcu_read_unlock();
1067 return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
memcg_kmem_bypass(void)1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073 /* Allow remote memcg charging from any context. */
1074 if (unlikely(active_memcg()))
1075 return false;
1076
1077 /* Memcg to charge can't be determined. */
1078 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079 return true;
1080
1081 return false;
1082 }
1083
1084 /**
1085 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086 * @root: hierarchy root
1087 * @prev: previously returned memcg, NULL on first invocation
1088 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089 *
1090 * Returns references to children of the hierarchy below @root, or
1091 * @root itself, or %NULL after a full round-trip.
1092 *
1093 * Caller must pass the return value in @prev on subsequent
1094 * invocations for reference counting, or use mem_cgroup_iter_break()
1095 * to cancel a hierarchy walk before the round-trip is complete.
1096 *
1097 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098 * in the hierarchy among all concurrent reclaimers operating on the
1099 * same node.
1100 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102 struct mem_cgroup *prev,
1103 struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105 struct mem_cgroup_reclaim_iter *iter;
1106 struct cgroup_subsys_state *css = NULL;
1107 struct mem_cgroup *memcg = NULL;
1108 struct mem_cgroup *pos = NULL;
1109
1110 if (mem_cgroup_disabled())
1111 return NULL;
1112
1113 if (!root)
1114 root = root_mem_cgroup;
1115
1116 rcu_read_lock();
1117
1118 if (reclaim) {
1119 struct mem_cgroup_per_node *mz;
1120
1121 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122 iter = &mz->iter;
1123
1124 /*
1125 * On start, join the current reclaim iteration cycle.
1126 * Exit when a concurrent walker completes it.
1127 */
1128 if (!prev)
1129 reclaim->generation = iter->generation;
1130 else if (reclaim->generation != iter->generation)
1131 goto out_unlock;
1132
1133 while (1) {
1134 pos = READ_ONCE(iter->position);
1135 if (!pos || css_tryget(&pos->css))
1136 break;
1137 /*
1138 * css reference reached zero, so iter->position will
1139 * be cleared by ->css_released. However, we should not
1140 * rely on this happening soon, because ->css_released
1141 * is called from a work queue, and by busy-waiting we
1142 * might block it. So we clear iter->position right
1143 * away.
1144 */
1145 (void)cmpxchg(&iter->position, pos, NULL);
1146 }
1147 } else if (prev) {
1148 pos = prev;
1149 }
1150
1151 if (pos)
1152 css = &pos->css;
1153
1154 for (;;) {
1155 css = css_next_descendant_pre(css, &root->css);
1156 if (!css) {
1157 /*
1158 * Reclaimers share the hierarchy walk, and a
1159 * new one might jump in right at the end of
1160 * the hierarchy - make sure they see at least
1161 * one group and restart from the beginning.
1162 */
1163 if (!prev)
1164 continue;
1165 break;
1166 }
1167
1168 /*
1169 * Verify the css and acquire a reference. The root
1170 * is provided by the caller, so we know it's alive
1171 * and kicking, and don't take an extra reference.
1172 */
1173 if (css == &root->css || css_tryget(css)) {
1174 memcg = mem_cgroup_from_css(css);
1175 break;
1176 }
1177 }
1178
1179 if (reclaim) {
1180 /*
1181 * The position could have already been updated by a competing
1182 * thread, so check that the value hasn't changed since we read
1183 * it to avoid reclaiming from the same cgroup twice.
1184 */
1185 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187 if (pos)
1188 css_put(&pos->css);
1189
1190 if (!memcg)
1191 iter->generation++;
1192 }
1193
1194 out_unlock:
1195 rcu_read_unlock();
1196 if (prev && prev != root)
1197 css_put(&prev->css);
1198
1199 return memcg;
1200 }
1201
1202 /**
1203 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204 * @root: hierarchy root
1205 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208 struct mem_cgroup *prev)
1209 {
1210 if (!root)
1211 root = root_mem_cgroup;
1212 if (prev && prev != root)
1213 css_put(&prev->css);
1214 }
1215
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217 struct mem_cgroup *dead_memcg)
1218 {
1219 struct mem_cgroup_reclaim_iter *iter;
1220 struct mem_cgroup_per_node *mz;
1221 int nid;
1222
1223 for_each_node(nid) {
1224 mz = from->nodeinfo[nid];
1225 iter = &mz->iter;
1226 cmpxchg(&iter->position, dead_memcg, NULL);
1227 }
1228 }
1229
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232 struct mem_cgroup *memcg = dead_memcg;
1233 struct mem_cgroup *last;
1234
1235 do {
1236 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237 last = memcg;
1238 } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240 /*
1241 * When cgroup1 non-hierarchy mode is used,
1242 * parent_mem_cgroup() does not walk all the way up to the
1243 * cgroup root (root_mem_cgroup). So we have to handle
1244 * dead_memcg from cgroup root separately.
1245 */
1246 if (!mem_cgroup_is_root(last))
1247 __invalidate_reclaim_iterators(root_mem_cgroup,
1248 dead_memcg);
1249 }
1250
1251 /**
1252 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253 * @memcg: hierarchy root
1254 * @fn: function to call for each task
1255 * @arg: argument passed to @fn
1256 *
1257 * This function iterates over tasks attached to @memcg or to any of its
1258 * descendants and calls @fn for each task. If @fn returns a non-zero
1259 * value, the function breaks the iteration loop. Otherwise, it will iterate
1260 * over all tasks and return 0.
1261 *
1262 * This function must not be called for the root memory cgroup.
1263 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265 int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267 struct mem_cgroup *iter;
1268 int ret = 0;
1269
1270 BUG_ON(mem_cgroup_is_root(memcg));
1271
1272 for_each_mem_cgroup_tree(iter, memcg) {
1273 struct css_task_iter it;
1274 struct task_struct *task;
1275
1276 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277 while (!ret && (task = css_task_iter_next(&it)))
1278 ret = fn(task, arg);
1279 css_task_iter_end(&it);
1280 if (ret) {
1281 mem_cgroup_iter_break(memcg, iter);
1282 break;
1283 }
1284 }
1285 }
1286
1287 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290 struct mem_cgroup *memcg;
1291
1292 if (mem_cgroup_disabled())
1293 return;
1294
1295 memcg = folio_memcg(folio);
1296
1297 if (!memcg)
1298 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299 else
1300 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301 }
1302 #endif
1303
1304 /**
1305 * folio_lruvec_lock - Lock the lruvec for a folio.
1306 * @folio: Pointer to the folio.
1307 *
1308 * These functions are safe to use under any of the following conditions:
1309 * - folio locked
1310 * - folio_test_lru false
1311 * - folio_memcg_lock()
1312 * - folio frozen (refcount of 0)
1313 *
1314 * Return: The lruvec this folio is on with its lock held.
1315 */
folio_lruvec_lock(struct folio * folio)1316 struct lruvec *folio_lruvec_lock(struct folio *folio)
1317 {
1318 struct lruvec *lruvec = folio_lruvec(folio);
1319
1320 spin_lock(&lruvec->lru_lock);
1321 lruvec_memcg_debug(lruvec, folio);
1322
1323 return lruvec;
1324 }
1325
1326 /**
1327 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328 * @folio: Pointer to the folio.
1329 *
1330 * These functions are safe to use under any of the following conditions:
1331 * - folio locked
1332 * - folio_test_lru false
1333 * - folio_memcg_lock()
1334 * - folio frozen (refcount of 0)
1335 *
1336 * Return: The lruvec this folio is on with its lock held and interrupts
1337 * disabled.
1338 */
folio_lruvec_lock_irq(struct folio * folio)1339 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340 {
1341 struct lruvec *lruvec = folio_lruvec(folio);
1342
1343 spin_lock_irq(&lruvec->lru_lock);
1344 lruvec_memcg_debug(lruvec, folio);
1345
1346 return lruvec;
1347 }
1348
1349 /**
1350 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351 * @folio: Pointer to the folio.
1352 * @flags: Pointer to irqsave flags.
1353 *
1354 * These functions are safe to use under any of the following conditions:
1355 * - folio locked
1356 * - folio_test_lru false
1357 * - folio_memcg_lock()
1358 * - folio frozen (refcount of 0)
1359 *
1360 * Return: The lruvec this folio is on with its lock held and interrupts
1361 * disabled.
1362 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1363 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364 unsigned long *flags)
1365 {
1366 struct lruvec *lruvec = folio_lruvec(folio);
1367
1368 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369 lruvec_memcg_debug(lruvec, folio);
1370
1371 return lruvec;
1372 }
1373
1374 /**
1375 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376 * @lruvec: mem_cgroup per zone lru vector
1377 * @lru: index of lru list the page is sitting on
1378 * @zid: zone id of the accounted pages
1379 * @nr_pages: positive when adding or negative when removing
1380 *
1381 * This function must be called under lru_lock, just before a page is added
1382 * to or just after a page is removed from an lru list.
1383 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 int zid, int nr_pages)
1386 {
1387 struct mem_cgroup_per_node *mz;
1388 unsigned long *lru_size;
1389 long size;
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
1394 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395 lru_size = &mz->lru_zone_size[zid][lru];
1396
1397 if (nr_pages < 0)
1398 *lru_size += nr_pages;
1399
1400 size = *lru_size;
1401 if (WARN_ONCE(size < 0,
1402 "%s(%p, %d, %d): lru_size %ld\n",
1403 __func__, lruvec, lru, nr_pages, size)) {
1404 VM_BUG_ON(1);
1405 *lru_size = 0;
1406 }
1407
1408 if (nr_pages > 0)
1409 *lru_size += nr_pages;
1410 }
1411
1412 /**
1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414 * @memcg: the memory cgroup
1415 *
1416 * Returns the maximum amount of memory @mem can be charged with, in
1417 * pages.
1418 */
mem_cgroup_margin(struct mem_cgroup * memcg)1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
1424
1425 count = page_counter_read(&memcg->memory);
1426 limit = READ_ONCE(memcg->memory.max);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_memsw_account()) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = READ_ONCE(memcg->memsw.max);
1433 if (count < limit)
1434 margin = min(margin, limit - count);
1435 else
1436 margin = 0;
1437 }
1438
1439 return margin;
1440 }
1441
1442 /*
1443 * A routine for checking "mem" is under move_account() or not.
1444 *
1445 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446 * moving cgroups. This is for waiting at high-memory pressure
1447 * caused by "move".
1448 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451 struct mem_cgroup *from;
1452 struct mem_cgroup *to;
1453 bool ret = false;
1454 /*
1455 * Unlike task_move routines, we access mc.to, mc.from not under
1456 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 */
1458 spin_lock(&mc.lock);
1459 from = mc.from;
1460 to = mc.to;
1461 if (!from)
1462 goto unlock;
1463
1464 ret = mem_cgroup_is_descendant(from, memcg) ||
1465 mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467 spin_unlock(&mc.lock);
1468 return ret;
1469 }
1470
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473 if (mc.moving_task && current != mc.moving_task) {
1474 if (mem_cgroup_under_move(memcg)) {
1475 DEFINE_WAIT(wait);
1476 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 /* moving charge context might have finished. */
1478 if (mc.moving_task)
1479 schedule();
1480 finish_wait(&mc.waitq, &wait);
1481 return true;
1482 }
1483 }
1484 return false;
1485 }
1486
1487 struct memory_stat {
1488 const char *name;
1489 unsigned int idx;
1490 };
1491
1492 static const struct memory_stat memory_stats[] = {
1493 { "anon", NR_ANON_MAPPED },
1494 { "file", NR_FILE_PAGES },
1495 { "kernel", MEMCG_KMEM },
1496 { "kernel_stack", NR_KERNEL_STACK_KB },
1497 { "pagetables", NR_PAGETABLE },
1498 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1499 { "percpu", MEMCG_PERCPU_B },
1500 { "sock", MEMCG_SOCK },
1501 { "vmalloc", MEMCG_VMALLOC },
1502 { "shmem", NR_SHMEM },
1503 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504 { "zswap", MEMCG_ZSWAP_B },
1505 { "zswapped", MEMCG_ZSWAPPED },
1506 #endif
1507 { "file_mapped", NR_FILE_MAPPED },
1508 { "file_dirty", NR_FILE_DIRTY },
1509 { "file_writeback", NR_WRITEBACK },
1510 #ifdef CONFIG_SWAP
1511 { "swapcached", NR_SWAPCACHE },
1512 #endif
1513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514 { "anon_thp", NR_ANON_THPS },
1515 { "file_thp", NR_FILE_THPS },
1516 { "shmem_thp", NR_SHMEM_THPS },
1517 #endif
1518 { "inactive_anon", NR_INACTIVE_ANON },
1519 { "active_anon", NR_ACTIVE_ANON },
1520 { "inactive_file", NR_INACTIVE_FILE },
1521 { "active_file", NR_ACTIVE_FILE },
1522 { "unevictable", NR_UNEVICTABLE },
1523 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1524 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1525
1526 /* The memory events */
1527 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1528 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1529 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1530 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1531 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1532 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1533 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1534 };
1535
1536 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1537 static int memcg_page_state_unit(int item)
1538 {
1539 switch (item) {
1540 case MEMCG_PERCPU_B:
1541 case MEMCG_ZSWAP_B:
1542 case NR_SLAB_RECLAIMABLE_B:
1543 case NR_SLAB_UNRECLAIMABLE_B:
1544 case WORKINGSET_REFAULT_ANON:
1545 case WORKINGSET_REFAULT_FILE:
1546 case WORKINGSET_ACTIVATE_ANON:
1547 case WORKINGSET_ACTIVATE_FILE:
1548 case WORKINGSET_RESTORE_ANON:
1549 case WORKINGSET_RESTORE_FILE:
1550 case WORKINGSET_NODERECLAIM:
1551 return 1;
1552 case NR_KERNEL_STACK_KB:
1553 return SZ_1K;
1554 default:
1555 return PAGE_SIZE;
1556 }
1557 }
1558
memcg_page_state_output(struct mem_cgroup * memcg,int item)1559 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560 int item)
1561 {
1562 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563 }
1564
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1565 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566 {
1567 int i;
1568
1569 /*
1570 * Provide statistics on the state of the memory subsystem as
1571 * well as cumulative event counters that show past behavior.
1572 *
1573 * This list is ordered following a combination of these gradients:
1574 * 1) generic big picture -> specifics and details
1575 * 2) reflecting userspace activity -> reflecting kernel heuristics
1576 *
1577 * Current memory state:
1578 */
1579 mem_cgroup_flush_stats();
1580
1581 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582 u64 size;
1583
1584 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586
1587 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588 size += memcg_page_state_output(memcg,
1589 NR_SLAB_RECLAIMABLE_B);
1590 seq_buf_printf(s, "slab %llu\n", size);
1591 }
1592 }
1593
1594 /* Accumulated memory events */
1595 seq_buf_printf(s, "pgscan %lu\n",
1596 memcg_events(memcg, PGSCAN_KSWAPD) +
1597 memcg_events(memcg, PGSCAN_DIRECT) +
1598 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599 seq_buf_printf(s, "pgsteal %lu\n",
1600 memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 memcg_events(memcg, PGSTEAL_DIRECT) +
1602 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603
1604 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605 if (memcg_vm_event_stat[i] == PGPGIN ||
1606 memcg_vm_event_stat[i] == PGPGOUT)
1607 continue;
1608
1609 seq_buf_printf(s, "%s %lu\n",
1610 vm_event_name(memcg_vm_event_stat[i]),
1611 memcg_events(memcg, memcg_vm_event_stat[i]));
1612 }
1613
1614 /* The above should easily fit into one page */
1615 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616 }
1617
1618 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1620 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621 {
1622 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623 memcg_stat_format(memcg, s);
1624 else
1625 memcg1_stat_format(memcg, s);
1626 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627 }
1628
1629 /**
1630 * mem_cgroup_print_oom_context: Print OOM information relevant to
1631 * memory controller.
1632 * @memcg: The memory cgroup that went over limit
1633 * @p: Task that is going to be killed
1634 *
1635 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636 * enabled
1637 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1638 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639 {
1640 rcu_read_lock();
1641
1642 if (memcg) {
1643 pr_cont(",oom_memcg=");
1644 pr_cont_cgroup_path(memcg->css.cgroup);
1645 } else
1646 pr_cont(",global_oom");
1647 if (p) {
1648 pr_cont(",task_memcg=");
1649 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650 }
1651 rcu_read_unlock();
1652 }
1653
1654 /**
1655 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656 * memory controller.
1657 * @memcg: The memory cgroup that went over limit
1658 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1659 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660 {
1661 /* Use static buffer, for the caller is holding oom_lock. */
1662 static char buf[PAGE_SIZE];
1663 struct seq_buf s;
1664
1665 lockdep_assert_held(&oom_lock);
1666
1667 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->memory)),
1669 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672 K((u64)page_counter_read(&memcg->swap)),
1673 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674 else {
1675 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676 K((u64)page_counter_read(&memcg->memsw)),
1677 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679 K((u64)page_counter_read(&memcg->kmem)),
1680 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681 }
1682
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(memcg->css.cgroup);
1685 pr_cont(":");
1686 seq_buf_init(&s, buf, sizeof(buf));
1687 memory_stat_format(memcg, &s);
1688 seq_buf_do_printk(&s, KERN_INFO);
1689 }
1690
1691 /*
1692 * Return the memory (and swap, if configured) limit for a memcg.
1693 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1694 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695 {
1696 unsigned long max = READ_ONCE(memcg->memory.max);
1697
1698 if (do_memsw_account()) {
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
1705 } else {
1706 if (mem_cgroup_swappiness(memcg))
1707 max += min(READ_ONCE(memcg->swap.max),
1708 (unsigned long)total_swap_pages);
1709 }
1710 return max;
1711 }
1712
mem_cgroup_size(struct mem_cgroup * memcg)1713 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714 {
1715 return page_counter_read(&memcg->memory);
1716 }
1717
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1718 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719 int order)
1720 {
1721 struct oom_control oc = {
1722 .zonelist = NULL,
1723 .nodemask = NULL,
1724 .memcg = memcg,
1725 .gfp_mask = gfp_mask,
1726 .order = order,
1727 };
1728 bool ret = true;
1729
1730 if (mutex_lock_killable(&oom_lock))
1731 return true;
1732
1733 if (mem_cgroup_margin(memcg) >= (1 << order))
1734 goto unlock;
1735
1736 /*
1737 * A few threads which were not waiting at mutex_lock_killable() can
1738 * fail to bail out. Therefore, check again after holding oom_lock.
1739 */
1740 ret = task_is_dying() || out_of_memory(&oc);
1741
1742 unlock:
1743 mutex_unlock(&oom_lock);
1744 return ret;
1745 }
1746
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748 pg_data_t *pgdat,
1749 gfp_t gfp_mask,
1750 unsigned long *total_scanned)
1751 {
1752 struct mem_cgroup *victim = NULL;
1753 int total = 0;
1754 int loop = 0;
1755 unsigned long excess;
1756 unsigned long nr_scanned;
1757 struct mem_cgroup_reclaim_cookie reclaim = {
1758 .pgdat = pgdat,
1759 };
1760
1761 excess = soft_limit_excess(root_memcg);
1762
1763 while (1) {
1764 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765 if (!victim) {
1766 loop++;
1767 if (loop >= 2) {
1768 /*
1769 * If we have not been able to reclaim
1770 * anything, it might because there are
1771 * no reclaimable pages under this hierarchy
1772 */
1773 if (!total)
1774 break;
1775 /*
1776 * We want to do more targeted reclaim.
1777 * excess >> 2 is not to excessive so as to
1778 * reclaim too much, nor too less that we keep
1779 * coming back to reclaim from this cgroup
1780 */
1781 if (total >= (excess >> 2) ||
1782 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783 break;
1784 }
1785 continue;
1786 }
1787 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788 pgdat, &nr_scanned);
1789 *total_scanned += nr_scanned;
1790 if (!soft_limit_excess(root_memcg))
1791 break;
1792 }
1793 mem_cgroup_iter_break(root_memcg, victim);
1794 return total;
1795 }
1796
1797 #ifdef CONFIG_LOCKDEP
1798 static struct lockdep_map memcg_oom_lock_dep_map = {
1799 .name = "memcg_oom_lock",
1800 };
1801 #endif
1802
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804
1805 /*
1806 * Check OOM-Killer is already running under our hierarchy.
1807 * If someone is running, return false.
1808 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1809 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810 {
1811 struct mem_cgroup *iter, *failed = NULL;
1812
1813 spin_lock(&memcg_oom_lock);
1814
1815 for_each_mem_cgroup_tree(iter, memcg) {
1816 if (iter->oom_lock) {
1817 /*
1818 * this subtree of our hierarchy is already locked
1819 * so we cannot give a lock.
1820 */
1821 failed = iter;
1822 mem_cgroup_iter_break(memcg, iter);
1823 break;
1824 } else
1825 iter->oom_lock = true;
1826 }
1827
1828 if (failed) {
1829 /*
1830 * OK, we failed to lock the whole subtree so we have
1831 * to clean up what we set up to the failing subtree
1832 */
1833 for_each_mem_cgroup_tree(iter, memcg) {
1834 if (iter == failed) {
1835 mem_cgroup_iter_break(memcg, iter);
1836 break;
1837 }
1838 iter->oom_lock = false;
1839 }
1840 } else
1841 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842
1843 spin_unlock(&memcg_oom_lock);
1844
1845 return !failed;
1846 }
1847
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1848 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849 {
1850 struct mem_cgroup *iter;
1851
1852 spin_lock(&memcg_oom_lock);
1853 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854 for_each_mem_cgroup_tree(iter, memcg)
1855 iter->oom_lock = false;
1856 spin_unlock(&memcg_oom_lock);
1857 }
1858
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1859 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860 {
1861 struct mem_cgroup *iter;
1862
1863 spin_lock(&memcg_oom_lock);
1864 for_each_mem_cgroup_tree(iter, memcg)
1865 iter->under_oom++;
1866 spin_unlock(&memcg_oom_lock);
1867 }
1868
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1869 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870 {
1871 struct mem_cgroup *iter;
1872
1873 /*
1874 * Be careful about under_oom underflows because a child memcg
1875 * could have been added after mem_cgroup_mark_under_oom.
1876 */
1877 spin_lock(&memcg_oom_lock);
1878 for_each_mem_cgroup_tree(iter, memcg)
1879 if (iter->under_oom > 0)
1880 iter->under_oom--;
1881 spin_unlock(&memcg_oom_lock);
1882 }
1883
1884 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885
1886 struct oom_wait_info {
1887 struct mem_cgroup *memcg;
1888 wait_queue_entry_t wait;
1889 };
1890
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1891 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892 unsigned mode, int sync, void *arg)
1893 {
1894 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895 struct mem_cgroup *oom_wait_memcg;
1896 struct oom_wait_info *oom_wait_info;
1897
1898 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899 oom_wait_memcg = oom_wait_info->memcg;
1900
1901 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903 return 0;
1904 return autoremove_wake_function(wait, mode, sync, arg);
1905 }
1906
memcg_oom_recover(struct mem_cgroup * memcg)1907 static void memcg_oom_recover(struct mem_cgroup *memcg)
1908 {
1909 /*
1910 * For the following lockless ->under_oom test, the only required
1911 * guarantee is that it must see the state asserted by an OOM when
1912 * this function is called as a result of userland actions
1913 * triggered by the notification of the OOM. This is trivially
1914 * achieved by invoking mem_cgroup_mark_under_oom() before
1915 * triggering notification.
1916 */
1917 if (memcg && memcg->under_oom)
1918 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919 }
1920
1921 /*
1922 * Returns true if successfully killed one or more processes. Though in some
1923 * corner cases it can return true even without killing any process.
1924 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1925 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926 {
1927 bool locked, ret;
1928
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return false;
1931
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
1934 /*
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
1943 *
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
1951 */
1952 if (READ_ONCE(memcg->oom_kill_disable)) {
1953 if (current->in_user_fault) {
1954 css_get(&memcg->css);
1955 current->memcg_in_oom = memcg;
1956 current->memcg_oom_gfp_mask = mask;
1957 current->memcg_oom_order = order;
1958 }
1959 return false;
1960 }
1961
1962 mem_cgroup_mark_under_oom(memcg);
1963
1964 locked = mem_cgroup_oom_trylock(memcg);
1965
1966 if (locked)
1967 mem_cgroup_oom_notify(memcg);
1968
1969 mem_cgroup_unmark_under_oom(memcg);
1970 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971
1972 if (locked)
1973 mem_cgroup_oom_unlock(memcg);
1974
1975 return ret;
1976 }
1977
1978 /**
1979 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980 * @handle: actually kill/wait or just clean up the OOM state
1981 *
1982 * This has to be called at the end of a page fault if the memcg OOM
1983 * handler was enabled.
1984 *
1985 * Memcg supports userspace OOM handling where failed allocations must
1986 * sleep on a waitqueue until the userspace task resolves the
1987 * situation. Sleeping directly in the charge context with all kinds
1988 * of locks held is not a good idea, instead we remember an OOM state
1989 * in the task and mem_cgroup_oom_synchronize() has to be called at
1990 * the end of the page fault to complete the OOM handling.
1991 *
1992 * Returns %true if an ongoing memcg OOM situation was detected and
1993 * completed, %false otherwise.
1994 */
mem_cgroup_oom_synchronize(bool handle)1995 bool mem_cgroup_oom_synchronize(bool handle)
1996 {
1997 struct mem_cgroup *memcg = current->memcg_in_oom;
1998 struct oom_wait_info owait;
1999 bool locked;
2000
2001 /* OOM is global, do not handle */
2002 if (!memcg)
2003 return false;
2004
2005 if (!handle)
2006 goto cleanup;
2007
2008 owait.memcg = memcg;
2009 owait.wait.flags = 0;
2010 owait.wait.func = memcg_oom_wake_function;
2011 owait.wait.private = current;
2012 INIT_LIST_HEAD(&owait.wait.entry);
2013
2014 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015 mem_cgroup_mark_under_oom(memcg);
2016
2017 locked = mem_cgroup_oom_trylock(memcg);
2018
2019 if (locked)
2020 mem_cgroup_oom_notify(memcg);
2021
2022 schedule();
2023 mem_cgroup_unmark_under_oom(memcg);
2024 finish_wait(&memcg_oom_waitq, &owait.wait);
2025
2026 if (locked)
2027 mem_cgroup_oom_unlock(memcg);
2028 cleanup:
2029 current->memcg_in_oom = NULL;
2030 css_put(&memcg->css);
2031 return true;
2032 }
2033
2034 /**
2035 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036 * @victim: task to be killed by the OOM killer
2037 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038 *
2039 * Returns a pointer to a memory cgroup, which has to be cleaned up
2040 * by killing all belonging OOM-killable tasks.
2041 *
2042 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2044 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045 struct mem_cgroup *oom_domain)
2046 {
2047 struct mem_cgroup *oom_group = NULL;
2048 struct mem_cgroup *memcg;
2049
2050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051 return NULL;
2052
2053 if (!oom_domain)
2054 oom_domain = root_mem_cgroup;
2055
2056 rcu_read_lock();
2057
2058 memcg = mem_cgroup_from_task(victim);
2059 if (mem_cgroup_is_root(memcg))
2060 goto out;
2061
2062 /*
2063 * If the victim task has been asynchronously moved to a different
2064 * memory cgroup, we might end up killing tasks outside oom_domain.
2065 * In this case it's better to ignore memory.group.oom.
2066 */
2067 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068 goto out;
2069
2070 /*
2071 * Traverse the memory cgroup hierarchy from the victim task's
2072 * cgroup up to the OOMing cgroup (or root) to find the
2073 * highest-level memory cgroup with oom.group set.
2074 */
2075 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076 if (READ_ONCE(memcg->oom_group))
2077 oom_group = memcg;
2078
2079 if (memcg == oom_domain)
2080 break;
2081 }
2082
2083 if (oom_group)
2084 css_get(&oom_group->css);
2085 out:
2086 rcu_read_unlock();
2087
2088 return oom_group;
2089 }
2090
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2091 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092 {
2093 pr_info("Tasks in ");
2094 pr_cont_cgroup_path(memcg->css.cgroup);
2095 pr_cont(" are going to be killed due to memory.oom.group set\n");
2096 }
2097
2098 /**
2099 * folio_memcg_lock - Bind a folio to its memcg.
2100 * @folio: The folio.
2101 *
2102 * This function prevents unlocked LRU folios from being moved to
2103 * another cgroup.
2104 *
2105 * It ensures lifetime of the bound memcg. The caller is responsible
2106 * for the lifetime of the folio.
2107 */
folio_memcg_lock(struct folio * folio)2108 void folio_memcg_lock(struct folio *folio)
2109 {
2110 struct mem_cgroup *memcg;
2111 unsigned long flags;
2112
2113 /*
2114 * The RCU lock is held throughout the transaction. The fast
2115 * path can get away without acquiring the memcg->move_lock
2116 * because page moving starts with an RCU grace period.
2117 */
2118 rcu_read_lock();
2119
2120 if (mem_cgroup_disabled())
2121 return;
2122 again:
2123 memcg = folio_memcg(folio);
2124 if (unlikely(!memcg))
2125 return;
2126
2127 #ifdef CONFIG_PROVE_LOCKING
2128 local_irq_save(flags);
2129 might_lock(&memcg->move_lock);
2130 local_irq_restore(flags);
2131 #endif
2132
2133 if (atomic_read(&memcg->moving_account) <= 0)
2134 return;
2135
2136 spin_lock_irqsave(&memcg->move_lock, flags);
2137 if (memcg != folio_memcg(folio)) {
2138 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139 goto again;
2140 }
2141
2142 /*
2143 * When charge migration first begins, we can have multiple
2144 * critical sections holding the fast-path RCU lock and one
2145 * holding the slowpath move_lock. Track the task who has the
2146 * move_lock for folio_memcg_unlock().
2147 */
2148 memcg->move_lock_task = current;
2149 memcg->move_lock_flags = flags;
2150 }
2151
__folio_memcg_unlock(struct mem_cgroup * memcg)2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153 {
2154 if (memcg && memcg->move_lock_task == current) {
2155 unsigned long flags = memcg->move_lock_flags;
2156
2157 memcg->move_lock_task = NULL;
2158 memcg->move_lock_flags = 0;
2159
2160 spin_unlock_irqrestore(&memcg->move_lock, flags);
2161 }
2162
2163 rcu_read_unlock();
2164 }
2165
2166 /**
2167 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168 * @folio: The folio.
2169 *
2170 * This releases the binding created by folio_memcg_lock(). This does
2171 * not change the accounting of this folio to its memcg, but it does
2172 * permit others to change it.
2173 */
folio_memcg_unlock(struct folio * folio)2174 void folio_memcg_unlock(struct folio *folio)
2175 {
2176 __folio_memcg_unlock(folio_memcg(folio));
2177 }
2178
2179 struct memcg_stock_pcp {
2180 local_lock_t stock_lock;
2181 struct mem_cgroup *cached; /* this never be root cgroup */
2182 unsigned int nr_pages;
2183
2184 #ifdef CONFIG_MEMCG_KMEM
2185 struct obj_cgroup *cached_objcg;
2186 struct pglist_data *cached_pgdat;
2187 unsigned int nr_bytes;
2188 int nr_slab_reclaimable_b;
2189 int nr_slab_unreclaimable_b;
2190 #endif
2191
2192 struct work_struct work;
2193 unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE 0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204 struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206
2207 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210 return NULL;
2211 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 struct mem_cgroup *root_memcg)
2214 {
2215 return false;
2216 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221
2222 /**
2223 * consume_stock: Try to consume stocked charge on this cpu.
2224 * @memcg: memcg to consume from.
2225 * @nr_pages: how many pages to charge.
2226 *
2227 * The charges will only happen if @memcg matches the current cpu's memcg
2228 * stock, and at least @nr_pages are available in that stock. Failure to
2229 * service an allocation will refill the stock.
2230 *
2231 * returns true if successful, false otherwise.
2232 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235 struct memcg_stock_pcp *stock;
2236 unsigned long flags;
2237 bool ret = false;
2238
2239 if (nr_pages > MEMCG_CHARGE_BATCH)
2240 return ret;
2241
2242 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243
2244 stock = this_cpu_ptr(&memcg_stock);
2245 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246 stock->nr_pages -= nr_pages;
2247 ret = true;
2248 }
2249
2250 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251
2252 return ret;
2253 }
2254
2255 /*
2256 * Returns stocks cached in percpu and reset cached information.
2257 */
drain_stock(struct memcg_stock_pcp * stock)2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260 struct mem_cgroup *old = READ_ONCE(stock->cached);
2261
2262 if (!old)
2263 return;
2264
2265 if (stock->nr_pages) {
2266 page_counter_uncharge(&old->memory, stock->nr_pages);
2267 if (do_memsw_account())
2268 page_counter_uncharge(&old->memsw, stock->nr_pages);
2269 stock->nr_pages = 0;
2270 }
2271
2272 css_put(&old->css);
2273 WRITE_ONCE(stock->cached, NULL);
2274 }
2275
drain_local_stock(struct work_struct * dummy)2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278 struct memcg_stock_pcp *stock;
2279 struct obj_cgroup *old = NULL;
2280 unsigned long flags;
2281
2282 /*
2283 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284 * drain_stock races is that we always operate on local CPU stock
2285 * here with IRQ disabled
2286 */
2287 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288
2289 stock = this_cpu_ptr(&memcg_stock);
2290 old = drain_obj_stock(stock);
2291 drain_stock(stock);
2292 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293
2294 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295 if (old)
2296 obj_cgroup_put(old);
2297 }
2298
2299 /*
2300 * Cache charges(val) to local per_cpu area.
2301 * This will be consumed by consume_stock() function, later.
2302 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305 struct memcg_stock_pcp *stock;
2306
2307 stock = this_cpu_ptr(&memcg_stock);
2308 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309 drain_stock(stock);
2310 css_get(&memcg->css);
2311 WRITE_ONCE(stock->cached, memcg);
2312 }
2313 stock->nr_pages += nr_pages;
2314
2315 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316 drain_stock(stock);
2317 }
2318
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321 unsigned long flags;
2322
2323 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324 __refill_stock(memcg, nr_pages);
2325 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327
2328 /*
2329 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330 * of the hierarchy under it.
2331 */
drain_all_stock(struct mem_cgroup * root_memcg)2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334 int cpu, curcpu;
2335
2336 /* If someone's already draining, avoid adding running more workers. */
2337 if (!mutex_trylock(&percpu_charge_mutex))
2338 return;
2339 /*
2340 * Notify other cpus that system-wide "drain" is running
2341 * We do not care about races with the cpu hotplug because cpu down
2342 * as well as workers from this path always operate on the local
2343 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344 */
2345 migrate_disable();
2346 curcpu = smp_processor_id();
2347 for_each_online_cpu(cpu) {
2348 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349 struct mem_cgroup *memcg;
2350 bool flush = false;
2351
2352 rcu_read_lock();
2353 memcg = READ_ONCE(stock->cached);
2354 if (memcg && stock->nr_pages &&
2355 mem_cgroup_is_descendant(memcg, root_memcg))
2356 flush = true;
2357 else if (obj_stock_flush_required(stock, root_memcg))
2358 flush = true;
2359 rcu_read_unlock();
2360
2361 if (flush &&
2362 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363 if (cpu == curcpu)
2364 drain_local_stock(&stock->work);
2365 else if (!cpu_is_isolated(cpu))
2366 schedule_work_on(cpu, &stock->work);
2367 }
2368 }
2369 migrate_enable();
2370 mutex_unlock(&percpu_charge_mutex);
2371 }
2372
memcg_hotplug_cpu_dead(unsigned int cpu)2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375 struct memcg_stock_pcp *stock;
2376
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379
2380 return 0;
2381 }
2382
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384 unsigned int nr_pages,
2385 gfp_t gfp_mask)
2386 {
2387 unsigned long nr_reclaimed = 0;
2388
2389 do {
2390 unsigned long pflags;
2391
2392 if (page_counter_read(&memcg->memory) <=
2393 READ_ONCE(memcg->memory.high))
2394 continue;
2395
2396 memcg_memory_event(memcg, MEMCG_HIGH);
2397
2398 psi_memstall_enter(&pflags);
2399 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400 gfp_mask,
2401 MEMCG_RECLAIM_MAY_SWAP);
2402 psi_memstall_leave(&pflags);
2403 } while ((memcg = parent_mem_cgroup(memcg)) &&
2404 !mem_cgroup_is_root(memcg));
2405
2406 return nr_reclaimed;
2407 }
2408
high_work_func(struct work_struct * work)2409 static void high_work_func(struct work_struct *work)
2410 {
2411 struct mem_cgroup *memcg;
2412
2413 memcg = container_of(work, struct mem_cgroup, high_work);
2414 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416
2417 /*
2418 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419 * enough to still cause a significant slowdown in most cases, while still
2420 * allowing diagnostics and tracing to proceed without becoming stuck.
2421 */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423
2424 /*
2425 * When calculating the delay, we use these either side of the exponentiation to
2426 * maintain precision and scale to a reasonable number of jiffies (see the table
2427 * below.
2428 *
2429 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430 * overage ratio to a delay.
2431 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2433 * to produce a reasonable delay curve.
2434 *
2435 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436 * reasonable delay curve compared to precision-adjusted overage, not
2437 * penalising heavily at first, but still making sure that growth beyond the
2438 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439 * example, with a high of 100 megabytes:
2440 *
2441 * +-------+------------------------+
2442 * | usage | time to allocate in ms |
2443 * +-------+------------------------+
2444 * | 100M | 0 |
2445 * | 101M | 6 |
2446 * | 102M | 25 |
2447 * | 103M | 57 |
2448 * | 104M | 102 |
2449 * | 105M | 159 |
2450 * | 106M | 230 |
2451 * | 107M | 313 |
2452 * | 108M | 409 |
2453 * | 109M | 518 |
2454 * | 110M | 639 |
2455 * | 111M | 774 |
2456 * | 112M | 921 |
2457 * | 113M | 1081 |
2458 * | 114M | 1254 |
2459 * | 115M | 1439 |
2460 * | 116M | 1638 |
2461 * | 117M | 1849 |
2462 * | 118M | 2000 |
2463 * | 119M | 2000 |
2464 * | 120M | 2000 |
2465 * +-------+------------------------+
2466 */
2467 #define MEMCG_DELAY_PRECISION_SHIFT 20
2468 #define MEMCG_DELAY_SCALING_SHIFT 14
2469
calculate_overage(unsigned long usage,unsigned long high)2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472 u64 overage;
2473
2474 if (usage <= high)
2475 return 0;
2476
2477 /*
2478 * Prevent division by 0 in overage calculation by acting as if
2479 * it was a threshold of 1 page
2480 */
2481 high = max(high, 1UL);
2482
2483 overage = usage - high;
2484 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485 return div64_u64(overage, high);
2486 }
2487
mem_find_max_overage(struct mem_cgroup * memcg)2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490 u64 overage, max_overage = 0;
2491
2492 do {
2493 overage = calculate_overage(page_counter_read(&memcg->memory),
2494 READ_ONCE(memcg->memory.high));
2495 max_overage = max(overage, max_overage);
2496 } while ((memcg = parent_mem_cgroup(memcg)) &&
2497 !mem_cgroup_is_root(memcg));
2498
2499 return max_overage;
2500 }
2501
swap_find_max_overage(struct mem_cgroup * memcg)2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504 u64 overage, max_overage = 0;
2505
2506 do {
2507 overage = calculate_overage(page_counter_read(&memcg->swap),
2508 READ_ONCE(memcg->swap.high));
2509 if (overage)
2510 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511 max_overage = max(overage, max_overage);
2512 } while ((memcg = parent_mem_cgroup(memcg)) &&
2513 !mem_cgroup_is_root(memcg));
2514
2515 return max_overage;
2516 }
2517
2518 /*
2519 * Get the number of jiffies that we should penalise a mischievous cgroup which
2520 * is exceeding its memory.high by checking both it and its ancestors.
2521 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523 unsigned int nr_pages,
2524 u64 max_overage)
2525 {
2526 unsigned long penalty_jiffies;
2527
2528 if (!max_overage)
2529 return 0;
2530
2531 /*
2532 * We use overage compared to memory.high to calculate the number of
2533 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534 * fairly lenient on small overages, and increasingly harsh when the
2535 * memcg in question makes it clear that it has no intention of stopping
2536 * its crazy behaviour, so we exponentially increase the delay based on
2537 * overage amount.
2538 */
2539 penalty_jiffies = max_overage * max_overage * HZ;
2540 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542
2543 /*
2544 * Factor in the task's own contribution to the overage, such that four
2545 * N-sized allocations are throttled approximately the same as one
2546 * 4N-sized allocation.
2547 *
2548 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549 * larger the current charge patch is than that.
2550 */
2551 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553
2554 /*
2555 * Scheduled by try_charge() to be executed from the userland return path
2556 * and reclaims memory over the high limit.
2557 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2558 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2559 {
2560 unsigned long penalty_jiffies;
2561 unsigned long pflags;
2562 unsigned long nr_reclaimed;
2563 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564 int nr_retries = MAX_RECLAIM_RETRIES;
2565 struct mem_cgroup *memcg;
2566 bool in_retry = false;
2567
2568 if (likely(!nr_pages))
2569 return;
2570
2571 memcg = get_mem_cgroup_from_mm(current->mm);
2572 current->memcg_nr_pages_over_high = 0;
2573
2574 retry_reclaim:
2575 /*
2576 * The allocating task should reclaim at least the batch size, but for
2577 * subsequent retries we only want to do what's necessary to prevent oom
2578 * or breaching resource isolation.
2579 *
2580 * This is distinct from memory.max or page allocator behaviour because
2581 * memory.high is currently batched, whereas memory.max and the page
2582 * allocator run every time an allocation is made.
2583 */
2584 nr_reclaimed = reclaim_high(memcg,
2585 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586 gfp_mask);
2587
2588 /*
2589 * memory.high is breached and reclaim is unable to keep up. Throttle
2590 * allocators proactively to slow down excessive growth.
2591 */
2592 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593 mem_find_max_overage(memcg));
2594
2595 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596 swap_find_max_overage(memcg));
2597
2598 /*
2599 * Clamp the max delay per usermode return so as to still keep the
2600 * application moving forwards and also permit diagnostics, albeit
2601 * extremely slowly.
2602 */
2603 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604
2605 /*
2606 * Don't sleep if the amount of jiffies this memcg owes us is so low
2607 * that it's not even worth doing, in an attempt to be nice to those who
2608 * go only a small amount over their memory.high value and maybe haven't
2609 * been aggressively reclaimed enough yet.
2610 */
2611 if (penalty_jiffies <= HZ / 100)
2612 goto out;
2613
2614 /*
2615 * If reclaim is making forward progress but we're still over
2616 * memory.high, we want to encourage that rather than doing allocator
2617 * throttling.
2618 */
2619 if (nr_reclaimed || nr_retries--) {
2620 in_retry = true;
2621 goto retry_reclaim;
2622 }
2623
2624 /*
2625 * If we exit early, we're guaranteed to die (since
2626 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627 * need to account for any ill-begotten jiffies to pay them off later.
2628 */
2629 psi_memstall_enter(&pflags);
2630 schedule_timeout_killable(penalty_jiffies);
2631 psi_memstall_leave(&pflags);
2632
2633 out:
2634 css_put(&memcg->css);
2635 }
2636
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638 unsigned int nr_pages)
2639 {
2640 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641 int nr_retries = MAX_RECLAIM_RETRIES;
2642 struct mem_cgroup *mem_over_limit;
2643 struct page_counter *counter;
2644 unsigned long nr_reclaimed;
2645 bool passed_oom = false;
2646 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647 bool drained = false;
2648 bool raised_max_event = false;
2649 unsigned long pflags;
2650
2651 retry:
2652 if (consume_stock(memcg, nr_pages))
2653 return 0;
2654
2655 if (!do_memsw_account() ||
2656 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658 goto done_restock;
2659 if (do_memsw_account())
2660 page_counter_uncharge(&memcg->memsw, batch);
2661 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662 } else {
2663 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665 }
2666
2667 if (batch > nr_pages) {
2668 batch = nr_pages;
2669 goto retry;
2670 }
2671
2672 /*
2673 * Prevent unbounded recursion when reclaim operations need to
2674 * allocate memory. This might exceed the limits temporarily,
2675 * but we prefer facilitating memory reclaim and getting back
2676 * under the limit over triggering OOM kills in these cases.
2677 */
2678 if (unlikely(current->flags & PF_MEMALLOC))
2679 goto force;
2680
2681 if (unlikely(task_in_memcg_oom(current)))
2682 goto nomem;
2683
2684 if (!gfpflags_allow_blocking(gfp_mask))
2685 goto nomem;
2686
2687 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688 raised_max_event = true;
2689
2690 psi_memstall_enter(&pflags);
2691 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692 gfp_mask, reclaim_options);
2693 psi_memstall_leave(&pflags);
2694
2695 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696 goto retry;
2697
2698 if (!drained) {
2699 drain_all_stock(mem_over_limit);
2700 drained = true;
2701 goto retry;
2702 }
2703
2704 if (gfp_mask & __GFP_NORETRY)
2705 goto nomem;
2706 /*
2707 * Even though the limit is exceeded at this point, reclaim
2708 * may have been able to free some pages. Retry the charge
2709 * before killing the task.
2710 *
2711 * Only for regular pages, though: huge pages are rather
2712 * unlikely to succeed so close to the limit, and we fall back
2713 * to regular pages anyway in case of failure.
2714 */
2715 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716 goto retry;
2717 /*
2718 * At task move, charge accounts can be doubly counted. So, it's
2719 * better to wait until the end of task_move if something is going on.
2720 */
2721 if (mem_cgroup_wait_acct_move(mem_over_limit))
2722 goto retry;
2723
2724 if (nr_retries--)
2725 goto retry;
2726
2727 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728 goto nomem;
2729
2730 /* Avoid endless loop for tasks bypassed by the oom killer */
2731 if (passed_oom && task_is_dying())
2732 goto nomem;
2733
2734 /*
2735 * keep retrying as long as the memcg oom killer is able to make
2736 * a forward progress or bypass the charge if the oom killer
2737 * couldn't make any progress.
2738 */
2739 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740 get_order(nr_pages * PAGE_SIZE))) {
2741 passed_oom = true;
2742 nr_retries = MAX_RECLAIM_RETRIES;
2743 goto retry;
2744 }
2745 nomem:
2746 /*
2747 * Memcg doesn't have a dedicated reserve for atomic
2748 * allocations. But like the global atomic pool, we need to
2749 * put the burden of reclaim on regular allocation requests
2750 * and let these go through as privileged allocations.
2751 */
2752 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753 return -ENOMEM;
2754 force:
2755 /*
2756 * If the allocation has to be enforced, don't forget to raise
2757 * a MEMCG_MAX event.
2758 */
2759 if (!raised_max_event)
2760 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761
2762 /*
2763 * The allocation either can't fail or will lead to more memory
2764 * being freed very soon. Allow memory usage go over the limit
2765 * temporarily by force charging it.
2766 */
2767 page_counter_charge(&memcg->memory, nr_pages);
2768 if (do_memsw_account())
2769 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771 return 0;
2772
2773 done_restock:
2774 if (batch > nr_pages)
2775 refill_stock(memcg, batch - nr_pages);
2776
2777 /*
2778 * If the hierarchy is above the normal consumption range, schedule
2779 * reclaim on returning to userland. We can perform reclaim here
2780 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2782 * not recorded as it most likely matches current's and won't
2783 * change in the meantime. As high limit is checked again before
2784 * reclaim, the cost of mismatch is negligible.
2785 */
2786 do {
2787 bool mem_high, swap_high;
2788
2789 mem_high = page_counter_read(&memcg->memory) >
2790 READ_ONCE(memcg->memory.high);
2791 swap_high = page_counter_read(&memcg->swap) >
2792 READ_ONCE(memcg->swap.high);
2793
2794 /* Don't bother a random interrupted task */
2795 if (!in_task()) {
2796 if (mem_high) {
2797 schedule_work(&memcg->high_work);
2798 break;
2799 }
2800 continue;
2801 }
2802
2803 if (mem_high || swap_high) {
2804 /*
2805 * The allocating tasks in this cgroup will need to do
2806 * reclaim or be throttled to prevent further growth
2807 * of the memory or swap footprints.
2808 *
2809 * Target some best-effort fairness between the tasks,
2810 * and distribute reclaim work and delay penalties
2811 * based on how much each task is actually allocating.
2812 */
2813 current->memcg_nr_pages_over_high += batch;
2814 set_notify_resume(current);
2815 break;
2816 }
2817 } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820 !(current->flags & PF_MEMALLOC) &&
2821 gfpflags_allow_blocking(gfp_mask)) {
2822 mem_cgroup_handle_over_high(gfp_mask);
2823 }
2824 return 0;
2825 }
2826
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828 unsigned int nr_pages)
2829 {
2830 if (mem_cgroup_is_root(memcg))
2831 return 0;
2832
2833 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838 if (mem_cgroup_is_root(memcg))
2839 return;
2840
2841 page_counter_uncharge(&memcg->memory, nr_pages);
2842 if (do_memsw_account())
2843 page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849 /*
2850 * Any of the following ensures page's memcg stability:
2851 *
2852 * - the page lock
2853 * - LRU isolation
2854 * - folio_memcg_lock()
2855 * - exclusive reference
2856 * - mem_cgroup_trylock_pages()
2857 */
2858 folio->memcg_data = (unsigned long)memcg;
2859 }
2860
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863 * The allocated objcg pointers array is not accounted directly.
2864 * Moreover, it should not come from DMA buffer and is not readily
2865 * reclaimable. So those GFP bits should be masked off.
2866 */
2867 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2868
2869 /*
2870 * mod_objcg_mlstate() may be called with irq enabled, so
2871 * mod_memcg_lruvec_state() should be used.
2872 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2873 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2874 struct pglist_data *pgdat,
2875 enum node_stat_item idx, int nr)
2876 {
2877 struct mem_cgroup *memcg;
2878 struct lruvec *lruvec;
2879
2880 rcu_read_lock();
2881 memcg = obj_cgroup_memcg(objcg);
2882 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2883 mod_memcg_lruvec_state(lruvec, idx, nr);
2884 rcu_read_unlock();
2885 }
2886
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2887 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2888 gfp_t gfp, bool new_slab)
2889 {
2890 unsigned int objects = objs_per_slab(s, slab);
2891 unsigned long memcg_data;
2892 void *vec;
2893
2894 gfp &= ~OBJCGS_CLEAR_MASK;
2895 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2896 slab_nid(slab));
2897 if (!vec)
2898 return -ENOMEM;
2899
2900 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2901 if (new_slab) {
2902 /*
2903 * If the slab is brand new and nobody can yet access its
2904 * memcg_data, no synchronization is required and memcg_data can
2905 * be simply assigned.
2906 */
2907 slab->memcg_data = memcg_data;
2908 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2909 /*
2910 * If the slab is already in use, somebody can allocate and
2911 * assign obj_cgroups in parallel. In this case the existing
2912 * objcg vector should be reused.
2913 */
2914 kfree(vec);
2915 return 0;
2916 }
2917
2918 kmemleak_not_leak(vec);
2919 return 0;
2920 }
2921
2922 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2923 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2924 {
2925 /*
2926 * Slab objects are accounted individually, not per-page.
2927 * Memcg membership data for each individual object is saved in
2928 * slab->memcg_data.
2929 */
2930 if (folio_test_slab(folio)) {
2931 struct obj_cgroup **objcgs;
2932 struct slab *slab;
2933 unsigned int off;
2934
2935 slab = folio_slab(folio);
2936 objcgs = slab_objcgs(slab);
2937 if (!objcgs)
2938 return NULL;
2939
2940 off = obj_to_index(slab->slab_cache, slab, p);
2941 if (objcgs[off])
2942 return obj_cgroup_memcg(objcgs[off]);
2943
2944 return NULL;
2945 }
2946
2947 /*
2948 * folio_memcg_check() is used here, because in theory we can encounter
2949 * a folio where the slab flag has been cleared already, but
2950 * slab->memcg_data has not been freed yet
2951 * folio_memcg_check() will guarantee that a proper memory
2952 * cgroup pointer or NULL will be returned.
2953 */
2954 return folio_memcg_check(folio);
2955 }
2956
2957 /*
2958 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2959 *
2960 * A passed kernel object can be a slab object, vmalloc object or a generic
2961 * kernel page, so different mechanisms for getting the memory cgroup pointer
2962 * should be used.
2963 *
2964 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2965 * can not know for sure how the kernel object is implemented.
2966 * mem_cgroup_from_obj() can be safely used in such cases.
2967 *
2968 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2969 * cgroup_mutex, etc.
2970 */
mem_cgroup_from_obj(void * p)2971 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2972 {
2973 struct folio *folio;
2974
2975 if (mem_cgroup_disabled())
2976 return NULL;
2977
2978 if (unlikely(is_vmalloc_addr(p)))
2979 folio = page_folio(vmalloc_to_page(p));
2980 else
2981 folio = virt_to_folio(p);
2982
2983 return mem_cgroup_from_obj_folio(folio, p);
2984 }
2985
2986 /*
2987 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2988 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2989 * allocated using vmalloc().
2990 *
2991 * A passed kernel object must be a slab object or a generic kernel page.
2992 *
2993 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2994 * cgroup_mutex, etc.
2995 */
mem_cgroup_from_slab_obj(void * p)2996 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2997 {
2998 if (mem_cgroup_disabled())
2999 return NULL;
3000
3001 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3002 }
3003
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)3004 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3005 {
3006 struct obj_cgroup *objcg = NULL;
3007
3008 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3009 objcg = rcu_dereference(memcg->objcg);
3010 if (objcg && obj_cgroup_tryget(objcg))
3011 break;
3012 objcg = NULL;
3013 }
3014 return objcg;
3015 }
3016
get_obj_cgroup_from_current(void)3017 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3018 {
3019 struct obj_cgroup *objcg = NULL;
3020 struct mem_cgroup *memcg;
3021
3022 if (memcg_kmem_bypass())
3023 return NULL;
3024
3025 rcu_read_lock();
3026 if (unlikely(active_memcg()))
3027 memcg = active_memcg();
3028 else
3029 memcg = mem_cgroup_from_task(current);
3030 objcg = __get_obj_cgroup_from_memcg(memcg);
3031 rcu_read_unlock();
3032 return objcg;
3033 }
3034
get_obj_cgroup_from_folio(struct folio * folio)3035 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3036 {
3037 struct obj_cgroup *objcg;
3038
3039 if (!memcg_kmem_online())
3040 return NULL;
3041
3042 if (folio_memcg_kmem(folio)) {
3043 objcg = __folio_objcg(folio);
3044 obj_cgroup_get(objcg);
3045 } else {
3046 struct mem_cgroup *memcg;
3047
3048 rcu_read_lock();
3049 memcg = __folio_memcg(folio);
3050 if (memcg)
3051 objcg = __get_obj_cgroup_from_memcg(memcg);
3052 else
3053 objcg = NULL;
3054 rcu_read_unlock();
3055 }
3056 return objcg;
3057 }
3058
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3059 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3060 {
3061 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3062 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3063 if (nr_pages > 0)
3064 page_counter_charge(&memcg->kmem, nr_pages);
3065 else
3066 page_counter_uncharge(&memcg->kmem, -nr_pages);
3067 }
3068 }
3069
3070
3071 /*
3072 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3073 * @objcg: object cgroup to uncharge
3074 * @nr_pages: number of pages to uncharge
3075 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3076 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3077 unsigned int nr_pages)
3078 {
3079 struct mem_cgroup *memcg;
3080
3081 memcg = get_mem_cgroup_from_objcg(objcg);
3082
3083 memcg_account_kmem(memcg, -nr_pages);
3084 refill_stock(memcg, nr_pages);
3085
3086 css_put(&memcg->css);
3087 }
3088
3089 /*
3090 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3091 * @objcg: object cgroup to charge
3092 * @gfp: reclaim mode
3093 * @nr_pages: number of pages to charge
3094 *
3095 * Returns 0 on success, an error code on failure.
3096 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3097 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3098 unsigned int nr_pages)
3099 {
3100 struct mem_cgroup *memcg;
3101 int ret;
3102
3103 memcg = get_mem_cgroup_from_objcg(objcg);
3104
3105 ret = try_charge_memcg(memcg, gfp, nr_pages);
3106 if (ret)
3107 goto out;
3108
3109 memcg_account_kmem(memcg, nr_pages);
3110 out:
3111 css_put(&memcg->css);
3112
3113 return ret;
3114 }
3115
3116 /**
3117 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3118 * @page: page to charge
3119 * @gfp: reclaim mode
3120 * @order: allocation order
3121 *
3122 * Returns 0 on success, an error code on failure.
3123 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3124 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3125 {
3126 struct obj_cgroup *objcg;
3127 int ret = 0;
3128
3129 objcg = get_obj_cgroup_from_current();
3130 if (objcg) {
3131 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3132 if (!ret) {
3133 page->memcg_data = (unsigned long)objcg |
3134 MEMCG_DATA_KMEM;
3135 return 0;
3136 }
3137 obj_cgroup_put(objcg);
3138 }
3139 return ret;
3140 }
3141
3142 /**
3143 * __memcg_kmem_uncharge_page: uncharge a kmem page
3144 * @page: page to uncharge
3145 * @order: allocation order
3146 */
__memcg_kmem_uncharge_page(struct page * page,int order)3147 void __memcg_kmem_uncharge_page(struct page *page, int order)
3148 {
3149 struct folio *folio = page_folio(page);
3150 struct obj_cgroup *objcg;
3151 unsigned int nr_pages = 1 << order;
3152
3153 if (!folio_memcg_kmem(folio))
3154 return;
3155
3156 objcg = __folio_objcg(folio);
3157 obj_cgroup_uncharge_pages(objcg, nr_pages);
3158 folio->memcg_data = 0;
3159 obj_cgroup_put(objcg);
3160 }
3161
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3162 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3163 enum node_stat_item idx, int nr)
3164 {
3165 struct memcg_stock_pcp *stock;
3166 struct obj_cgroup *old = NULL;
3167 unsigned long flags;
3168 int *bytes;
3169
3170 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3171 stock = this_cpu_ptr(&memcg_stock);
3172
3173 /*
3174 * Save vmstat data in stock and skip vmstat array update unless
3175 * accumulating over a page of vmstat data or when pgdat or idx
3176 * changes.
3177 */
3178 if (READ_ONCE(stock->cached_objcg) != objcg) {
3179 old = drain_obj_stock(stock);
3180 obj_cgroup_get(objcg);
3181 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3182 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3183 WRITE_ONCE(stock->cached_objcg, objcg);
3184 stock->cached_pgdat = pgdat;
3185 } else if (stock->cached_pgdat != pgdat) {
3186 /* Flush the existing cached vmstat data */
3187 struct pglist_data *oldpg = stock->cached_pgdat;
3188
3189 if (stock->nr_slab_reclaimable_b) {
3190 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3191 stock->nr_slab_reclaimable_b);
3192 stock->nr_slab_reclaimable_b = 0;
3193 }
3194 if (stock->nr_slab_unreclaimable_b) {
3195 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3196 stock->nr_slab_unreclaimable_b);
3197 stock->nr_slab_unreclaimable_b = 0;
3198 }
3199 stock->cached_pgdat = pgdat;
3200 }
3201
3202 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3203 : &stock->nr_slab_unreclaimable_b;
3204 /*
3205 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3206 * cached locally at least once before pushing it out.
3207 */
3208 if (!*bytes) {
3209 *bytes = nr;
3210 nr = 0;
3211 } else {
3212 *bytes += nr;
3213 if (abs(*bytes) > PAGE_SIZE) {
3214 nr = *bytes;
3215 *bytes = 0;
3216 } else {
3217 nr = 0;
3218 }
3219 }
3220 if (nr)
3221 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3222
3223 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3224 if (old)
3225 obj_cgroup_put(old);
3226 }
3227
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3228 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3229 {
3230 struct memcg_stock_pcp *stock;
3231 unsigned long flags;
3232 bool ret = false;
3233
3234 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3235
3236 stock = this_cpu_ptr(&memcg_stock);
3237 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3238 stock->nr_bytes -= nr_bytes;
3239 ret = true;
3240 }
3241
3242 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3243
3244 return ret;
3245 }
3246
drain_obj_stock(struct memcg_stock_pcp * stock)3247 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3248 {
3249 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3250
3251 if (!old)
3252 return NULL;
3253
3254 if (stock->nr_bytes) {
3255 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3256 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3257
3258 if (nr_pages) {
3259 struct mem_cgroup *memcg;
3260
3261 memcg = get_mem_cgroup_from_objcg(old);
3262
3263 memcg_account_kmem(memcg, -nr_pages);
3264 __refill_stock(memcg, nr_pages);
3265
3266 css_put(&memcg->css);
3267 }
3268
3269 /*
3270 * The leftover is flushed to the centralized per-memcg value.
3271 * On the next attempt to refill obj stock it will be moved
3272 * to a per-cpu stock (probably, on an other CPU), see
3273 * refill_obj_stock().
3274 *
3275 * How often it's flushed is a trade-off between the memory
3276 * limit enforcement accuracy and potential CPU contention,
3277 * so it might be changed in the future.
3278 */
3279 atomic_add(nr_bytes, &old->nr_charged_bytes);
3280 stock->nr_bytes = 0;
3281 }
3282
3283 /*
3284 * Flush the vmstat data in current stock
3285 */
3286 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3287 if (stock->nr_slab_reclaimable_b) {
3288 mod_objcg_mlstate(old, stock->cached_pgdat,
3289 NR_SLAB_RECLAIMABLE_B,
3290 stock->nr_slab_reclaimable_b);
3291 stock->nr_slab_reclaimable_b = 0;
3292 }
3293 if (stock->nr_slab_unreclaimable_b) {
3294 mod_objcg_mlstate(old, stock->cached_pgdat,
3295 NR_SLAB_UNRECLAIMABLE_B,
3296 stock->nr_slab_unreclaimable_b);
3297 stock->nr_slab_unreclaimable_b = 0;
3298 }
3299 stock->cached_pgdat = NULL;
3300 }
3301
3302 WRITE_ONCE(stock->cached_objcg, NULL);
3303 /*
3304 * The `old' objects needs to be released by the caller via
3305 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3306 */
3307 return old;
3308 }
3309
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3310 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3311 struct mem_cgroup *root_memcg)
3312 {
3313 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3314 struct mem_cgroup *memcg;
3315
3316 if (objcg) {
3317 memcg = obj_cgroup_memcg(objcg);
3318 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3319 return true;
3320 }
3321
3322 return false;
3323 }
3324
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3325 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3326 bool allow_uncharge)
3327 {
3328 struct memcg_stock_pcp *stock;
3329 struct obj_cgroup *old = NULL;
3330 unsigned long flags;
3331 unsigned int nr_pages = 0;
3332
3333 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3334
3335 stock = this_cpu_ptr(&memcg_stock);
3336 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3337 old = drain_obj_stock(stock);
3338 obj_cgroup_get(objcg);
3339 WRITE_ONCE(stock->cached_objcg, objcg);
3340 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3341 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3342 allow_uncharge = true; /* Allow uncharge when objcg changes */
3343 }
3344 stock->nr_bytes += nr_bytes;
3345
3346 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3347 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3348 stock->nr_bytes &= (PAGE_SIZE - 1);
3349 }
3350
3351 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3352 if (old)
3353 obj_cgroup_put(old);
3354
3355 if (nr_pages)
3356 obj_cgroup_uncharge_pages(objcg, nr_pages);
3357 }
3358
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3359 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3360 {
3361 unsigned int nr_pages, nr_bytes;
3362 int ret;
3363
3364 if (consume_obj_stock(objcg, size))
3365 return 0;
3366
3367 /*
3368 * In theory, objcg->nr_charged_bytes can have enough
3369 * pre-charged bytes to satisfy the allocation. However,
3370 * flushing objcg->nr_charged_bytes requires two atomic
3371 * operations, and objcg->nr_charged_bytes can't be big.
3372 * The shared objcg->nr_charged_bytes can also become a
3373 * performance bottleneck if all tasks of the same memcg are
3374 * trying to update it. So it's better to ignore it and try
3375 * grab some new pages. The stock's nr_bytes will be flushed to
3376 * objcg->nr_charged_bytes later on when objcg changes.
3377 *
3378 * The stock's nr_bytes may contain enough pre-charged bytes
3379 * to allow one less page from being charged, but we can't rely
3380 * on the pre-charged bytes not being changed outside of
3381 * consume_obj_stock() or refill_obj_stock(). So ignore those
3382 * pre-charged bytes as well when charging pages. To avoid a
3383 * page uncharge right after a page charge, we set the
3384 * allow_uncharge flag to false when calling refill_obj_stock()
3385 * to temporarily allow the pre-charged bytes to exceed the page
3386 * size limit. The maximum reachable value of the pre-charged
3387 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3388 * race.
3389 */
3390 nr_pages = size >> PAGE_SHIFT;
3391 nr_bytes = size & (PAGE_SIZE - 1);
3392
3393 if (nr_bytes)
3394 nr_pages += 1;
3395
3396 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3397 if (!ret && nr_bytes)
3398 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3399
3400 return ret;
3401 }
3402
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3403 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3404 {
3405 refill_obj_stock(objcg, size, true);
3406 }
3407
3408 #endif /* CONFIG_MEMCG_KMEM */
3409
3410 /*
3411 * Because page_memcg(head) is not set on tails, set it now.
3412 */
split_page_memcg(struct page * head,unsigned int nr)3413 void split_page_memcg(struct page *head, unsigned int nr)
3414 {
3415 struct folio *folio = page_folio(head);
3416 struct mem_cgroup *memcg = folio_memcg(folio);
3417 int i;
3418
3419 if (mem_cgroup_disabled() || !memcg)
3420 return;
3421
3422 for (i = 1; i < nr; i++)
3423 folio_page(folio, i)->memcg_data = folio->memcg_data;
3424
3425 if (folio_memcg_kmem(folio))
3426 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3427 else
3428 css_get_many(&memcg->css, nr - 1);
3429 }
3430
3431 #ifdef CONFIG_SWAP
3432 /**
3433 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3434 * @entry: swap entry to be moved
3435 * @from: mem_cgroup which the entry is moved from
3436 * @to: mem_cgroup which the entry is moved to
3437 *
3438 * It succeeds only when the swap_cgroup's record for this entry is the same
3439 * as the mem_cgroup's id of @from.
3440 *
3441 * Returns 0 on success, -EINVAL on failure.
3442 *
3443 * The caller must have charged to @to, IOW, called page_counter_charge() about
3444 * both res and memsw, and called css_get().
3445 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3446 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3447 struct mem_cgroup *from, struct mem_cgroup *to)
3448 {
3449 unsigned short old_id, new_id;
3450
3451 old_id = mem_cgroup_id(from);
3452 new_id = mem_cgroup_id(to);
3453
3454 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3455 mod_memcg_state(from, MEMCG_SWAP, -1);
3456 mod_memcg_state(to, MEMCG_SWAP, 1);
3457 return 0;
3458 }
3459 return -EINVAL;
3460 }
3461 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3462 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3463 struct mem_cgroup *from, struct mem_cgroup *to)
3464 {
3465 return -EINVAL;
3466 }
3467 #endif
3468
3469 static DEFINE_MUTEX(memcg_max_mutex);
3470
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3471 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3472 unsigned long max, bool memsw)
3473 {
3474 bool enlarge = false;
3475 bool drained = false;
3476 int ret;
3477 bool limits_invariant;
3478 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3479
3480 do {
3481 if (signal_pending(current)) {
3482 ret = -EINTR;
3483 break;
3484 }
3485
3486 mutex_lock(&memcg_max_mutex);
3487 /*
3488 * Make sure that the new limit (memsw or memory limit) doesn't
3489 * break our basic invariant rule memory.max <= memsw.max.
3490 */
3491 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3492 max <= memcg->memsw.max;
3493 if (!limits_invariant) {
3494 mutex_unlock(&memcg_max_mutex);
3495 ret = -EINVAL;
3496 break;
3497 }
3498 if (max > counter->max)
3499 enlarge = true;
3500 ret = page_counter_set_max(counter, max);
3501 mutex_unlock(&memcg_max_mutex);
3502
3503 if (!ret)
3504 break;
3505
3506 if (!drained) {
3507 drain_all_stock(memcg);
3508 drained = true;
3509 continue;
3510 }
3511
3512 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3513 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3514 ret = -EBUSY;
3515 break;
3516 }
3517 } while (true);
3518
3519 if (!ret && enlarge)
3520 memcg_oom_recover(memcg);
3521
3522 return ret;
3523 }
3524
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3525 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3526 gfp_t gfp_mask,
3527 unsigned long *total_scanned)
3528 {
3529 unsigned long nr_reclaimed = 0;
3530 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3531 unsigned long reclaimed;
3532 int loop = 0;
3533 struct mem_cgroup_tree_per_node *mctz;
3534 unsigned long excess;
3535
3536 if (lru_gen_enabled())
3537 return 0;
3538
3539 if (order > 0)
3540 return 0;
3541
3542 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3543
3544 /*
3545 * Do not even bother to check the largest node if the root
3546 * is empty. Do it lockless to prevent lock bouncing. Races
3547 * are acceptable as soft limit is best effort anyway.
3548 */
3549 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3550 return 0;
3551
3552 /*
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3555 * pressure
3556 */
3557 do {
3558 if (next_mz)
3559 mz = next_mz;
3560 else
3561 mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 if (!mz)
3563 break;
3564
3565 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3566 gfp_mask, total_scanned);
3567 nr_reclaimed += reclaimed;
3568 spin_lock_irq(&mctz->lock);
3569
3570 /*
3571 * If we failed to reclaim anything from this memory cgroup
3572 * it is time to move on to the next cgroup
3573 */
3574 next_mz = NULL;
3575 if (!reclaimed)
3576 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3577
3578 excess = soft_limit_excess(mz->memcg);
3579 /*
3580 * One school of thought says that we should not add
3581 * back the node to the tree if reclaim returns 0.
3582 * But our reclaim could return 0, simply because due
3583 * to priority we are exposing a smaller subset of
3584 * memory to reclaim from. Consider this as a longer
3585 * term TODO.
3586 */
3587 /* If excess == 0, no tree ops */
3588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3589 spin_unlock_irq(&mctz->lock);
3590 css_put(&mz->memcg->css);
3591 loop++;
3592 /*
3593 * Could not reclaim anything and there are no more
3594 * mem cgroups to try or we seem to be looping without
3595 * reclaiming anything.
3596 */
3597 if (!nr_reclaimed &&
3598 (next_mz == NULL ||
3599 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3600 break;
3601 } while (!nr_reclaimed);
3602 if (next_mz)
3603 css_put(&next_mz->memcg->css);
3604 return nr_reclaimed;
3605 }
3606
3607 /*
3608 * Reclaims as many pages from the given memcg as possible.
3609 *
3610 * Caller is responsible for holding css reference for memcg.
3611 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3612 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3613 {
3614 int nr_retries = MAX_RECLAIM_RETRIES;
3615
3616 /* we call try-to-free pages for make this cgroup empty */
3617 lru_add_drain_all();
3618
3619 drain_all_stock(memcg);
3620
3621 /* try to free all pages in this cgroup */
3622 while (nr_retries && page_counter_read(&memcg->memory)) {
3623 if (signal_pending(current))
3624 return -EINTR;
3625
3626 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3627 MEMCG_RECLAIM_MAY_SWAP))
3628 nr_retries--;
3629 }
3630
3631 return 0;
3632 }
3633
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3634 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3635 char *buf, size_t nbytes,
3636 loff_t off)
3637 {
3638 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3639
3640 if (mem_cgroup_is_root(memcg))
3641 return -EINVAL;
3642 return mem_cgroup_force_empty(memcg) ?: nbytes;
3643 }
3644
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3645 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3646 struct cftype *cft)
3647 {
3648 return 1;
3649 }
3650
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3651 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3652 struct cftype *cft, u64 val)
3653 {
3654 if (val == 1)
3655 return 0;
3656
3657 pr_warn_once("Non-hierarchical mode is deprecated. "
3658 "Please report your usecase to linux-mm@kvack.org if you "
3659 "depend on this functionality.\n");
3660
3661 return -EINVAL;
3662 }
3663
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3664 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3665 {
3666 unsigned long val;
3667
3668 if (mem_cgroup_is_root(memcg)) {
3669 /*
3670 * Approximate root's usage from global state. This isn't
3671 * perfect, but the root usage was always an approximation.
3672 */
3673 val = global_node_page_state(NR_FILE_PAGES) +
3674 global_node_page_state(NR_ANON_MAPPED);
3675 if (swap)
3676 val += total_swap_pages - get_nr_swap_pages();
3677 } else {
3678 if (!swap)
3679 val = page_counter_read(&memcg->memory);
3680 else
3681 val = page_counter_read(&memcg->memsw);
3682 }
3683 return val;
3684 }
3685
3686 enum {
3687 RES_USAGE,
3688 RES_LIMIT,
3689 RES_MAX_USAGE,
3690 RES_FAILCNT,
3691 RES_SOFT_LIMIT,
3692 };
3693
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3694 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3695 struct cftype *cft)
3696 {
3697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698 struct page_counter *counter;
3699
3700 switch (MEMFILE_TYPE(cft->private)) {
3701 case _MEM:
3702 counter = &memcg->memory;
3703 break;
3704 case _MEMSWAP:
3705 counter = &memcg->memsw;
3706 break;
3707 case _KMEM:
3708 counter = &memcg->kmem;
3709 break;
3710 case _TCP:
3711 counter = &memcg->tcpmem;
3712 break;
3713 default:
3714 BUG();
3715 }
3716
3717 switch (MEMFILE_ATTR(cft->private)) {
3718 case RES_USAGE:
3719 if (counter == &memcg->memory)
3720 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3721 if (counter == &memcg->memsw)
3722 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3723 return (u64)page_counter_read(counter) * PAGE_SIZE;
3724 case RES_LIMIT:
3725 return (u64)counter->max * PAGE_SIZE;
3726 case RES_MAX_USAGE:
3727 return (u64)counter->watermark * PAGE_SIZE;
3728 case RES_FAILCNT:
3729 return counter->failcnt;
3730 case RES_SOFT_LIMIT:
3731 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3732 default:
3733 BUG();
3734 }
3735 }
3736
3737 /*
3738 * This function doesn't do anything useful. Its only job is to provide a read
3739 * handler for a file so that cgroup_file_mode() will add read permissions.
3740 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)3741 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3742 __always_unused void *v)
3743 {
3744 return -EINVAL;
3745 }
3746
3747 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3748 static int memcg_online_kmem(struct mem_cgroup *memcg)
3749 {
3750 struct obj_cgroup *objcg;
3751
3752 if (mem_cgroup_kmem_disabled())
3753 return 0;
3754
3755 if (unlikely(mem_cgroup_is_root(memcg)))
3756 return 0;
3757
3758 objcg = obj_cgroup_alloc();
3759 if (!objcg)
3760 return -ENOMEM;
3761
3762 objcg->memcg = memcg;
3763 rcu_assign_pointer(memcg->objcg, objcg);
3764
3765 static_branch_enable(&memcg_kmem_online_key);
3766
3767 memcg->kmemcg_id = memcg->id.id;
3768
3769 return 0;
3770 }
3771
memcg_offline_kmem(struct mem_cgroup * memcg)3772 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3773 {
3774 struct mem_cgroup *parent;
3775
3776 if (mem_cgroup_kmem_disabled())
3777 return;
3778
3779 if (unlikely(mem_cgroup_is_root(memcg)))
3780 return;
3781
3782 parent = parent_mem_cgroup(memcg);
3783 if (!parent)
3784 parent = root_mem_cgroup;
3785
3786 memcg_reparent_objcgs(memcg, parent);
3787
3788 /*
3789 * After we have finished memcg_reparent_objcgs(), all list_lrus
3790 * corresponding to this cgroup are guaranteed to remain empty.
3791 * The ordering is imposed by list_lru_node->lock taken by
3792 * memcg_reparent_list_lrus().
3793 */
3794 memcg_reparent_list_lrus(memcg, parent);
3795 }
3796 #else
memcg_online_kmem(struct mem_cgroup * memcg)3797 static int memcg_online_kmem(struct mem_cgroup *memcg)
3798 {
3799 return 0;
3800 }
memcg_offline_kmem(struct mem_cgroup * memcg)3801 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3802 {
3803 }
3804 #endif /* CONFIG_MEMCG_KMEM */
3805
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3806 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3807 {
3808 int ret;
3809
3810 mutex_lock(&memcg_max_mutex);
3811
3812 ret = page_counter_set_max(&memcg->tcpmem, max);
3813 if (ret)
3814 goto out;
3815
3816 if (!memcg->tcpmem_active) {
3817 /*
3818 * The active flag needs to be written after the static_key
3819 * update. This is what guarantees that the socket activation
3820 * function is the last one to run. See mem_cgroup_sk_alloc()
3821 * for details, and note that we don't mark any socket as
3822 * belonging to this memcg until that flag is up.
3823 *
3824 * We need to do this, because static_keys will span multiple
3825 * sites, but we can't control their order. If we mark a socket
3826 * as accounted, but the accounting functions are not patched in
3827 * yet, we'll lose accounting.
3828 *
3829 * We never race with the readers in mem_cgroup_sk_alloc(),
3830 * because when this value change, the code to process it is not
3831 * patched in yet.
3832 */
3833 static_branch_inc(&memcg_sockets_enabled_key);
3834 memcg->tcpmem_active = true;
3835 }
3836 out:
3837 mutex_unlock(&memcg_max_mutex);
3838 return ret;
3839 }
3840
3841 /*
3842 * The user of this function is...
3843 * RES_LIMIT.
3844 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3845 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3846 char *buf, size_t nbytes, loff_t off)
3847 {
3848 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3849 unsigned long nr_pages;
3850 int ret;
3851
3852 buf = strstrip(buf);
3853 ret = page_counter_memparse(buf, "-1", &nr_pages);
3854 if (ret)
3855 return ret;
3856
3857 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3858 case RES_LIMIT:
3859 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3860 ret = -EINVAL;
3861 break;
3862 }
3863 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3864 case _MEM:
3865 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3866 break;
3867 case _MEMSWAP:
3868 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3869 break;
3870 case _KMEM:
3871 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3872 "Writing any value to this file has no effect. "
3873 "Please report your usecase to linux-mm@kvack.org if you "
3874 "depend on this functionality.\n");
3875 ret = 0;
3876 break;
3877 case _TCP:
3878 ret = memcg_update_tcp_max(memcg, nr_pages);
3879 break;
3880 }
3881 break;
3882 case RES_SOFT_LIMIT:
3883 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3884 ret = -EOPNOTSUPP;
3885 } else {
3886 WRITE_ONCE(memcg->soft_limit, nr_pages);
3887 ret = 0;
3888 }
3889 break;
3890 }
3891 return ret ?: nbytes;
3892 }
3893
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3894 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3895 size_t nbytes, loff_t off)
3896 {
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3898 struct page_counter *counter;
3899
3900 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3901 case _MEM:
3902 counter = &memcg->memory;
3903 break;
3904 case _MEMSWAP:
3905 counter = &memcg->memsw;
3906 break;
3907 case _KMEM:
3908 counter = &memcg->kmem;
3909 break;
3910 case _TCP:
3911 counter = &memcg->tcpmem;
3912 break;
3913 default:
3914 BUG();
3915 }
3916
3917 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3918 case RES_MAX_USAGE:
3919 page_counter_reset_watermark(counter);
3920 break;
3921 case RES_FAILCNT:
3922 counter->failcnt = 0;
3923 break;
3924 default:
3925 BUG();
3926 }
3927
3928 return nbytes;
3929 }
3930
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3931 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3932 struct cftype *cft)
3933 {
3934 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3935 }
3936
3937 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3938 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3939 struct cftype *cft, u64 val)
3940 {
3941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3942
3943 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3944 "Please report your usecase to linux-mm@kvack.org if you "
3945 "depend on this functionality.\n");
3946
3947 if (val & ~MOVE_MASK)
3948 return -EINVAL;
3949
3950 /*
3951 * No kind of locking is needed in here, because ->can_attach() will
3952 * check this value once in the beginning of the process, and then carry
3953 * on with stale data. This means that changes to this value will only
3954 * affect task migrations starting after the change.
3955 */
3956 memcg->move_charge_at_immigrate = val;
3957 return 0;
3958 }
3959 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3960 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3961 struct cftype *cft, u64 val)
3962 {
3963 return -ENOSYS;
3964 }
3965 #endif
3966
3967 #ifdef CONFIG_NUMA
3968
3969 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3970 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3971 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3972
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3973 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3974 int nid, unsigned int lru_mask, bool tree)
3975 {
3976 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3977 unsigned long nr = 0;
3978 enum lru_list lru;
3979
3980 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3981
3982 for_each_lru(lru) {
3983 if (!(BIT(lru) & lru_mask))
3984 continue;
3985 if (tree)
3986 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3987 else
3988 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3989 }
3990 return nr;
3991 }
3992
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3993 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3994 unsigned int lru_mask,
3995 bool tree)
3996 {
3997 unsigned long nr = 0;
3998 enum lru_list lru;
3999
4000 for_each_lru(lru) {
4001 if (!(BIT(lru) & lru_mask))
4002 continue;
4003 if (tree)
4004 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4005 else
4006 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4007 }
4008 return nr;
4009 }
4010
memcg_numa_stat_show(struct seq_file * m,void * v)4011 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4012 {
4013 struct numa_stat {
4014 const char *name;
4015 unsigned int lru_mask;
4016 };
4017
4018 static const struct numa_stat stats[] = {
4019 { "total", LRU_ALL },
4020 { "file", LRU_ALL_FILE },
4021 { "anon", LRU_ALL_ANON },
4022 { "unevictable", BIT(LRU_UNEVICTABLE) },
4023 };
4024 const struct numa_stat *stat;
4025 int nid;
4026 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027
4028 mem_cgroup_flush_stats();
4029
4030 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4031 seq_printf(m, "%s=%lu", stat->name,
4032 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4033 false));
4034 for_each_node_state(nid, N_MEMORY)
4035 seq_printf(m, " N%d=%lu", nid,
4036 mem_cgroup_node_nr_lru_pages(memcg, nid,
4037 stat->lru_mask, false));
4038 seq_putc(m, '\n');
4039 }
4040
4041 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4042
4043 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4044 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4045 true));
4046 for_each_node_state(nid, N_MEMORY)
4047 seq_printf(m, " N%d=%lu", nid,
4048 mem_cgroup_node_nr_lru_pages(memcg, nid,
4049 stat->lru_mask, true));
4050 seq_putc(m, '\n');
4051 }
4052
4053 return 0;
4054 }
4055 #endif /* CONFIG_NUMA */
4056
4057 static const unsigned int memcg1_stats[] = {
4058 NR_FILE_PAGES,
4059 NR_ANON_MAPPED,
4060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4061 NR_ANON_THPS,
4062 #endif
4063 NR_SHMEM,
4064 NR_FILE_MAPPED,
4065 NR_FILE_DIRTY,
4066 NR_WRITEBACK,
4067 WORKINGSET_REFAULT_ANON,
4068 WORKINGSET_REFAULT_FILE,
4069 MEMCG_SWAP,
4070 };
4071
4072 static const char *const memcg1_stat_names[] = {
4073 "cache",
4074 "rss",
4075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4076 "rss_huge",
4077 #endif
4078 "shmem",
4079 "mapped_file",
4080 "dirty",
4081 "writeback",
4082 "workingset_refault_anon",
4083 "workingset_refault_file",
4084 "swap",
4085 };
4086
4087 /* Universal VM events cgroup1 shows, original sort order */
4088 static const unsigned int memcg1_events[] = {
4089 PGPGIN,
4090 PGPGOUT,
4091 PGFAULT,
4092 PGMAJFAULT,
4093 };
4094
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)4095 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4096 {
4097 unsigned long memory, memsw;
4098 struct mem_cgroup *mi;
4099 unsigned int i;
4100
4101 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4102
4103 mem_cgroup_flush_stats();
4104
4105 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4106 unsigned long nr;
4107
4108 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4109 continue;
4110 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4111 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4112 nr * memcg_page_state_unit(memcg1_stats[i]));
4113 }
4114
4115 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4116 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4117 memcg_events_local(memcg, memcg1_events[i]));
4118
4119 for (i = 0; i < NR_LRU_LISTS; i++)
4120 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4121 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4122 PAGE_SIZE);
4123
4124 /* Hierarchical information */
4125 memory = memsw = PAGE_COUNTER_MAX;
4126 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4127 memory = min(memory, READ_ONCE(mi->memory.max));
4128 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4129 }
4130 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4131 (u64)memory * PAGE_SIZE);
4132 if (do_memsw_account())
4133 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4134 (u64)memsw * PAGE_SIZE);
4135
4136 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4137 unsigned long nr;
4138
4139 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4140 continue;
4141 nr = memcg_page_state(memcg, memcg1_stats[i]);
4142 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4143 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4144 }
4145
4146 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4147 seq_buf_printf(s, "total_%s %llu\n",
4148 vm_event_name(memcg1_events[i]),
4149 (u64)memcg_events(memcg, memcg1_events[i]));
4150
4151 for (i = 0; i < NR_LRU_LISTS; i++)
4152 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4153 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4154 PAGE_SIZE);
4155
4156 #ifdef CONFIG_DEBUG_VM
4157 {
4158 pg_data_t *pgdat;
4159 struct mem_cgroup_per_node *mz;
4160 unsigned long anon_cost = 0;
4161 unsigned long file_cost = 0;
4162
4163 for_each_online_pgdat(pgdat) {
4164 mz = memcg->nodeinfo[pgdat->node_id];
4165
4166 anon_cost += mz->lruvec.anon_cost;
4167 file_cost += mz->lruvec.file_cost;
4168 }
4169 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4170 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4171 }
4172 #endif
4173 }
4174
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4175 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4176 struct cftype *cft)
4177 {
4178 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4179
4180 return mem_cgroup_swappiness(memcg);
4181 }
4182
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4183 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4184 struct cftype *cft, u64 val)
4185 {
4186 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4187
4188 if (val > 200)
4189 return -EINVAL;
4190
4191 if (!mem_cgroup_is_root(memcg))
4192 WRITE_ONCE(memcg->swappiness, val);
4193 else
4194 WRITE_ONCE(vm_swappiness, val);
4195
4196 return 0;
4197 }
4198
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4199 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4200 {
4201 struct mem_cgroup_threshold_ary *t;
4202 unsigned long usage;
4203 int i;
4204
4205 rcu_read_lock();
4206 if (!swap)
4207 t = rcu_dereference(memcg->thresholds.primary);
4208 else
4209 t = rcu_dereference(memcg->memsw_thresholds.primary);
4210
4211 if (!t)
4212 goto unlock;
4213
4214 usage = mem_cgroup_usage(memcg, swap);
4215
4216 /*
4217 * current_threshold points to threshold just below or equal to usage.
4218 * If it's not true, a threshold was crossed after last
4219 * call of __mem_cgroup_threshold().
4220 */
4221 i = t->current_threshold;
4222
4223 /*
4224 * Iterate backward over array of thresholds starting from
4225 * current_threshold and check if a threshold is crossed.
4226 * If none of thresholds below usage is crossed, we read
4227 * only one element of the array here.
4228 */
4229 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4230 eventfd_signal(t->entries[i].eventfd, 1);
4231
4232 /* i = current_threshold + 1 */
4233 i++;
4234
4235 /*
4236 * Iterate forward over array of thresholds starting from
4237 * current_threshold+1 and check if a threshold is crossed.
4238 * If none of thresholds above usage is crossed, we read
4239 * only one element of the array here.
4240 */
4241 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4242 eventfd_signal(t->entries[i].eventfd, 1);
4243
4244 /* Update current_threshold */
4245 t->current_threshold = i - 1;
4246 unlock:
4247 rcu_read_unlock();
4248 }
4249
mem_cgroup_threshold(struct mem_cgroup * memcg)4250 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4251 {
4252 while (memcg) {
4253 __mem_cgroup_threshold(memcg, false);
4254 if (do_memsw_account())
4255 __mem_cgroup_threshold(memcg, true);
4256
4257 memcg = parent_mem_cgroup(memcg);
4258 }
4259 }
4260
compare_thresholds(const void * a,const void * b)4261 static int compare_thresholds(const void *a, const void *b)
4262 {
4263 const struct mem_cgroup_threshold *_a = a;
4264 const struct mem_cgroup_threshold *_b = b;
4265
4266 if (_a->threshold > _b->threshold)
4267 return 1;
4268
4269 if (_a->threshold < _b->threshold)
4270 return -1;
4271
4272 return 0;
4273 }
4274
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4275 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4276 {
4277 struct mem_cgroup_eventfd_list *ev;
4278
4279 spin_lock(&memcg_oom_lock);
4280
4281 list_for_each_entry(ev, &memcg->oom_notify, list)
4282 eventfd_signal(ev->eventfd, 1);
4283
4284 spin_unlock(&memcg_oom_lock);
4285 return 0;
4286 }
4287
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4288 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4289 {
4290 struct mem_cgroup *iter;
4291
4292 for_each_mem_cgroup_tree(iter, memcg)
4293 mem_cgroup_oom_notify_cb(iter);
4294 }
4295
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4296 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4297 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4298 {
4299 struct mem_cgroup_thresholds *thresholds;
4300 struct mem_cgroup_threshold_ary *new;
4301 unsigned long threshold;
4302 unsigned long usage;
4303 int i, size, ret;
4304
4305 ret = page_counter_memparse(args, "-1", &threshold);
4306 if (ret)
4307 return ret;
4308
4309 mutex_lock(&memcg->thresholds_lock);
4310
4311 if (type == _MEM) {
4312 thresholds = &memcg->thresholds;
4313 usage = mem_cgroup_usage(memcg, false);
4314 } else if (type == _MEMSWAP) {
4315 thresholds = &memcg->memsw_thresholds;
4316 usage = mem_cgroup_usage(memcg, true);
4317 } else
4318 BUG();
4319
4320 /* Check if a threshold crossed before adding a new one */
4321 if (thresholds->primary)
4322 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4323
4324 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4325
4326 /* Allocate memory for new array of thresholds */
4327 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4328 if (!new) {
4329 ret = -ENOMEM;
4330 goto unlock;
4331 }
4332 new->size = size;
4333
4334 /* Copy thresholds (if any) to new array */
4335 if (thresholds->primary)
4336 memcpy(new->entries, thresholds->primary->entries,
4337 flex_array_size(new, entries, size - 1));
4338
4339 /* Add new threshold */
4340 new->entries[size - 1].eventfd = eventfd;
4341 new->entries[size - 1].threshold = threshold;
4342
4343 /* Sort thresholds. Registering of new threshold isn't time-critical */
4344 sort(new->entries, size, sizeof(*new->entries),
4345 compare_thresholds, NULL);
4346
4347 /* Find current threshold */
4348 new->current_threshold = -1;
4349 for (i = 0; i < size; i++) {
4350 if (new->entries[i].threshold <= usage) {
4351 /*
4352 * new->current_threshold will not be used until
4353 * rcu_assign_pointer(), so it's safe to increment
4354 * it here.
4355 */
4356 ++new->current_threshold;
4357 } else
4358 break;
4359 }
4360
4361 /* Free old spare buffer and save old primary buffer as spare */
4362 kfree(thresholds->spare);
4363 thresholds->spare = thresholds->primary;
4364
4365 rcu_assign_pointer(thresholds->primary, new);
4366
4367 /* To be sure that nobody uses thresholds */
4368 synchronize_rcu();
4369
4370 unlock:
4371 mutex_unlock(&memcg->thresholds_lock);
4372
4373 return ret;
4374 }
4375
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4376 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4377 struct eventfd_ctx *eventfd, const char *args)
4378 {
4379 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4380 }
4381
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4382 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4383 struct eventfd_ctx *eventfd, const char *args)
4384 {
4385 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4386 }
4387
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4388 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4389 struct eventfd_ctx *eventfd, enum res_type type)
4390 {
4391 struct mem_cgroup_thresholds *thresholds;
4392 struct mem_cgroup_threshold_ary *new;
4393 unsigned long usage;
4394 int i, j, size, entries;
4395
4396 mutex_lock(&memcg->thresholds_lock);
4397
4398 if (type == _MEM) {
4399 thresholds = &memcg->thresholds;
4400 usage = mem_cgroup_usage(memcg, false);
4401 } else if (type == _MEMSWAP) {
4402 thresholds = &memcg->memsw_thresholds;
4403 usage = mem_cgroup_usage(memcg, true);
4404 } else
4405 BUG();
4406
4407 if (!thresholds->primary)
4408 goto unlock;
4409
4410 /* Check if a threshold crossed before removing */
4411 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4412
4413 /* Calculate new number of threshold */
4414 size = entries = 0;
4415 for (i = 0; i < thresholds->primary->size; i++) {
4416 if (thresholds->primary->entries[i].eventfd != eventfd)
4417 size++;
4418 else
4419 entries++;
4420 }
4421
4422 new = thresholds->spare;
4423
4424 /* If no items related to eventfd have been cleared, nothing to do */
4425 if (!entries)
4426 goto unlock;
4427
4428 /* Set thresholds array to NULL if we don't have thresholds */
4429 if (!size) {
4430 kfree(new);
4431 new = NULL;
4432 goto swap_buffers;
4433 }
4434
4435 new->size = size;
4436
4437 /* Copy thresholds and find current threshold */
4438 new->current_threshold = -1;
4439 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4440 if (thresholds->primary->entries[i].eventfd == eventfd)
4441 continue;
4442
4443 new->entries[j] = thresholds->primary->entries[i];
4444 if (new->entries[j].threshold <= usage) {
4445 /*
4446 * new->current_threshold will not be used
4447 * until rcu_assign_pointer(), so it's safe to increment
4448 * it here.
4449 */
4450 ++new->current_threshold;
4451 }
4452 j++;
4453 }
4454
4455 swap_buffers:
4456 /* Swap primary and spare array */
4457 thresholds->spare = thresholds->primary;
4458
4459 rcu_assign_pointer(thresholds->primary, new);
4460
4461 /* To be sure that nobody uses thresholds */
4462 synchronize_rcu();
4463
4464 /* If all events are unregistered, free the spare array */
4465 if (!new) {
4466 kfree(thresholds->spare);
4467 thresholds->spare = NULL;
4468 }
4469 unlock:
4470 mutex_unlock(&memcg->thresholds_lock);
4471 }
4472
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4473 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4474 struct eventfd_ctx *eventfd)
4475 {
4476 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4477 }
4478
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4479 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4480 struct eventfd_ctx *eventfd)
4481 {
4482 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4483 }
4484
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4485 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4486 struct eventfd_ctx *eventfd, const char *args)
4487 {
4488 struct mem_cgroup_eventfd_list *event;
4489
4490 event = kmalloc(sizeof(*event), GFP_KERNEL);
4491 if (!event)
4492 return -ENOMEM;
4493
4494 spin_lock(&memcg_oom_lock);
4495
4496 event->eventfd = eventfd;
4497 list_add(&event->list, &memcg->oom_notify);
4498
4499 /* already in OOM ? */
4500 if (memcg->under_oom)
4501 eventfd_signal(eventfd, 1);
4502 spin_unlock(&memcg_oom_lock);
4503
4504 return 0;
4505 }
4506
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4507 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4508 struct eventfd_ctx *eventfd)
4509 {
4510 struct mem_cgroup_eventfd_list *ev, *tmp;
4511
4512 spin_lock(&memcg_oom_lock);
4513
4514 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4515 if (ev->eventfd == eventfd) {
4516 list_del(&ev->list);
4517 kfree(ev);
4518 }
4519 }
4520
4521 spin_unlock(&memcg_oom_lock);
4522 }
4523
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4524 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4525 {
4526 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4527
4528 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4529 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4530 seq_printf(sf, "oom_kill %lu\n",
4531 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4532 return 0;
4533 }
4534
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4535 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4536 struct cftype *cft, u64 val)
4537 {
4538 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4539
4540 /* cannot set to root cgroup and only 0 and 1 are allowed */
4541 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4542 return -EINVAL;
4543
4544 WRITE_ONCE(memcg->oom_kill_disable, val);
4545 if (!val)
4546 memcg_oom_recover(memcg);
4547
4548 return 0;
4549 }
4550
4551 #ifdef CONFIG_CGROUP_WRITEBACK
4552
4553 #include <trace/events/writeback.h>
4554
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4555 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4556 {
4557 return wb_domain_init(&memcg->cgwb_domain, gfp);
4558 }
4559
memcg_wb_domain_exit(struct mem_cgroup * memcg)4560 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4561 {
4562 wb_domain_exit(&memcg->cgwb_domain);
4563 }
4564
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4565 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4566 {
4567 wb_domain_size_changed(&memcg->cgwb_domain);
4568 }
4569
mem_cgroup_wb_domain(struct bdi_writeback * wb)4570 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4571 {
4572 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4573
4574 if (!memcg->css.parent)
4575 return NULL;
4576
4577 return &memcg->cgwb_domain;
4578 }
4579
4580 /**
4581 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4582 * @wb: bdi_writeback in question
4583 * @pfilepages: out parameter for number of file pages
4584 * @pheadroom: out parameter for number of allocatable pages according to memcg
4585 * @pdirty: out parameter for number of dirty pages
4586 * @pwriteback: out parameter for number of pages under writeback
4587 *
4588 * Determine the numbers of file, headroom, dirty, and writeback pages in
4589 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4590 * is a bit more involved.
4591 *
4592 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4593 * headroom is calculated as the lowest headroom of itself and the
4594 * ancestors. Note that this doesn't consider the actual amount of
4595 * available memory in the system. The caller should further cap
4596 * *@pheadroom accordingly.
4597 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4598 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4599 unsigned long *pheadroom, unsigned long *pdirty,
4600 unsigned long *pwriteback)
4601 {
4602 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4603 struct mem_cgroup *parent;
4604
4605 mem_cgroup_flush_stats();
4606
4607 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4608 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4609 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4610 memcg_page_state(memcg, NR_ACTIVE_FILE);
4611
4612 *pheadroom = PAGE_COUNTER_MAX;
4613 while ((parent = parent_mem_cgroup(memcg))) {
4614 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4615 READ_ONCE(memcg->memory.high));
4616 unsigned long used = page_counter_read(&memcg->memory);
4617
4618 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4619 memcg = parent;
4620 }
4621 }
4622
4623 /*
4624 * Foreign dirty flushing
4625 *
4626 * There's an inherent mismatch between memcg and writeback. The former
4627 * tracks ownership per-page while the latter per-inode. This was a
4628 * deliberate design decision because honoring per-page ownership in the
4629 * writeback path is complicated, may lead to higher CPU and IO overheads
4630 * and deemed unnecessary given that write-sharing an inode across
4631 * different cgroups isn't a common use-case.
4632 *
4633 * Combined with inode majority-writer ownership switching, this works well
4634 * enough in most cases but there are some pathological cases. For
4635 * example, let's say there are two cgroups A and B which keep writing to
4636 * different but confined parts of the same inode. B owns the inode and
4637 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4638 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4639 * triggering background writeback. A will be slowed down without a way to
4640 * make writeback of the dirty pages happen.
4641 *
4642 * Conditions like the above can lead to a cgroup getting repeatedly and
4643 * severely throttled after making some progress after each
4644 * dirty_expire_interval while the underlying IO device is almost
4645 * completely idle.
4646 *
4647 * Solving this problem completely requires matching the ownership tracking
4648 * granularities between memcg and writeback in either direction. However,
4649 * the more egregious behaviors can be avoided by simply remembering the
4650 * most recent foreign dirtying events and initiating remote flushes on
4651 * them when local writeback isn't enough to keep the memory clean enough.
4652 *
4653 * The following two functions implement such mechanism. When a foreign
4654 * page - a page whose memcg and writeback ownerships don't match - is
4655 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4656 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4657 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4658 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4659 * foreign bdi_writebacks which haven't expired. Both the numbers of
4660 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4661 * limited to MEMCG_CGWB_FRN_CNT.
4662 *
4663 * The mechanism only remembers IDs and doesn't hold any object references.
4664 * As being wrong occasionally doesn't matter, updates and accesses to the
4665 * records are lockless and racy.
4666 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4667 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4668 struct bdi_writeback *wb)
4669 {
4670 struct mem_cgroup *memcg = folio_memcg(folio);
4671 struct memcg_cgwb_frn *frn;
4672 u64 now = get_jiffies_64();
4673 u64 oldest_at = now;
4674 int oldest = -1;
4675 int i;
4676
4677 trace_track_foreign_dirty(folio, wb);
4678
4679 /*
4680 * Pick the slot to use. If there is already a slot for @wb, keep
4681 * using it. If not replace the oldest one which isn't being
4682 * written out.
4683 */
4684 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4685 frn = &memcg->cgwb_frn[i];
4686 if (frn->bdi_id == wb->bdi->id &&
4687 frn->memcg_id == wb->memcg_css->id)
4688 break;
4689 if (time_before64(frn->at, oldest_at) &&
4690 atomic_read(&frn->done.cnt) == 1) {
4691 oldest = i;
4692 oldest_at = frn->at;
4693 }
4694 }
4695
4696 if (i < MEMCG_CGWB_FRN_CNT) {
4697 /*
4698 * Re-using an existing one. Update timestamp lazily to
4699 * avoid making the cacheline hot. We want them to be
4700 * reasonably up-to-date and significantly shorter than
4701 * dirty_expire_interval as that's what expires the record.
4702 * Use the shorter of 1s and dirty_expire_interval / 8.
4703 */
4704 unsigned long update_intv =
4705 min_t(unsigned long, HZ,
4706 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4707
4708 if (time_before64(frn->at, now - update_intv))
4709 frn->at = now;
4710 } else if (oldest >= 0) {
4711 /* replace the oldest free one */
4712 frn = &memcg->cgwb_frn[oldest];
4713 frn->bdi_id = wb->bdi->id;
4714 frn->memcg_id = wb->memcg_css->id;
4715 frn->at = now;
4716 }
4717 }
4718
4719 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4720 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4721 {
4722 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4723 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4724 u64 now = jiffies_64;
4725 int i;
4726
4727 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4728 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4729
4730 /*
4731 * If the record is older than dirty_expire_interval,
4732 * writeback on it has already started. No need to kick it
4733 * off again. Also, don't start a new one if there's
4734 * already one in flight.
4735 */
4736 if (time_after64(frn->at, now - intv) &&
4737 atomic_read(&frn->done.cnt) == 1) {
4738 frn->at = 0;
4739 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4740 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4741 WB_REASON_FOREIGN_FLUSH,
4742 &frn->done);
4743 }
4744 }
4745 }
4746
4747 #else /* CONFIG_CGROUP_WRITEBACK */
4748
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4749 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4750 {
4751 return 0;
4752 }
4753
memcg_wb_domain_exit(struct mem_cgroup * memcg)4754 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4755 {
4756 }
4757
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4758 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4759 {
4760 }
4761
4762 #endif /* CONFIG_CGROUP_WRITEBACK */
4763
4764 /*
4765 * DO NOT USE IN NEW FILES.
4766 *
4767 * "cgroup.event_control" implementation.
4768 *
4769 * This is way over-engineered. It tries to support fully configurable
4770 * events for each user. Such level of flexibility is completely
4771 * unnecessary especially in the light of the planned unified hierarchy.
4772 *
4773 * Please deprecate this and replace with something simpler if at all
4774 * possible.
4775 */
4776
4777 /*
4778 * Unregister event and free resources.
4779 *
4780 * Gets called from workqueue.
4781 */
memcg_event_remove(struct work_struct * work)4782 static void memcg_event_remove(struct work_struct *work)
4783 {
4784 struct mem_cgroup_event *event =
4785 container_of(work, struct mem_cgroup_event, remove);
4786 struct mem_cgroup *memcg = event->memcg;
4787
4788 remove_wait_queue(event->wqh, &event->wait);
4789
4790 event->unregister_event(memcg, event->eventfd);
4791
4792 /* Notify userspace the event is going away. */
4793 eventfd_signal(event->eventfd, 1);
4794
4795 eventfd_ctx_put(event->eventfd);
4796 kfree(event);
4797 css_put(&memcg->css);
4798 }
4799
4800 /*
4801 * Gets called on EPOLLHUP on eventfd when user closes it.
4802 *
4803 * Called with wqh->lock held and interrupts disabled.
4804 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4805 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4806 int sync, void *key)
4807 {
4808 struct mem_cgroup_event *event =
4809 container_of(wait, struct mem_cgroup_event, wait);
4810 struct mem_cgroup *memcg = event->memcg;
4811 __poll_t flags = key_to_poll(key);
4812
4813 if (flags & EPOLLHUP) {
4814 /*
4815 * If the event has been detached at cgroup removal, we
4816 * can simply return knowing the other side will cleanup
4817 * for us.
4818 *
4819 * We can't race against event freeing since the other
4820 * side will require wqh->lock via remove_wait_queue(),
4821 * which we hold.
4822 */
4823 spin_lock(&memcg->event_list_lock);
4824 if (!list_empty(&event->list)) {
4825 list_del_init(&event->list);
4826 /*
4827 * We are in atomic context, but cgroup_event_remove()
4828 * may sleep, so we have to call it in workqueue.
4829 */
4830 schedule_work(&event->remove);
4831 }
4832 spin_unlock(&memcg->event_list_lock);
4833 }
4834
4835 return 0;
4836 }
4837
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4838 static void memcg_event_ptable_queue_proc(struct file *file,
4839 wait_queue_head_t *wqh, poll_table *pt)
4840 {
4841 struct mem_cgroup_event *event =
4842 container_of(pt, struct mem_cgroup_event, pt);
4843
4844 event->wqh = wqh;
4845 add_wait_queue(wqh, &event->wait);
4846 }
4847
4848 /*
4849 * DO NOT USE IN NEW FILES.
4850 *
4851 * Parse input and register new cgroup event handler.
4852 *
4853 * Input must be in format '<event_fd> <control_fd> <args>'.
4854 * Interpretation of args is defined by control file implementation.
4855 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4856 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4857 char *buf, size_t nbytes, loff_t off)
4858 {
4859 struct cgroup_subsys_state *css = of_css(of);
4860 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4861 struct mem_cgroup_event *event;
4862 struct cgroup_subsys_state *cfile_css;
4863 unsigned int efd, cfd;
4864 struct fd efile;
4865 struct fd cfile;
4866 struct dentry *cdentry;
4867 const char *name;
4868 char *endp;
4869 int ret;
4870
4871 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4872 return -EOPNOTSUPP;
4873
4874 buf = strstrip(buf);
4875
4876 efd = simple_strtoul(buf, &endp, 10);
4877 if (*endp != ' ')
4878 return -EINVAL;
4879 buf = endp + 1;
4880
4881 cfd = simple_strtoul(buf, &endp, 10);
4882 if ((*endp != ' ') && (*endp != '\0'))
4883 return -EINVAL;
4884 buf = endp + 1;
4885
4886 event = kzalloc(sizeof(*event), GFP_KERNEL);
4887 if (!event)
4888 return -ENOMEM;
4889
4890 event->memcg = memcg;
4891 INIT_LIST_HEAD(&event->list);
4892 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4893 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4894 INIT_WORK(&event->remove, memcg_event_remove);
4895
4896 efile = fdget(efd);
4897 if (!efile.file) {
4898 ret = -EBADF;
4899 goto out_kfree;
4900 }
4901
4902 event->eventfd = eventfd_ctx_fileget(efile.file);
4903 if (IS_ERR(event->eventfd)) {
4904 ret = PTR_ERR(event->eventfd);
4905 goto out_put_efile;
4906 }
4907
4908 cfile = fdget(cfd);
4909 if (!cfile.file) {
4910 ret = -EBADF;
4911 goto out_put_eventfd;
4912 }
4913
4914 /* the process need read permission on control file */
4915 /* AV: shouldn't we check that it's been opened for read instead? */
4916 ret = file_permission(cfile.file, MAY_READ);
4917 if (ret < 0)
4918 goto out_put_cfile;
4919
4920 /*
4921 * The control file must be a regular cgroup1 file. As a regular cgroup
4922 * file can't be renamed, it's safe to access its name afterwards.
4923 */
4924 cdentry = cfile.file->f_path.dentry;
4925 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4926 ret = -EINVAL;
4927 goto out_put_cfile;
4928 }
4929
4930 /*
4931 * Determine the event callbacks and set them in @event. This used
4932 * to be done via struct cftype but cgroup core no longer knows
4933 * about these events. The following is crude but the whole thing
4934 * is for compatibility anyway.
4935 *
4936 * DO NOT ADD NEW FILES.
4937 */
4938 name = cdentry->d_name.name;
4939
4940 if (!strcmp(name, "memory.usage_in_bytes")) {
4941 event->register_event = mem_cgroup_usage_register_event;
4942 event->unregister_event = mem_cgroup_usage_unregister_event;
4943 } else if (!strcmp(name, "memory.oom_control")) {
4944 event->register_event = mem_cgroup_oom_register_event;
4945 event->unregister_event = mem_cgroup_oom_unregister_event;
4946 } else if (!strcmp(name, "memory.pressure_level")) {
4947 event->register_event = vmpressure_register_event;
4948 event->unregister_event = vmpressure_unregister_event;
4949 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4950 event->register_event = memsw_cgroup_usage_register_event;
4951 event->unregister_event = memsw_cgroup_usage_unregister_event;
4952 } else {
4953 ret = -EINVAL;
4954 goto out_put_cfile;
4955 }
4956
4957 /*
4958 * Verify @cfile should belong to @css. Also, remaining events are
4959 * automatically removed on cgroup destruction but the removal is
4960 * asynchronous, so take an extra ref on @css.
4961 */
4962 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4963 &memory_cgrp_subsys);
4964 ret = -EINVAL;
4965 if (IS_ERR(cfile_css))
4966 goto out_put_cfile;
4967 if (cfile_css != css) {
4968 css_put(cfile_css);
4969 goto out_put_cfile;
4970 }
4971
4972 ret = event->register_event(memcg, event->eventfd, buf);
4973 if (ret)
4974 goto out_put_css;
4975
4976 vfs_poll(efile.file, &event->pt);
4977
4978 spin_lock_irq(&memcg->event_list_lock);
4979 list_add(&event->list, &memcg->event_list);
4980 spin_unlock_irq(&memcg->event_list_lock);
4981
4982 fdput(cfile);
4983 fdput(efile);
4984
4985 return nbytes;
4986
4987 out_put_css:
4988 css_put(css);
4989 out_put_cfile:
4990 fdput(cfile);
4991 out_put_eventfd:
4992 eventfd_ctx_put(event->eventfd);
4993 out_put_efile:
4994 fdput(efile);
4995 out_kfree:
4996 kfree(event);
4997
4998 return ret;
4999 }
5000
5001 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)5002 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5003 {
5004 /*
5005 * Deprecated.
5006 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5007 */
5008 return 0;
5009 }
5010 #endif
5011
5012 static int memory_stat_show(struct seq_file *m, void *v);
5013
5014 static struct cftype mem_cgroup_legacy_files[] = {
5015 {
5016 .name = "usage_in_bytes",
5017 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5018 .read_u64 = mem_cgroup_read_u64,
5019 },
5020 {
5021 .name = "max_usage_in_bytes",
5022 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5023 .write = mem_cgroup_reset,
5024 .read_u64 = mem_cgroup_read_u64,
5025 },
5026 {
5027 .name = "limit_in_bytes",
5028 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5029 .write = mem_cgroup_write,
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "soft_limit_in_bytes",
5034 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5035 .write = mem_cgroup_write,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "failcnt",
5040 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5041 .write = mem_cgroup_reset,
5042 .read_u64 = mem_cgroup_read_u64,
5043 },
5044 {
5045 .name = "stat",
5046 .seq_show = memory_stat_show,
5047 },
5048 {
5049 .name = "force_empty",
5050 .write = mem_cgroup_force_empty_write,
5051 },
5052 {
5053 .name = "use_hierarchy",
5054 .write_u64 = mem_cgroup_hierarchy_write,
5055 .read_u64 = mem_cgroup_hierarchy_read,
5056 },
5057 {
5058 .name = "cgroup.event_control", /* XXX: for compat */
5059 .write = memcg_write_event_control,
5060 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5061 },
5062 {
5063 .name = "swappiness",
5064 .read_u64 = mem_cgroup_swappiness_read,
5065 .write_u64 = mem_cgroup_swappiness_write,
5066 },
5067 {
5068 .name = "move_charge_at_immigrate",
5069 .read_u64 = mem_cgroup_move_charge_read,
5070 .write_u64 = mem_cgroup_move_charge_write,
5071 },
5072 {
5073 .name = "oom_control",
5074 .seq_show = mem_cgroup_oom_control_read,
5075 .write_u64 = mem_cgroup_oom_control_write,
5076 },
5077 {
5078 .name = "pressure_level",
5079 .seq_show = mem_cgroup_dummy_seq_show,
5080 },
5081 #ifdef CONFIG_NUMA
5082 {
5083 .name = "numa_stat",
5084 .seq_show = memcg_numa_stat_show,
5085 },
5086 #endif
5087 {
5088 .name = "kmem.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.failcnt",
5100 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 #if defined(CONFIG_MEMCG_KMEM) && \
5111 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5112 {
5113 .name = "kmem.slabinfo",
5114 .seq_show = mem_cgroup_slab_show,
5115 },
5116 #endif
5117 {
5118 .name = "kmem.tcp.limit_in_bytes",
5119 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5120 .write = mem_cgroup_write,
5121 .read_u64 = mem_cgroup_read_u64,
5122 },
5123 {
5124 .name = "kmem.tcp.usage_in_bytes",
5125 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5126 .read_u64 = mem_cgroup_read_u64,
5127 },
5128 {
5129 .name = "kmem.tcp.failcnt",
5130 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5131 .write = mem_cgroup_reset,
5132 .read_u64 = mem_cgroup_read_u64,
5133 },
5134 {
5135 .name = "kmem.tcp.max_usage_in_bytes",
5136 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5137 .write = mem_cgroup_reset,
5138 .read_u64 = mem_cgroup_read_u64,
5139 },
5140 { }, /* terminate */
5141 };
5142
5143 /*
5144 * Private memory cgroup IDR
5145 *
5146 * Swap-out records and page cache shadow entries need to store memcg
5147 * references in constrained space, so we maintain an ID space that is
5148 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5149 * memory-controlled cgroups to 64k.
5150 *
5151 * However, there usually are many references to the offline CSS after
5152 * the cgroup has been destroyed, such as page cache or reclaimable
5153 * slab objects, that don't need to hang on to the ID. We want to keep
5154 * those dead CSS from occupying IDs, or we might quickly exhaust the
5155 * relatively small ID space and prevent the creation of new cgroups
5156 * even when there are much fewer than 64k cgroups - possibly none.
5157 *
5158 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5159 * be freed and recycled when it's no longer needed, which is usually
5160 * when the CSS is offlined.
5161 *
5162 * The only exception to that are records of swapped out tmpfs/shmem
5163 * pages that need to be attributed to live ancestors on swapin. But
5164 * those references are manageable from userspace.
5165 */
5166
5167 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5168 static DEFINE_IDR(mem_cgroup_idr);
5169
mem_cgroup_id_remove(struct mem_cgroup * memcg)5170 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5171 {
5172 if (memcg->id.id > 0) {
5173 idr_remove(&mem_cgroup_idr, memcg->id.id);
5174 memcg->id.id = 0;
5175 }
5176 }
5177
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5178 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5179 unsigned int n)
5180 {
5181 refcount_add(n, &memcg->id.ref);
5182 }
5183
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5184 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5185 {
5186 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5187 mem_cgroup_id_remove(memcg);
5188
5189 /* Memcg ID pins CSS */
5190 css_put(&memcg->css);
5191 }
5192 }
5193
mem_cgroup_id_put(struct mem_cgroup * memcg)5194 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5195 {
5196 mem_cgroup_id_put_many(memcg, 1);
5197 }
5198
5199 /**
5200 * mem_cgroup_from_id - look up a memcg from a memcg id
5201 * @id: the memcg id to look up
5202 *
5203 * Caller must hold rcu_read_lock().
5204 */
mem_cgroup_from_id(unsigned short id)5205 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5206 {
5207 WARN_ON_ONCE(!rcu_read_lock_held());
5208 return idr_find(&mem_cgroup_idr, id);
5209 }
5210
5211 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5212 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5213 {
5214 struct cgroup *cgrp;
5215 struct cgroup_subsys_state *css;
5216 struct mem_cgroup *memcg;
5217
5218 cgrp = cgroup_get_from_id(ino);
5219 if (IS_ERR(cgrp))
5220 return ERR_CAST(cgrp);
5221
5222 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5223 if (css)
5224 memcg = container_of(css, struct mem_cgroup, css);
5225 else
5226 memcg = ERR_PTR(-ENOENT);
5227
5228 cgroup_put(cgrp);
5229
5230 return memcg;
5231 }
5232 #endif
5233
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5234 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5235 {
5236 struct mem_cgroup_per_node *pn;
5237
5238 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5239 if (!pn)
5240 return 1;
5241
5242 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5243 GFP_KERNEL_ACCOUNT);
5244 if (!pn->lruvec_stats_percpu) {
5245 kfree(pn);
5246 return 1;
5247 }
5248
5249 lruvec_init(&pn->lruvec);
5250 pn->memcg = memcg;
5251
5252 memcg->nodeinfo[node] = pn;
5253 return 0;
5254 }
5255
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5256 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5257 {
5258 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5259
5260 if (!pn)
5261 return;
5262
5263 free_percpu(pn->lruvec_stats_percpu);
5264 kfree(pn);
5265 }
5266
__mem_cgroup_free(struct mem_cgroup * memcg)5267 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5268 {
5269 int node;
5270
5271 for_each_node(node)
5272 free_mem_cgroup_per_node_info(memcg, node);
5273 kfree(memcg->vmstats);
5274 free_percpu(memcg->vmstats_percpu);
5275 kfree(memcg);
5276 }
5277
mem_cgroup_free(struct mem_cgroup * memcg)5278 static void mem_cgroup_free(struct mem_cgroup *memcg)
5279 {
5280 lru_gen_exit_memcg(memcg);
5281 memcg_wb_domain_exit(memcg);
5282 __mem_cgroup_free(memcg);
5283 }
5284
mem_cgroup_alloc(void)5285 static struct mem_cgroup *mem_cgroup_alloc(void)
5286 {
5287 struct mem_cgroup *memcg;
5288 int node;
5289 int __maybe_unused i;
5290 long error = -ENOMEM;
5291
5292 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5293 if (!memcg)
5294 return ERR_PTR(error);
5295
5296 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5297 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5298 if (memcg->id.id < 0) {
5299 error = memcg->id.id;
5300 goto fail;
5301 }
5302
5303 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5304 if (!memcg->vmstats)
5305 goto fail;
5306
5307 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5308 GFP_KERNEL_ACCOUNT);
5309 if (!memcg->vmstats_percpu)
5310 goto fail;
5311
5312 for_each_node(node)
5313 if (alloc_mem_cgroup_per_node_info(memcg, node))
5314 goto fail;
5315
5316 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5317 goto fail;
5318
5319 INIT_WORK(&memcg->high_work, high_work_func);
5320 INIT_LIST_HEAD(&memcg->oom_notify);
5321 mutex_init(&memcg->thresholds_lock);
5322 spin_lock_init(&memcg->move_lock);
5323 vmpressure_init(&memcg->vmpressure);
5324 INIT_LIST_HEAD(&memcg->event_list);
5325 spin_lock_init(&memcg->event_list_lock);
5326 memcg->socket_pressure = jiffies;
5327 #ifdef CONFIG_MEMCG_KMEM
5328 memcg->kmemcg_id = -1;
5329 INIT_LIST_HEAD(&memcg->objcg_list);
5330 #endif
5331 #ifdef CONFIG_CGROUP_WRITEBACK
5332 INIT_LIST_HEAD(&memcg->cgwb_list);
5333 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5334 memcg->cgwb_frn[i].done =
5335 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5336 #endif
5337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5338 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5339 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5340 memcg->deferred_split_queue.split_queue_len = 0;
5341 #endif
5342 lru_gen_init_memcg(memcg);
5343 return memcg;
5344 fail:
5345 mem_cgroup_id_remove(memcg);
5346 __mem_cgroup_free(memcg);
5347 return ERR_PTR(error);
5348 }
5349
5350 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5351 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5352 {
5353 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5354 struct mem_cgroup *memcg, *old_memcg;
5355
5356 old_memcg = set_active_memcg(parent);
5357 memcg = mem_cgroup_alloc();
5358 set_active_memcg(old_memcg);
5359 if (IS_ERR(memcg))
5360 return ERR_CAST(memcg);
5361
5362 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5363 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5364 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5365 memcg->zswap_max = PAGE_COUNTER_MAX;
5366 #endif
5367 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5368 if (parent) {
5369 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5370 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5371
5372 page_counter_init(&memcg->memory, &parent->memory);
5373 page_counter_init(&memcg->swap, &parent->swap);
5374 page_counter_init(&memcg->kmem, &parent->kmem);
5375 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5376 } else {
5377 init_memcg_events();
5378 page_counter_init(&memcg->memory, NULL);
5379 page_counter_init(&memcg->swap, NULL);
5380 page_counter_init(&memcg->kmem, NULL);
5381 page_counter_init(&memcg->tcpmem, NULL);
5382
5383 root_mem_cgroup = memcg;
5384 return &memcg->css;
5385 }
5386
5387 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5388 static_branch_inc(&memcg_sockets_enabled_key);
5389
5390 #if defined(CONFIG_MEMCG_KMEM)
5391 if (!cgroup_memory_nobpf)
5392 static_branch_inc(&memcg_bpf_enabled_key);
5393 #endif
5394
5395 return &memcg->css;
5396 }
5397
mem_cgroup_css_online(struct cgroup_subsys_state * css)5398 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5399 {
5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401
5402 if (memcg_online_kmem(memcg))
5403 goto remove_id;
5404
5405 /*
5406 * A memcg must be visible for expand_shrinker_info()
5407 * by the time the maps are allocated. So, we allocate maps
5408 * here, when for_each_mem_cgroup() can't skip it.
5409 */
5410 if (alloc_shrinker_info(memcg))
5411 goto offline_kmem;
5412
5413 if (unlikely(mem_cgroup_is_root(memcg)))
5414 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5415 FLUSH_TIME);
5416 lru_gen_online_memcg(memcg);
5417
5418 /* Online state pins memcg ID, memcg ID pins CSS */
5419 refcount_set(&memcg->id.ref, 1);
5420 css_get(css);
5421
5422 /*
5423 * Ensure mem_cgroup_from_id() works once we're fully online.
5424 *
5425 * We could do this earlier and require callers to filter with
5426 * css_tryget_online(). But right now there are no users that
5427 * need earlier access, and the workingset code relies on the
5428 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5429 * publish it here at the end of onlining. This matches the
5430 * regular ID destruction during offlining.
5431 */
5432 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5433
5434 return 0;
5435 offline_kmem:
5436 memcg_offline_kmem(memcg);
5437 remove_id:
5438 mem_cgroup_id_remove(memcg);
5439 return -ENOMEM;
5440 }
5441
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5442 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5443 {
5444 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5445 struct mem_cgroup_event *event, *tmp;
5446
5447 /*
5448 * Unregister events and notify userspace.
5449 * Notify userspace about cgroup removing only after rmdir of cgroup
5450 * directory to avoid race between userspace and kernelspace.
5451 */
5452 spin_lock_irq(&memcg->event_list_lock);
5453 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5454 list_del_init(&event->list);
5455 schedule_work(&event->remove);
5456 }
5457 spin_unlock_irq(&memcg->event_list_lock);
5458
5459 page_counter_set_min(&memcg->memory, 0);
5460 page_counter_set_low(&memcg->memory, 0);
5461
5462 memcg_offline_kmem(memcg);
5463 reparent_shrinker_deferred(memcg);
5464 wb_memcg_offline(memcg);
5465 lru_gen_offline_memcg(memcg);
5466
5467 drain_all_stock(memcg);
5468
5469 mem_cgroup_id_put(memcg);
5470 }
5471
mem_cgroup_css_released(struct cgroup_subsys_state * css)5472 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5473 {
5474 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5475
5476 invalidate_reclaim_iterators(memcg);
5477 lru_gen_release_memcg(memcg);
5478 }
5479
mem_cgroup_css_free(struct cgroup_subsys_state * css)5480 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5481 {
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 int __maybe_unused i;
5484
5485 #ifdef CONFIG_CGROUP_WRITEBACK
5486 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5487 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5488 #endif
5489 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5490 static_branch_dec(&memcg_sockets_enabled_key);
5491
5492 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5493 static_branch_dec(&memcg_sockets_enabled_key);
5494
5495 #if defined(CONFIG_MEMCG_KMEM)
5496 if (!cgroup_memory_nobpf)
5497 static_branch_dec(&memcg_bpf_enabled_key);
5498 #endif
5499
5500 vmpressure_cleanup(&memcg->vmpressure);
5501 cancel_work_sync(&memcg->high_work);
5502 mem_cgroup_remove_from_trees(memcg);
5503 free_shrinker_info(memcg);
5504 mem_cgroup_free(memcg);
5505 }
5506
5507 /**
5508 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5509 * @css: the target css
5510 *
5511 * Reset the states of the mem_cgroup associated with @css. This is
5512 * invoked when the userland requests disabling on the default hierarchy
5513 * but the memcg is pinned through dependency. The memcg should stop
5514 * applying policies and should revert to the vanilla state as it may be
5515 * made visible again.
5516 *
5517 * The current implementation only resets the essential configurations.
5518 * This needs to be expanded to cover all the visible parts.
5519 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5520 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5521 {
5522 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5523
5524 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5525 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5526 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5527 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5528 page_counter_set_min(&memcg->memory, 0);
5529 page_counter_set_low(&memcg->memory, 0);
5530 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5531 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5532 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5533 memcg_wb_domain_size_changed(memcg);
5534 }
5535
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5536 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5537 {
5538 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5539 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5540 struct memcg_vmstats_percpu *statc;
5541 long delta, delta_cpu, v;
5542 int i, nid;
5543
5544 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5545
5546 for (i = 0; i < MEMCG_NR_STAT; i++) {
5547 /*
5548 * Collect the aggregated propagation counts of groups
5549 * below us. We're in a per-cpu loop here and this is
5550 * a global counter, so the first cycle will get them.
5551 */
5552 delta = memcg->vmstats->state_pending[i];
5553 if (delta)
5554 memcg->vmstats->state_pending[i] = 0;
5555
5556 /* Add CPU changes on this level since the last flush */
5557 delta_cpu = 0;
5558 v = READ_ONCE(statc->state[i]);
5559 if (v != statc->state_prev[i]) {
5560 delta_cpu = v - statc->state_prev[i];
5561 delta += delta_cpu;
5562 statc->state_prev[i] = v;
5563 }
5564
5565 /* Aggregate counts on this level and propagate upwards */
5566 if (delta_cpu)
5567 memcg->vmstats->state_local[i] += delta_cpu;
5568
5569 if (delta) {
5570 memcg->vmstats->state[i] += delta;
5571 if (parent)
5572 parent->vmstats->state_pending[i] += delta;
5573 }
5574 }
5575
5576 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5577 delta = memcg->vmstats->events_pending[i];
5578 if (delta)
5579 memcg->vmstats->events_pending[i] = 0;
5580
5581 delta_cpu = 0;
5582 v = READ_ONCE(statc->events[i]);
5583 if (v != statc->events_prev[i]) {
5584 delta_cpu = v - statc->events_prev[i];
5585 delta += delta_cpu;
5586 statc->events_prev[i] = v;
5587 }
5588
5589 if (delta_cpu)
5590 memcg->vmstats->events_local[i] += delta_cpu;
5591
5592 if (delta) {
5593 memcg->vmstats->events[i] += delta;
5594 if (parent)
5595 parent->vmstats->events_pending[i] += delta;
5596 }
5597 }
5598
5599 for_each_node_state(nid, N_MEMORY) {
5600 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5601 struct mem_cgroup_per_node *ppn = NULL;
5602 struct lruvec_stats_percpu *lstatc;
5603
5604 if (parent)
5605 ppn = parent->nodeinfo[nid];
5606
5607 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5608
5609 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5610 delta = pn->lruvec_stats.state_pending[i];
5611 if (delta)
5612 pn->lruvec_stats.state_pending[i] = 0;
5613
5614 delta_cpu = 0;
5615 v = READ_ONCE(lstatc->state[i]);
5616 if (v != lstatc->state_prev[i]) {
5617 delta_cpu = v - lstatc->state_prev[i];
5618 delta += delta_cpu;
5619 lstatc->state_prev[i] = v;
5620 }
5621
5622 if (delta_cpu)
5623 pn->lruvec_stats.state_local[i] += delta_cpu;
5624
5625 if (delta) {
5626 pn->lruvec_stats.state[i] += delta;
5627 if (ppn)
5628 ppn->lruvec_stats.state_pending[i] += delta;
5629 }
5630 }
5631 }
5632 }
5633
5634 #ifdef CONFIG_MMU
5635 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5636 static int mem_cgroup_do_precharge(unsigned long count)
5637 {
5638 int ret;
5639
5640 /* Try a single bulk charge without reclaim first, kswapd may wake */
5641 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5642 if (!ret) {
5643 mc.precharge += count;
5644 return ret;
5645 }
5646
5647 /* Try charges one by one with reclaim, but do not retry */
5648 while (count--) {
5649 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5650 if (ret)
5651 return ret;
5652 mc.precharge++;
5653 cond_resched();
5654 }
5655 return 0;
5656 }
5657
5658 union mc_target {
5659 struct page *page;
5660 swp_entry_t ent;
5661 };
5662
5663 enum mc_target_type {
5664 MC_TARGET_NONE = 0,
5665 MC_TARGET_PAGE,
5666 MC_TARGET_SWAP,
5667 MC_TARGET_DEVICE,
5668 };
5669
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5670 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5671 unsigned long addr, pte_t ptent)
5672 {
5673 struct page *page = vm_normal_page(vma, addr, ptent);
5674
5675 if (!page)
5676 return NULL;
5677 if (PageAnon(page)) {
5678 if (!(mc.flags & MOVE_ANON))
5679 return NULL;
5680 } else {
5681 if (!(mc.flags & MOVE_FILE))
5682 return NULL;
5683 }
5684 get_page(page);
5685
5686 return page;
5687 }
5688
5689 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5690 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5691 pte_t ptent, swp_entry_t *entry)
5692 {
5693 struct page *page = NULL;
5694 swp_entry_t ent = pte_to_swp_entry(ptent);
5695
5696 if (!(mc.flags & MOVE_ANON))
5697 return NULL;
5698
5699 /*
5700 * Handle device private pages that are not accessible by the CPU, but
5701 * stored as special swap entries in the page table.
5702 */
5703 if (is_device_private_entry(ent)) {
5704 page = pfn_swap_entry_to_page(ent);
5705 if (!get_page_unless_zero(page))
5706 return NULL;
5707 return page;
5708 }
5709
5710 if (non_swap_entry(ent))
5711 return NULL;
5712
5713 /*
5714 * Because swap_cache_get_folio() updates some statistics counter,
5715 * we call find_get_page() with swapper_space directly.
5716 */
5717 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5718 entry->val = ent.val;
5719
5720 return page;
5721 }
5722 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5723 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5724 pte_t ptent, swp_entry_t *entry)
5725 {
5726 return NULL;
5727 }
5728 #endif
5729
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5730 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5731 unsigned long addr, pte_t ptent)
5732 {
5733 unsigned long index;
5734 struct folio *folio;
5735
5736 if (!vma->vm_file) /* anonymous vma */
5737 return NULL;
5738 if (!(mc.flags & MOVE_FILE))
5739 return NULL;
5740
5741 /* folio is moved even if it's not RSS of this task(page-faulted). */
5742 /* shmem/tmpfs may report page out on swap: account for that too. */
5743 index = linear_page_index(vma, addr);
5744 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5745 if (IS_ERR(folio))
5746 return NULL;
5747 return folio_file_page(folio, index);
5748 }
5749
5750 /**
5751 * mem_cgroup_move_account - move account of the page
5752 * @page: the page
5753 * @compound: charge the page as compound or small page
5754 * @from: mem_cgroup which the page is moved from.
5755 * @to: mem_cgroup which the page is moved to. @from != @to.
5756 *
5757 * The page must be locked and not on the LRU.
5758 *
5759 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5760 * from old cgroup.
5761 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5762 static int mem_cgroup_move_account(struct page *page,
5763 bool compound,
5764 struct mem_cgroup *from,
5765 struct mem_cgroup *to)
5766 {
5767 struct folio *folio = page_folio(page);
5768 struct lruvec *from_vec, *to_vec;
5769 struct pglist_data *pgdat;
5770 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5771 int nid, ret;
5772
5773 VM_BUG_ON(from == to);
5774 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5775 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5776 VM_BUG_ON(compound && !folio_test_large(folio));
5777
5778 ret = -EINVAL;
5779 if (folio_memcg(folio) != from)
5780 goto out;
5781
5782 pgdat = folio_pgdat(folio);
5783 from_vec = mem_cgroup_lruvec(from, pgdat);
5784 to_vec = mem_cgroup_lruvec(to, pgdat);
5785
5786 folio_memcg_lock(folio);
5787
5788 if (folio_test_anon(folio)) {
5789 if (folio_mapped(folio)) {
5790 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5791 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5792 if (folio_test_pmd_mappable(folio)) {
5793 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5794 -nr_pages);
5795 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5796 nr_pages);
5797 }
5798 }
5799 } else {
5800 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5801 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5802
5803 if (folio_test_swapbacked(folio)) {
5804 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5805 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5806 }
5807
5808 if (folio_mapped(folio)) {
5809 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5810 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5811 }
5812
5813 if (folio_test_dirty(folio)) {
5814 struct address_space *mapping = folio_mapping(folio);
5815
5816 if (mapping_can_writeback(mapping)) {
5817 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5818 -nr_pages);
5819 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5820 nr_pages);
5821 }
5822 }
5823 }
5824
5825 #ifdef CONFIG_SWAP
5826 if (folio_test_swapcache(folio)) {
5827 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5828 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5829 }
5830 #endif
5831 if (folio_test_writeback(folio)) {
5832 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5833 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5834 }
5835
5836 /*
5837 * All state has been migrated, let's switch to the new memcg.
5838 *
5839 * It is safe to change page's memcg here because the page
5840 * is referenced, charged, isolated, and locked: we can't race
5841 * with (un)charging, migration, LRU putback, or anything else
5842 * that would rely on a stable page's memory cgroup.
5843 *
5844 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5845 * to save space. As soon as we switch page's memory cgroup to a
5846 * new memcg that isn't locked, the above state can change
5847 * concurrently again. Make sure we're truly done with it.
5848 */
5849 smp_mb();
5850
5851 css_get(&to->css);
5852 css_put(&from->css);
5853
5854 folio->memcg_data = (unsigned long)to;
5855
5856 __folio_memcg_unlock(from);
5857
5858 ret = 0;
5859 nid = folio_nid(folio);
5860
5861 local_irq_disable();
5862 mem_cgroup_charge_statistics(to, nr_pages);
5863 memcg_check_events(to, nid);
5864 mem_cgroup_charge_statistics(from, -nr_pages);
5865 memcg_check_events(from, nid);
5866 local_irq_enable();
5867 out:
5868 return ret;
5869 }
5870
5871 /**
5872 * get_mctgt_type - get target type of moving charge
5873 * @vma: the vma the pte to be checked belongs
5874 * @addr: the address corresponding to the pte to be checked
5875 * @ptent: the pte to be checked
5876 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5877 *
5878 * Context: Called with pte lock held.
5879 * Return:
5880 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5881 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5882 * move charge. If @target is not NULL, the page is stored in target->page
5883 * with extra refcnt taken (Caller should release it).
5884 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5885 * target for charge migration. If @target is not NULL, the entry is
5886 * stored in target->ent.
5887 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5888 * thus not on the lru. For now such page is charged like a regular page
5889 * would be as it is just special memory taking the place of a regular page.
5890 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5891 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5892 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5893 unsigned long addr, pte_t ptent, union mc_target *target)
5894 {
5895 struct page *page = NULL;
5896 enum mc_target_type ret = MC_TARGET_NONE;
5897 swp_entry_t ent = { .val = 0 };
5898
5899 if (pte_present(ptent))
5900 page = mc_handle_present_pte(vma, addr, ptent);
5901 else if (pte_none_mostly(ptent))
5902 /*
5903 * PTE markers should be treated as a none pte here, separated
5904 * from other swap handling below.
5905 */
5906 page = mc_handle_file_pte(vma, addr, ptent);
5907 else if (is_swap_pte(ptent))
5908 page = mc_handle_swap_pte(vma, ptent, &ent);
5909
5910 if (target && page) {
5911 if (!trylock_page(page)) {
5912 put_page(page);
5913 return ret;
5914 }
5915 /*
5916 * page_mapped() must be stable during the move. This
5917 * pte is locked, so if it's present, the page cannot
5918 * become unmapped. If it isn't, we have only partial
5919 * control over the mapped state: the page lock will
5920 * prevent new faults against pagecache and swapcache,
5921 * so an unmapped page cannot become mapped. However,
5922 * if the page is already mapped elsewhere, it can
5923 * unmap, and there is nothing we can do about it.
5924 * Alas, skip moving the page in this case.
5925 */
5926 if (!pte_present(ptent) && page_mapped(page)) {
5927 unlock_page(page);
5928 put_page(page);
5929 return ret;
5930 }
5931 }
5932
5933 if (!page && !ent.val)
5934 return ret;
5935 if (page) {
5936 /*
5937 * Do only loose check w/o serialization.
5938 * mem_cgroup_move_account() checks the page is valid or
5939 * not under LRU exclusion.
5940 */
5941 if (page_memcg(page) == mc.from) {
5942 ret = MC_TARGET_PAGE;
5943 if (is_device_private_page(page) ||
5944 is_device_coherent_page(page))
5945 ret = MC_TARGET_DEVICE;
5946 if (target)
5947 target->page = page;
5948 }
5949 if (!ret || !target) {
5950 if (target)
5951 unlock_page(page);
5952 put_page(page);
5953 }
5954 }
5955 /*
5956 * There is a swap entry and a page doesn't exist or isn't charged.
5957 * But we cannot move a tail-page in a THP.
5958 */
5959 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5960 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5961 ret = MC_TARGET_SWAP;
5962 if (target)
5963 target->ent = ent;
5964 }
5965 return ret;
5966 }
5967
5968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5969 /*
5970 * We don't consider PMD mapped swapping or file mapped pages because THP does
5971 * not support them for now.
5972 * Caller should make sure that pmd_trans_huge(pmd) is true.
5973 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5974 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5975 unsigned long addr, pmd_t pmd, union mc_target *target)
5976 {
5977 struct page *page = NULL;
5978 enum mc_target_type ret = MC_TARGET_NONE;
5979
5980 if (unlikely(is_swap_pmd(pmd))) {
5981 VM_BUG_ON(thp_migration_supported() &&
5982 !is_pmd_migration_entry(pmd));
5983 return ret;
5984 }
5985 page = pmd_page(pmd);
5986 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5987 if (!(mc.flags & MOVE_ANON))
5988 return ret;
5989 if (page_memcg(page) == mc.from) {
5990 ret = MC_TARGET_PAGE;
5991 if (target) {
5992 get_page(page);
5993 if (!trylock_page(page)) {
5994 put_page(page);
5995 return MC_TARGET_NONE;
5996 }
5997 target->page = page;
5998 }
5999 }
6000 return ret;
6001 }
6002 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6003 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6004 unsigned long addr, pmd_t pmd, union mc_target *target)
6005 {
6006 return MC_TARGET_NONE;
6007 }
6008 #endif
6009
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6010 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6011 unsigned long addr, unsigned long end,
6012 struct mm_walk *walk)
6013 {
6014 struct vm_area_struct *vma = walk->vma;
6015 pte_t *pte;
6016 spinlock_t *ptl;
6017
6018 ptl = pmd_trans_huge_lock(pmd, vma);
6019 if (ptl) {
6020 /*
6021 * Note their can not be MC_TARGET_DEVICE for now as we do not
6022 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6023 * this might change.
6024 */
6025 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6026 mc.precharge += HPAGE_PMD_NR;
6027 spin_unlock(ptl);
6028 return 0;
6029 }
6030
6031 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6032 if (!pte)
6033 return 0;
6034 for (; addr != end; pte++, addr += PAGE_SIZE)
6035 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6036 mc.precharge++; /* increment precharge temporarily */
6037 pte_unmap_unlock(pte - 1, ptl);
6038 cond_resched();
6039
6040 return 0;
6041 }
6042
6043 static const struct mm_walk_ops precharge_walk_ops = {
6044 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6045 .walk_lock = PGWALK_RDLOCK,
6046 };
6047
mem_cgroup_count_precharge(struct mm_struct * mm)6048 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6049 {
6050 unsigned long precharge;
6051
6052 mmap_read_lock(mm);
6053 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6054 mmap_read_unlock(mm);
6055
6056 precharge = mc.precharge;
6057 mc.precharge = 0;
6058
6059 return precharge;
6060 }
6061
mem_cgroup_precharge_mc(struct mm_struct * mm)6062 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6063 {
6064 unsigned long precharge = mem_cgroup_count_precharge(mm);
6065
6066 VM_BUG_ON(mc.moving_task);
6067 mc.moving_task = current;
6068 return mem_cgroup_do_precharge(precharge);
6069 }
6070
6071 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6072 static void __mem_cgroup_clear_mc(void)
6073 {
6074 struct mem_cgroup *from = mc.from;
6075 struct mem_cgroup *to = mc.to;
6076
6077 /* we must uncharge all the leftover precharges from mc.to */
6078 if (mc.precharge) {
6079 cancel_charge(mc.to, mc.precharge);
6080 mc.precharge = 0;
6081 }
6082 /*
6083 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6084 * we must uncharge here.
6085 */
6086 if (mc.moved_charge) {
6087 cancel_charge(mc.from, mc.moved_charge);
6088 mc.moved_charge = 0;
6089 }
6090 /* we must fixup refcnts and charges */
6091 if (mc.moved_swap) {
6092 /* uncharge swap account from the old cgroup */
6093 if (!mem_cgroup_is_root(mc.from))
6094 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6095
6096 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6097
6098 /*
6099 * we charged both to->memory and to->memsw, so we
6100 * should uncharge to->memory.
6101 */
6102 if (!mem_cgroup_is_root(mc.to))
6103 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6104
6105 mc.moved_swap = 0;
6106 }
6107 memcg_oom_recover(from);
6108 memcg_oom_recover(to);
6109 wake_up_all(&mc.waitq);
6110 }
6111
mem_cgroup_clear_mc(void)6112 static void mem_cgroup_clear_mc(void)
6113 {
6114 struct mm_struct *mm = mc.mm;
6115
6116 /*
6117 * we must clear moving_task before waking up waiters at the end of
6118 * task migration.
6119 */
6120 mc.moving_task = NULL;
6121 __mem_cgroup_clear_mc();
6122 spin_lock(&mc.lock);
6123 mc.from = NULL;
6124 mc.to = NULL;
6125 mc.mm = NULL;
6126 spin_unlock(&mc.lock);
6127
6128 mmput(mm);
6129 }
6130
mem_cgroup_can_attach(struct cgroup_taskset * tset)6131 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6132 {
6133 struct cgroup_subsys_state *css;
6134 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6135 struct mem_cgroup *from;
6136 struct task_struct *leader, *p;
6137 struct mm_struct *mm;
6138 unsigned long move_flags;
6139 int ret = 0;
6140
6141 /* charge immigration isn't supported on the default hierarchy */
6142 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6143 return 0;
6144
6145 /*
6146 * Multi-process migrations only happen on the default hierarchy
6147 * where charge immigration is not used. Perform charge
6148 * immigration if @tset contains a leader and whine if there are
6149 * multiple.
6150 */
6151 p = NULL;
6152 cgroup_taskset_for_each_leader(leader, css, tset) {
6153 WARN_ON_ONCE(p);
6154 p = leader;
6155 memcg = mem_cgroup_from_css(css);
6156 }
6157 if (!p)
6158 return 0;
6159
6160 /*
6161 * We are now committed to this value whatever it is. Changes in this
6162 * tunable will only affect upcoming migrations, not the current one.
6163 * So we need to save it, and keep it going.
6164 */
6165 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6166 if (!move_flags)
6167 return 0;
6168
6169 from = mem_cgroup_from_task(p);
6170
6171 VM_BUG_ON(from == memcg);
6172
6173 mm = get_task_mm(p);
6174 if (!mm)
6175 return 0;
6176 /* We move charges only when we move a owner of the mm */
6177 if (mm->owner == p) {
6178 VM_BUG_ON(mc.from);
6179 VM_BUG_ON(mc.to);
6180 VM_BUG_ON(mc.precharge);
6181 VM_BUG_ON(mc.moved_charge);
6182 VM_BUG_ON(mc.moved_swap);
6183
6184 spin_lock(&mc.lock);
6185 mc.mm = mm;
6186 mc.from = from;
6187 mc.to = memcg;
6188 mc.flags = move_flags;
6189 spin_unlock(&mc.lock);
6190 /* We set mc.moving_task later */
6191
6192 ret = mem_cgroup_precharge_mc(mm);
6193 if (ret)
6194 mem_cgroup_clear_mc();
6195 } else {
6196 mmput(mm);
6197 }
6198 return ret;
6199 }
6200
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6201 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6202 {
6203 if (mc.to)
6204 mem_cgroup_clear_mc();
6205 }
6206
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6207 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6208 unsigned long addr, unsigned long end,
6209 struct mm_walk *walk)
6210 {
6211 int ret = 0;
6212 struct vm_area_struct *vma = walk->vma;
6213 pte_t *pte;
6214 spinlock_t *ptl;
6215 enum mc_target_type target_type;
6216 union mc_target target;
6217 struct page *page;
6218
6219 ptl = pmd_trans_huge_lock(pmd, vma);
6220 if (ptl) {
6221 if (mc.precharge < HPAGE_PMD_NR) {
6222 spin_unlock(ptl);
6223 return 0;
6224 }
6225 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6226 if (target_type == MC_TARGET_PAGE) {
6227 page = target.page;
6228 if (isolate_lru_page(page)) {
6229 if (!mem_cgroup_move_account(page, true,
6230 mc.from, mc.to)) {
6231 mc.precharge -= HPAGE_PMD_NR;
6232 mc.moved_charge += HPAGE_PMD_NR;
6233 }
6234 putback_lru_page(page);
6235 }
6236 unlock_page(page);
6237 put_page(page);
6238 } else if (target_type == MC_TARGET_DEVICE) {
6239 page = target.page;
6240 if (!mem_cgroup_move_account(page, true,
6241 mc.from, mc.to)) {
6242 mc.precharge -= HPAGE_PMD_NR;
6243 mc.moved_charge += HPAGE_PMD_NR;
6244 }
6245 unlock_page(page);
6246 put_page(page);
6247 }
6248 spin_unlock(ptl);
6249 return 0;
6250 }
6251
6252 retry:
6253 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6254 if (!pte)
6255 return 0;
6256 for (; addr != end; addr += PAGE_SIZE) {
6257 pte_t ptent = ptep_get(pte++);
6258 bool device = false;
6259 swp_entry_t ent;
6260
6261 if (!mc.precharge)
6262 break;
6263
6264 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6265 case MC_TARGET_DEVICE:
6266 device = true;
6267 fallthrough;
6268 case MC_TARGET_PAGE:
6269 page = target.page;
6270 /*
6271 * We can have a part of the split pmd here. Moving it
6272 * can be done but it would be too convoluted so simply
6273 * ignore such a partial THP and keep it in original
6274 * memcg. There should be somebody mapping the head.
6275 */
6276 if (PageTransCompound(page))
6277 goto put;
6278 if (!device && !isolate_lru_page(page))
6279 goto put;
6280 if (!mem_cgroup_move_account(page, false,
6281 mc.from, mc.to)) {
6282 mc.precharge--;
6283 /* we uncharge from mc.from later. */
6284 mc.moved_charge++;
6285 }
6286 if (!device)
6287 putback_lru_page(page);
6288 put: /* get_mctgt_type() gets & locks the page */
6289 unlock_page(page);
6290 put_page(page);
6291 break;
6292 case MC_TARGET_SWAP:
6293 ent = target.ent;
6294 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6295 mc.precharge--;
6296 mem_cgroup_id_get_many(mc.to, 1);
6297 /* we fixup other refcnts and charges later. */
6298 mc.moved_swap++;
6299 }
6300 break;
6301 default:
6302 break;
6303 }
6304 }
6305 pte_unmap_unlock(pte - 1, ptl);
6306 cond_resched();
6307
6308 if (addr != end) {
6309 /*
6310 * We have consumed all precharges we got in can_attach().
6311 * We try charge one by one, but don't do any additional
6312 * charges to mc.to if we have failed in charge once in attach()
6313 * phase.
6314 */
6315 ret = mem_cgroup_do_precharge(1);
6316 if (!ret)
6317 goto retry;
6318 }
6319
6320 return ret;
6321 }
6322
6323 static const struct mm_walk_ops charge_walk_ops = {
6324 .pmd_entry = mem_cgroup_move_charge_pte_range,
6325 .walk_lock = PGWALK_RDLOCK,
6326 };
6327
mem_cgroup_move_charge(void)6328 static void mem_cgroup_move_charge(void)
6329 {
6330 lru_add_drain_all();
6331 /*
6332 * Signal folio_memcg_lock() to take the memcg's move_lock
6333 * while we're moving its pages to another memcg. Then wait
6334 * for already started RCU-only updates to finish.
6335 */
6336 atomic_inc(&mc.from->moving_account);
6337 synchronize_rcu();
6338 retry:
6339 if (unlikely(!mmap_read_trylock(mc.mm))) {
6340 /*
6341 * Someone who are holding the mmap_lock might be waiting in
6342 * waitq. So we cancel all extra charges, wake up all waiters,
6343 * and retry. Because we cancel precharges, we might not be able
6344 * to move enough charges, but moving charge is a best-effort
6345 * feature anyway, so it wouldn't be a big problem.
6346 */
6347 __mem_cgroup_clear_mc();
6348 cond_resched();
6349 goto retry;
6350 }
6351 /*
6352 * When we have consumed all precharges and failed in doing
6353 * additional charge, the page walk just aborts.
6354 */
6355 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6356 mmap_read_unlock(mc.mm);
6357 atomic_dec(&mc.from->moving_account);
6358 }
6359
mem_cgroup_move_task(void)6360 static void mem_cgroup_move_task(void)
6361 {
6362 if (mc.to) {
6363 mem_cgroup_move_charge();
6364 mem_cgroup_clear_mc();
6365 }
6366 }
6367 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6368 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6369 {
6370 return 0;
6371 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6372 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6373 {
6374 }
mem_cgroup_move_task(void)6375 static void mem_cgroup_move_task(void)
6376 {
6377 }
6378 #endif
6379
6380 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6381 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6382 {
6383 struct task_struct *task;
6384 struct cgroup_subsys_state *css;
6385
6386 /* find the first leader if there is any */
6387 cgroup_taskset_for_each_leader(task, css, tset)
6388 break;
6389
6390 if (!task)
6391 return;
6392
6393 task_lock(task);
6394 if (task->mm && READ_ONCE(task->mm->owner) == task)
6395 lru_gen_migrate_mm(task->mm);
6396 task_unlock(task);
6397 }
6398 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6399 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6400 {
6401 }
6402 #endif /* CONFIG_LRU_GEN */
6403
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6404 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6405 {
6406 if (value == PAGE_COUNTER_MAX)
6407 seq_puts(m, "max\n");
6408 else
6409 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6410
6411 return 0;
6412 }
6413
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6414 static u64 memory_current_read(struct cgroup_subsys_state *css,
6415 struct cftype *cft)
6416 {
6417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6418
6419 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6420 }
6421
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6422 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6423 struct cftype *cft)
6424 {
6425 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6426
6427 return (u64)memcg->memory.watermark * PAGE_SIZE;
6428 }
6429
memory_min_show(struct seq_file * m,void * v)6430 static int memory_min_show(struct seq_file *m, void *v)
6431 {
6432 return seq_puts_memcg_tunable(m,
6433 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6434 }
6435
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6436 static ssize_t memory_min_write(struct kernfs_open_file *of,
6437 char *buf, size_t nbytes, loff_t off)
6438 {
6439 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6440 unsigned long min;
6441 int err;
6442
6443 buf = strstrip(buf);
6444 err = page_counter_memparse(buf, "max", &min);
6445 if (err)
6446 return err;
6447
6448 page_counter_set_min(&memcg->memory, min);
6449
6450 return nbytes;
6451 }
6452
memory_low_show(struct seq_file * m,void * v)6453 static int memory_low_show(struct seq_file *m, void *v)
6454 {
6455 return seq_puts_memcg_tunable(m,
6456 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6457 }
6458
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6459 static ssize_t memory_low_write(struct kernfs_open_file *of,
6460 char *buf, size_t nbytes, loff_t off)
6461 {
6462 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6463 unsigned long low;
6464 int err;
6465
6466 buf = strstrip(buf);
6467 err = page_counter_memparse(buf, "max", &low);
6468 if (err)
6469 return err;
6470
6471 page_counter_set_low(&memcg->memory, low);
6472
6473 return nbytes;
6474 }
6475
memory_high_show(struct seq_file * m,void * v)6476 static int memory_high_show(struct seq_file *m, void *v)
6477 {
6478 return seq_puts_memcg_tunable(m,
6479 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6480 }
6481
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6482 static ssize_t memory_high_write(struct kernfs_open_file *of,
6483 char *buf, size_t nbytes, loff_t off)
6484 {
6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6487 bool drained = false;
6488 unsigned long high;
6489 int err;
6490
6491 buf = strstrip(buf);
6492 err = page_counter_memparse(buf, "max", &high);
6493 if (err)
6494 return err;
6495
6496 page_counter_set_high(&memcg->memory, high);
6497
6498 for (;;) {
6499 unsigned long nr_pages = page_counter_read(&memcg->memory);
6500 unsigned long reclaimed;
6501
6502 if (nr_pages <= high)
6503 break;
6504
6505 if (signal_pending(current))
6506 break;
6507
6508 if (!drained) {
6509 drain_all_stock(memcg);
6510 drained = true;
6511 continue;
6512 }
6513
6514 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6515 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6516
6517 if (!reclaimed && !nr_retries--)
6518 break;
6519 }
6520
6521 memcg_wb_domain_size_changed(memcg);
6522 return nbytes;
6523 }
6524
memory_max_show(struct seq_file * m,void * v)6525 static int memory_max_show(struct seq_file *m, void *v)
6526 {
6527 return seq_puts_memcg_tunable(m,
6528 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6529 }
6530
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6531 static ssize_t memory_max_write(struct kernfs_open_file *of,
6532 char *buf, size_t nbytes, loff_t off)
6533 {
6534 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6535 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6536 bool drained = false;
6537 unsigned long max;
6538 int err;
6539
6540 buf = strstrip(buf);
6541 err = page_counter_memparse(buf, "max", &max);
6542 if (err)
6543 return err;
6544
6545 xchg(&memcg->memory.max, max);
6546
6547 for (;;) {
6548 unsigned long nr_pages = page_counter_read(&memcg->memory);
6549
6550 if (nr_pages <= max)
6551 break;
6552
6553 if (signal_pending(current))
6554 break;
6555
6556 if (!drained) {
6557 drain_all_stock(memcg);
6558 drained = true;
6559 continue;
6560 }
6561
6562 if (nr_reclaims) {
6563 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6564 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6565 nr_reclaims--;
6566 continue;
6567 }
6568
6569 memcg_memory_event(memcg, MEMCG_OOM);
6570 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6571 break;
6572 }
6573
6574 memcg_wb_domain_size_changed(memcg);
6575 return nbytes;
6576 }
6577
__memory_events_show(struct seq_file * m,atomic_long_t * events)6578 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6579 {
6580 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6581 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6582 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6583 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6584 seq_printf(m, "oom_kill %lu\n",
6585 atomic_long_read(&events[MEMCG_OOM_KILL]));
6586 seq_printf(m, "oom_group_kill %lu\n",
6587 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6588 }
6589
memory_events_show(struct seq_file * m,void * v)6590 static int memory_events_show(struct seq_file *m, void *v)
6591 {
6592 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6593
6594 __memory_events_show(m, memcg->memory_events);
6595 return 0;
6596 }
6597
memory_events_local_show(struct seq_file * m,void * v)6598 static int memory_events_local_show(struct seq_file *m, void *v)
6599 {
6600 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6601
6602 __memory_events_show(m, memcg->memory_events_local);
6603 return 0;
6604 }
6605
memory_stat_show(struct seq_file * m,void * v)6606 static int memory_stat_show(struct seq_file *m, void *v)
6607 {
6608 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6609 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6610 struct seq_buf s;
6611
6612 if (!buf)
6613 return -ENOMEM;
6614 seq_buf_init(&s, buf, PAGE_SIZE);
6615 memory_stat_format(memcg, &s);
6616 seq_puts(m, buf);
6617 kfree(buf);
6618 return 0;
6619 }
6620
6621 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6622 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6623 int item)
6624 {
6625 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6626 }
6627
memory_numa_stat_show(struct seq_file * m,void * v)6628 static int memory_numa_stat_show(struct seq_file *m, void *v)
6629 {
6630 int i;
6631 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6632
6633 mem_cgroup_flush_stats();
6634
6635 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6636 int nid;
6637
6638 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6639 continue;
6640
6641 seq_printf(m, "%s", memory_stats[i].name);
6642 for_each_node_state(nid, N_MEMORY) {
6643 u64 size;
6644 struct lruvec *lruvec;
6645
6646 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6647 size = lruvec_page_state_output(lruvec,
6648 memory_stats[i].idx);
6649 seq_printf(m, " N%d=%llu", nid, size);
6650 }
6651 seq_putc(m, '\n');
6652 }
6653
6654 return 0;
6655 }
6656 #endif
6657
memory_oom_group_show(struct seq_file * m,void * v)6658 static int memory_oom_group_show(struct seq_file *m, void *v)
6659 {
6660 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6661
6662 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6663
6664 return 0;
6665 }
6666
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6667 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6668 char *buf, size_t nbytes, loff_t off)
6669 {
6670 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6671 int ret, oom_group;
6672
6673 buf = strstrip(buf);
6674 if (!buf)
6675 return -EINVAL;
6676
6677 ret = kstrtoint(buf, 0, &oom_group);
6678 if (ret)
6679 return ret;
6680
6681 if (oom_group != 0 && oom_group != 1)
6682 return -EINVAL;
6683
6684 WRITE_ONCE(memcg->oom_group, oom_group);
6685
6686 return nbytes;
6687 }
6688
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6689 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6690 size_t nbytes, loff_t off)
6691 {
6692 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6693 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6694 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6695 unsigned int reclaim_options;
6696 int err;
6697
6698 buf = strstrip(buf);
6699 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6700 if (err)
6701 return err;
6702
6703 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6704 while (nr_reclaimed < nr_to_reclaim) {
6705 unsigned long reclaimed;
6706
6707 if (signal_pending(current))
6708 return -EINTR;
6709
6710 /*
6711 * This is the final attempt, drain percpu lru caches in the
6712 * hope of introducing more evictable pages for
6713 * try_to_free_mem_cgroup_pages().
6714 */
6715 if (!nr_retries)
6716 lru_add_drain_all();
6717
6718 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6719 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6720 GFP_KERNEL, reclaim_options);
6721
6722 if (!reclaimed && !nr_retries--)
6723 return -EAGAIN;
6724
6725 nr_reclaimed += reclaimed;
6726 }
6727
6728 return nbytes;
6729 }
6730
6731 static struct cftype memory_files[] = {
6732 {
6733 .name = "current",
6734 .flags = CFTYPE_NOT_ON_ROOT,
6735 .read_u64 = memory_current_read,
6736 },
6737 {
6738 .name = "peak",
6739 .flags = CFTYPE_NOT_ON_ROOT,
6740 .read_u64 = memory_peak_read,
6741 },
6742 {
6743 .name = "min",
6744 .flags = CFTYPE_NOT_ON_ROOT,
6745 .seq_show = memory_min_show,
6746 .write = memory_min_write,
6747 },
6748 {
6749 .name = "low",
6750 .flags = CFTYPE_NOT_ON_ROOT,
6751 .seq_show = memory_low_show,
6752 .write = memory_low_write,
6753 },
6754 {
6755 .name = "high",
6756 .flags = CFTYPE_NOT_ON_ROOT,
6757 .seq_show = memory_high_show,
6758 .write = memory_high_write,
6759 },
6760 {
6761 .name = "max",
6762 .flags = CFTYPE_NOT_ON_ROOT,
6763 .seq_show = memory_max_show,
6764 .write = memory_max_write,
6765 },
6766 {
6767 .name = "events",
6768 .flags = CFTYPE_NOT_ON_ROOT,
6769 .file_offset = offsetof(struct mem_cgroup, events_file),
6770 .seq_show = memory_events_show,
6771 },
6772 {
6773 .name = "events.local",
6774 .flags = CFTYPE_NOT_ON_ROOT,
6775 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6776 .seq_show = memory_events_local_show,
6777 },
6778 {
6779 .name = "stat",
6780 .seq_show = memory_stat_show,
6781 },
6782 #ifdef CONFIG_NUMA
6783 {
6784 .name = "numa_stat",
6785 .seq_show = memory_numa_stat_show,
6786 },
6787 #endif
6788 {
6789 .name = "oom.group",
6790 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6791 .seq_show = memory_oom_group_show,
6792 .write = memory_oom_group_write,
6793 },
6794 {
6795 .name = "reclaim",
6796 .flags = CFTYPE_NS_DELEGATABLE,
6797 .write = memory_reclaim,
6798 },
6799 { } /* terminate */
6800 };
6801
6802 struct cgroup_subsys memory_cgrp_subsys = {
6803 .css_alloc = mem_cgroup_css_alloc,
6804 .css_online = mem_cgroup_css_online,
6805 .css_offline = mem_cgroup_css_offline,
6806 .css_released = mem_cgroup_css_released,
6807 .css_free = mem_cgroup_css_free,
6808 .css_reset = mem_cgroup_css_reset,
6809 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6810 .can_attach = mem_cgroup_can_attach,
6811 .attach = mem_cgroup_attach,
6812 .cancel_attach = mem_cgroup_cancel_attach,
6813 .post_attach = mem_cgroup_move_task,
6814 .dfl_cftypes = memory_files,
6815 .legacy_cftypes = mem_cgroup_legacy_files,
6816 .early_init = 0,
6817 };
6818
6819 /*
6820 * This function calculates an individual cgroup's effective
6821 * protection which is derived from its own memory.min/low, its
6822 * parent's and siblings' settings, as well as the actual memory
6823 * distribution in the tree.
6824 *
6825 * The following rules apply to the effective protection values:
6826 *
6827 * 1. At the first level of reclaim, effective protection is equal to
6828 * the declared protection in memory.min and memory.low.
6829 *
6830 * 2. To enable safe delegation of the protection configuration, at
6831 * subsequent levels the effective protection is capped to the
6832 * parent's effective protection.
6833 *
6834 * 3. To make complex and dynamic subtrees easier to configure, the
6835 * user is allowed to overcommit the declared protection at a given
6836 * level. If that is the case, the parent's effective protection is
6837 * distributed to the children in proportion to how much protection
6838 * they have declared and how much of it they are utilizing.
6839 *
6840 * This makes distribution proportional, but also work-conserving:
6841 * if one cgroup claims much more protection than it uses memory,
6842 * the unused remainder is available to its siblings.
6843 *
6844 * 4. Conversely, when the declared protection is undercommitted at a
6845 * given level, the distribution of the larger parental protection
6846 * budget is NOT proportional. A cgroup's protection from a sibling
6847 * is capped to its own memory.min/low setting.
6848 *
6849 * 5. However, to allow protecting recursive subtrees from each other
6850 * without having to declare each individual cgroup's fixed share
6851 * of the ancestor's claim to protection, any unutilized -
6852 * "floating" - protection from up the tree is distributed in
6853 * proportion to each cgroup's *usage*. This makes the protection
6854 * neutral wrt sibling cgroups and lets them compete freely over
6855 * the shared parental protection budget, but it protects the
6856 * subtree as a whole from neighboring subtrees.
6857 *
6858 * Note that 4. and 5. are not in conflict: 4. is about protecting
6859 * against immediate siblings whereas 5. is about protecting against
6860 * neighboring subtrees.
6861 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6862 static unsigned long effective_protection(unsigned long usage,
6863 unsigned long parent_usage,
6864 unsigned long setting,
6865 unsigned long parent_effective,
6866 unsigned long siblings_protected)
6867 {
6868 unsigned long protected;
6869 unsigned long ep;
6870
6871 protected = min(usage, setting);
6872 /*
6873 * If all cgroups at this level combined claim and use more
6874 * protection than what the parent affords them, distribute
6875 * shares in proportion to utilization.
6876 *
6877 * We are using actual utilization rather than the statically
6878 * claimed protection in order to be work-conserving: claimed
6879 * but unused protection is available to siblings that would
6880 * otherwise get a smaller chunk than what they claimed.
6881 */
6882 if (siblings_protected > parent_effective)
6883 return protected * parent_effective / siblings_protected;
6884
6885 /*
6886 * Ok, utilized protection of all children is within what the
6887 * parent affords them, so we know whatever this child claims
6888 * and utilizes is effectively protected.
6889 *
6890 * If there is unprotected usage beyond this value, reclaim
6891 * will apply pressure in proportion to that amount.
6892 *
6893 * If there is unutilized protection, the cgroup will be fully
6894 * shielded from reclaim, but we do return a smaller value for
6895 * protection than what the group could enjoy in theory. This
6896 * is okay. With the overcommit distribution above, effective
6897 * protection is always dependent on how memory is actually
6898 * consumed among the siblings anyway.
6899 */
6900 ep = protected;
6901
6902 /*
6903 * If the children aren't claiming (all of) the protection
6904 * afforded to them by the parent, distribute the remainder in
6905 * proportion to the (unprotected) memory of each cgroup. That
6906 * way, cgroups that aren't explicitly prioritized wrt each
6907 * other compete freely over the allowance, but they are
6908 * collectively protected from neighboring trees.
6909 *
6910 * We're using unprotected memory for the weight so that if
6911 * some cgroups DO claim explicit protection, we don't protect
6912 * the same bytes twice.
6913 *
6914 * Check both usage and parent_usage against the respective
6915 * protected values. One should imply the other, but they
6916 * aren't read atomically - make sure the division is sane.
6917 */
6918 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6919 return ep;
6920 if (parent_effective > siblings_protected &&
6921 parent_usage > siblings_protected &&
6922 usage > protected) {
6923 unsigned long unclaimed;
6924
6925 unclaimed = parent_effective - siblings_protected;
6926 unclaimed *= usage - protected;
6927 unclaimed /= parent_usage - siblings_protected;
6928
6929 ep += unclaimed;
6930 }
6931
6932 return ep;
6933 }
6934
6935 /**
6936 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6937 * @root: the top ancestor of the sub-tree being checked
6938 * @memcg: the memory cgroup to check
6939 *
6940 * WARNING: This function is not stateless! It can only be used as part
6941 * of a top-down tree iteration, not for isolated queries.
6942 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6943 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6944 struct mem_cgroup *memcg)
6945 {
6946 unsigned long usage, parent_usage;
6947 struct mem_cgroup *parent;
6948
6949 if (mem_cgroup_disabled())
6950 return;
6951
6952 if (!root)
6953 root = root_mem_cgroup;
6954
6955 /*
6956 * Effective values of the reclaim targets are ignored so they
6957 * can be stale. Have a look at mem_cgroup_protection for more
6958 * details.
6959 * TODO: calculation should be more robust so that we do not need
6960 * that special casing.
6961 */
6962 if (memcg == root)
6963 return;
6964
6965 usage = page_counter_read(&memcg->memory);
6966 if (!usage)
6967 return;
6968
6969 parent = parent_mem_cgroup(memcg);
6970
6971 if (parent == root) {
6972 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6973 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6974 return;
6975 }
6976
6977 parent_usage = page_counter_read(&parent->memory);
6978
6979 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6980 READ_ONCE(memcg->memory.min),
6981 READ_ONCE(parent->memory.emin),
6982 atomic_long_read(&parent->memory.children_min_usage)));
6983
6984 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6985 READ_ONCE(memcg->memory.low),
6986 READ_ONCE(parent->memory.elow),
6987 atomic_long_read(&parent->memory.children_low_usage)));
6988 }
6989
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)6990 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6991 gfp_t gfp)
6992 {
6993 long nr_pages = folio_nr_pages(folio);
6994 int ret;
6995
6996 ret = try_charge(memcg, gfp, nr_pages);
6997 if (ret)
6998 goto out;
6999
7000 css_get(&memcg->css);
7001 commit_charge(folio, memcg);
7002
7003 local_irq_disable();
7004 mem_cgroup_charge_statistics(memcg, nr_pages);
7005 memcg_check_events(memcg, folio_nid(folio));
7006 local_irq_enable();
7007 out:
7008 return ret;
7009 }
7010
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)7011 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7012 {
7013 struct mem_cgroup *memcg;
7014 int ret;
7015
7016 memcg = get_mem_cgroup_from_mm(mm);
7017 ret = charge_memcg(folio, memcg, gfp);
7018 css_put(&memcg->css);
7019
7020 return ret;
7021 }
7022
7023 /**
7024 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7025 * @folio: folio to charge.
7026 * @mm: mm context of the victim
7027 * @gfp: reclaim mode
7028 * @entry: swap entry for which the folio is allocated
7029 *
7030 * This function charges a folio allocated for swapin. Please call this before
7031 * adding the folio to the swapcache.
7032 *
7033 * Returns 0 on success. Otherwise, an error code is returned.
7034 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)7035 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7036 gfp_t gfp, swp_entry_t entry)
7037 {
7038 struct mem_cgroup *memcg;
7039 unsigned short id;
7040 int ret;
7041
7042 if (mem_cgroup_disabled())
7043 return 0;
7044
7045 id = lookup_swap_cgroup_id(entry);
7046 rcu_read_lock();
7047 memcg = mem_cgroup_from_id(id);
7048 if (!memcg || !css_tryget_online(&memcg->css))
7049 memcg = get_mem_cgroup_from_mm(mm);
7050 rcu_read_unlock();
7051
7052 ret = charge_memcg(folio, memcg, gfp);
7053
7054 css_put(&memcg->css);
7055 return ret;
7056 }
7057
7058 /*
7059 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7060 * @entry: swap entry for which the page is charged
7061 *
7062 * Call this function after successfully adding the charged page to swapcache.
7063 *
7064 * Note: This function assumes the page for which swap slot is being uncharged
7065 * is order 0 page.
7066 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7067 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7068 {
7069 /*
7070 * Cgroup1's unified memory+swap counter has been charged with the
7071 * new swapcache page, finish the transfer by uncharging the swap
7072 * slot. The swap slot would also get uncharged when it dies, but
7073 * it can stick around indefinitely and we'd count the page twice
7074 * the entire time.
7075 *
7076 * Cgroup2 has separate resource counters for memory and swap,
7077 * so this is a non-issue here. Memory and swap charge lifetimes
7078 * correspond 1:1 to page and swap slot lifetimes: we charge the
7079 * page to memory here, and uncharge swap when the slot is freed.
7080 */
7081 if (!mem_cgroup_disabled() && do_memsw_account()) {
7082 /*
7083 * The swap entry might not get freed for a long time,
7084 * let's not wait for it. The page already received a
7085 * memory+swap charge, drop the swap entry duplicate.
7086 */
7087 mem_cgroup_uncharge_swap(entry, 1);
7088 }
7089 }
7090
7091 struct uncharge_gather {
7092 struct mem_cgroup *memcg;
7093 unsigned long nr_memory;
7094 unsigned long pgpgout;
7095 unsigned long nr_kmem;
7096 int nid;
7097 };
7098
uncharge_gather_clear(struct uncharge_gather * ug)7099 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7100 {
7101 memset(ug, 0, sizeof(*ug));
7102 }
7103
uncharge_batch(const struct uncharge_gather * ug)7104 static void uncharge_batch(const struct uncharge_gather *ug)
7105 {
7106 unsigned long flags;
7107
7108 if (ug->nr_memory) {
7109 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7110 if (do_memsw_account())
7111 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7112 if (ug->nr_kmem)
7113 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7114 memcg_oom_recover(ug->memcg);
7115 }
7116
7117 local_irq_save(flags);
7118 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7119 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7120 memcg_check_events(ug->memcg, ug->nid);
7121 local_irq_restore(flags);
7122
7123 /* drop reference from uncharge_folio */
7124 css_put(&ug->memcg->css);
7125 }
7126
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7127 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7128 {
7129 long nr_pages;
7130 struct mem_cgroup *memcg;
7131 struct obj_cgroup *objcg;
7132
7133 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7134
7135 /*
7136 * Nobody should be changing or seriously looking at
7137 * folio memcg or objcg at this point, we have fully
7138 * exclusive access to the folio.
7139 */
7140 if (folio_memcg_kmem(folio)) {
7141 objcg = __folio_objcg(folio);
7142 /*
7143 * This get matches the put at the end of the function and
7144 * kmem pages do not hold memcg references anymore.
7145 */
7146 memcg = get_mem_cgroup_from_objcg(objcg);
7147 } else {
7148 memcg = __folio_memcg(folio);
7149 }
7150
7151 if (!memcg)
7152 return;
7153
7154 if (ug->memcg != memcg) {
7155 if (ug->memcg) {
7156 uncharge_batch(ug);
7157 uncharge_gather_clear(ug);
7158 }
7159 ug->memcg = memcg;
7160 ug->nid = folio_nid(folio);
7161
7162 /* pairs with css_put in uncharge_batch */
7163 css_get(&memcg->css);
7164 }
7165
7166 nr_pages = folio_nr_pages(folio);
7167
7168 if (folio_memcg_kmem(folio)) {
7169 ug->nr_memory += nr_pages;
7170 ug->nr_kmem += nr_pages;
7171
7172 folio->memcg_data = 0;
7173 obj_cgroup_put(objcg);
7174 } else {
7175 /* LRU pages aren't accounted at the root level */
7176 if (!mem_cgroup_is_root(memcg))
7177 ug->nr_memory += nr_pages;
7178 ug->pgpgout++;
7179
7180 folio->memcg_data = 0;
7181 }
7182
7183 css_put(&memcg->css);
7184 }
7185
__mem_cgroup_uncharge(struct folio * folio)7186 void __mem_cgroup_uncharge(struct folio *folio)
7187 {
7188 struct uncharge_gather ug;
7189
7190 /* Don't touch folio->lru of any random page, pre-check: */
7191 if (!folio_memcg(folio))
7192 return;
7193
7194 uncharge_gather_clear(&ug);
7195 uncharge_folio(folio, &ug);
7196 uncharge_batch(&ug);
7197 }
7198
7199 /**
7200 * __mem_cgroup_uncharge_list - uncharge a list of page
7201 * @page_list: list of pages to uncharge
7202 *
7203 * Uncharge a list of pages previously charged with
7204 * __mem_cgroup_charge().
7205 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7206 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7207 {
7208 struct uncharge_gather ug;
7209 struct folio *folio;
7210
7211 uncharge_gather_clear(&ug);
7212 list_for_each_entry(folio, page_list, lru)
7213 uncharge_folio(folio, &ug);
7214 if (ug.memcg)
7215 uncharge_batch(&ug);
7216 }
7217
7218 /**
7219 * mem_cgroup_migrate - Charge a folio's replacement.
7220 * @old: Currently circulating folio.
7221 * @new: Replacement folio.
7222 *
7223 * Charge @new as a replacement folio for @old. @old will
7224 * be uncharged upon free.
7225 *
7226 * Both folios must be locked, @new->mapping must be set up.
7227 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7228 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7229 {
7230 struct mem_cgroup *memcg;
7231 long nr_pages = folio_nr_pages(new);
7232 unsigned long flags;
7233
7234 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7235 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7236 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7237 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7238
7239 if (mem_cgroup_disabled())
7240 return;
7241
7242 /* Page cache replacement: new folio already charged? */
7243 if (folio_memcg(new))
7244 return;
7245
7246 memcg = folio_memcg(old);
7247 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7248 if (!memcg)
7249 return;
7250
7251 /* Force-charge the new page. The old one will be freed soon */
7252 if (!mem_cgroup_is_root(memcg)) {
7253 page_counter_charge(&memcg->memory, nr_pages);
7254 if (do_memsw_account())
7255 page_counter_charge(&memcg->memsw, nr_pages);
7256 }
7257
7258 css_get(&memcg->css);
7259 commit_charge(new, memcg);
7260
7261 local_irq_save(flags);
7262 mem_cgroup_charge_statistics(memcg, nr_pages);
7263 memcg_check_events(memcg, folio_nid(new));
7264 local_irq_restore(flags);
7265 }
7266
7267 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7268 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7269
mem_cgroup_sk_alloc(struct sock * sk)7270 void mem_cgroup_sk_alloc(struct sock *sk)
7271 {
7272 struct mem_cgroup *memcg;
7273
7274 if (!mem_cgroup_sockets_enabled)
7275 return;
7276
7277 /* Do not associate the sock with unrelated interrupted task's memcg. */
7278 if (!in_task())
7279 return;
7280
7281 rcu_read_lock();
7282 memcg = mem_cgroup_from_task(current);
7283 if (mem_cgroup_is_root(memcg))
7284 goto out;
7285 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7286 goto out;
7287 if (css_tryget(&memcg->css))
7288 sk->sk_memcg = memcg;
7289 out:
7290 rcu_read_unlock();
7291 }
7292
mem_cgroup_sk_free(struct sock * sk)7293 void mem_cgroup_sk_free(struct sock *sk)
7294 {
7295 if (sk->sk_memcg)
7296 css_put(&sk->sk_memcg->css);
7297 }
7298
7299 /**
7300 * mem_cgroup_charge_skmem - charge socket memory
7301 * @memcg: memcg to charge
7302 * @nr_pages: number of pages to charge
7303 * @gfp_mask: reclaim mode
7304 *
7305 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7306 * @memcg's configured limit, %false if it doesn't.
7307 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7308 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7309 gfp_t gfp_mask)
7310 {
7311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7312 struct page_counter *fail;
7313
7314 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7315 memcg->tcpmem_pressure = 0;
7316 return true;
7317 }
7318 memcg->tcpmem_pressure = 1;
7319 if (gfp_mask & __GFP_NOFAIL) {
7320 page_counter_charge(&memcg->tcpmem, nr_pages);
7321 return true;
7322 }
7323 return false;
7324 }
7325
7326 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7327 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7328 return true;
7329 }
7330
7331 return false;
7332 }
7333
7334 /**
7335 * mem_cgroup_uncharge_skmem - uncharge socket memory
7336 * @memcg: memcg to uncharge
7337 * @nr_pages: number of pages to uncharge
7338 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7339 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7340 {
7341 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7342 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7343 return;
7344 }
7345
7346 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7347
7348 refill_stock(memcg, nr_pages);
7349 }
7350
cgroup_memory(char * s)7351 static int __init cgroup_memory(char *s)
7352 {
7353 char *token;
7354
7355 while ((token = strsep(&s, ",")) != NULL) {
7356 if (!*token)
7357 continue;
7358 if (!strcmp(token, "nosocket"))
7359 cgroup_memory_nosocket = true;
7360 if (!strcmp(token, "nokmem"))
7361 cgroup_memory_nokmem = true;
7362 if (!strcmp(token, "nobpf"))
7363 cgroup_memory_nobpf = true;
7364 }
7365 return 1;
7366 }
7367 __setup("cgroup.memory=", cgroup_memory);
7368
7369 /*
7370 * subsys_initcall() for memory controller.
7371 *
7372 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7373 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7374 * basically everything that doesn't depend on a specific mem_cgroup structure
7375 * should be initialized from here.
7376 */
mem_cgroup_init(void)7377 static int __init mem_cgroup_init(void)
7378 {
7379 int cpu, node;
7380
7381 /*
7382 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7383 * used for per-memcg-per-cpu caching of per-node statistics. In order
7384 * to work fine, we should make sure that the overfill threshold can't
7385 * exceed S32_MAX / PAGE_SIZE.
7386 */
7387 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7388
7389 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7390 memcg_hotplug_cpu_dead);
7391
7392 for_each_possible_cpu(cpu)
7393 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7394 drain_local_stock);
7395
7396 for_each_node(node) {
7397 struct mem_cgroup_tree_per_node *rtpn;
7398
7399 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7400
7401 rtpn->rb_root = RB_ROOT;
7402 rtpn->rb_rightmost = NULL;
7403 spin_lock_init(&rtpn->lock);
7404 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7405 }
7406
7407 return 0;
7408 }
7409 subsys_initcall(mem_cgroup_init);
7410
7411 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7412 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7413 {
7414 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7415 /*
7416 * The root cgroup cannot be destroyed, so it's refcount must
7417 * always be >= 1.
7418 */
7419 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7420 VM_BUG_ON(1);
7421 break;
7422 }
7423 memcg = parent_mem_cgroup(memcg);
7424 if (!memcg)
7425 memcg = root_mem_cgroup;
7426 }
7427 return memcg;
7428 }
7429
7430 /**
7431 * mem_cgroup_swapout - transfer a memsw charge to swap
7432 * @folio: folio whose memsw charge to transfer
7433 * @entry: swap entry to move the charge to
7434 *
7435 * Transfer the memsw charge of @folio to @entry.
7436 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7437 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7438 {
7439 struct mem_cgroup *memcg, *swap_memcg;
7440 unsigned int nr_entries;
7441 unsigned short oldid;
7442
7443 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7444 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7445
7446 if (mem_cgroup_disabled())
7447 return;
7448
7449 if (!do_memsw_account())
7450 return;
7451
7452 memcg = folio_memcg(folio);
7453
7454 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7455 if (!memcg)
7456 return;
7457
7458 /*
7459 * In case the memcg owning these pages has been offlined and doesn't
7460 * have an ID allocated to it anymore, charge the closest online
7461 * ancestor for the swap instead and transfer the memory+swap charge.
7462 */
7463 swap_memcg = mem_cgroup_id_get_online(memcg);
7464 nr_entries = folio_nr_pages(folio);
7465 /* Get references for the tail pages, too */
7466 if (nr_entries > 1)
7467 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7468 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7469 nr_entries);
7470 VM_BUG_ON_FOLIO(oldid, folio);
7471 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7472
7473 folio->memcg_data = 0;
7474
7475 if (!mem_cgroup_is_root(memcg))
7476 page_counter_uncharge(&memcg->memory, nr_entries);
7477
7478 if (memcg != swap_memcg) {
7479 if (!mem_cgroup_is_root(swap_memcg))
7480 page_counter_charge(&swap_memcg->memsw, nr_entries);
7481 page_counter_uncharge(&memcg->memsw, nr_entries);
7482 }
7483
7484 /*
7485 * Interrupts should be disabled here because the caller holds the
7486 * i_pages lock which is taken with interrupts-off. It is
7487 * important here to have the interrupts disabled because it is the
7488 * only synchronisation we have for updating the per-CPU variables.
7489 */
7490 memcg_stats_lock();
7491 mem_cgroup_charge_statistics(memcg, -nr_entries);
7492 memcg_stats_unlock();
7493 memcg_check_events(memcg, folio_nid(folio));
7494
7495 css_put(&memcg->css);
7496 }
7497
7498 /**
7499 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7500 * @folio: folio being added to swap
7501 * @entry: swap entry to charge
7502 *
7503 * Try to charge @folio's memcg for the swap space at @entry.
7504 *
7505 * Returns 0 on success, -ENOMEM on failure.
7506 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7507 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7508 {
7509 unsigned int nr_pages = folio_nr_pages(folio);
7510 struct page_counter *counter;
7511 struct mem_cgroup *memcg;
7512 unsigned short oldid;
7513
7514 if (do_memsw_account())
7515 return 0;
7516
7517 memcg = folio_memcg(folio);
7518
7519 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7520 if (!memcg)
7521 return 0;
7522
7523 if (!entry.val) {
7524 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7525 return 0;
7526 }
7527
7528 memcg = mem_cgroup_id_get_online(memcg);
7529
7530 if (!mem_cgroup_is_root(memcg) &&
7531 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7532 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7533 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7534 mem_cgroup_id_put(memcg);
7535 return -ENOMEM;
7536 }
7537
7538 /* Get references for the tail pages, too */
7539 if (nr_pages > 1)
7540 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7541 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7542 VM_BUG_ON_FOLIO(oldid, folio);
7543 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7544
7545 return 0;
7546 }
7547
7548 /**
7549 * __mem_cgroup_uncharge_swap - uncharge swap space
7550 * @entry: swap entry to uncharge
7551 * @nr_pages: the amount of swap space to uncharge
7552 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7553 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7554 {
7555 struct mem_cgroup *memcg;
7556 unsigned short id;
7557
7558 id = swap_cgroup_record(entry, 0, nr_pages);
7559 rcu_read_lock();
7560 memcg = mem_cgroup_from_id(id);
7561 if (memcg) {
7562 if (!mem_cgroup_is_root(memcg)) {
7563 if (do_memsw_account())
7564 page_counter_uncharge(&memcg->memsw, nr_pages);
7565 else
7566 page_counter_uncharge(&memcg->swap, nr_pages);
7567 }
7568 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7569 mem_cgroup_id_put_many(memcg, nr_pages);
7570 }
7571 rcu_read_unlock();
7572 }
7573
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7574 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7575 {
7576 long nr_swap_pages = get_nr_swap_pages();
7577
7578 if (mem_cgroup_disabled() || do_memsw_account())
7579 return nr_swap_pages;
7580 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7581 nr_swap_pages = min_t(long, nr_swap_pages,
7582 READ_ONCE(memcg->swap.max) -
7583 page_counter_read(&memcg->swap));
7584 return nr_swap_pages;
7585 }
7586
mem_cgroup_swap_full(struct folio * folio)7587 bool mem_cgroup_swap_full(struct folio *folio)
7588 {
7589 struct mem_cgroup *memcg;
7590
7591 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7592
7593 if (vm_swap_full())
7594 return true;
7595 if (do_memsw_account())
7596 return false;
7597
7598 memcg = folio_memcg(folio);
7599 if (!memcg)
7600 return false;
7601
7602 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7603 unsigned long usage = page_counter_read(&memcg->swap);
7604
7605 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7606 usage * 2 >= READ_ONCE(memcg->swap.max))
7607 return true;
7608 }
7609
7610 return false;
7611 }
7612
setup_swap_account(char * s)7613 static int __init setup_swap_account(char *s)
7614 {
7615 pr_warn_once("The swapaccount= commandline option is deprecated. "
7616 "Please report your usecase to linux-mm@kvack.org if you "
7617 "depend on this functionality.\n");
7618 return 1;
7619 }
7620 __setup("swapaccount=", setup_swap_account);
7621
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7622 static u64 swap_current_read(struct cgroup_subsys_state *css,
7623 struct cftype *cft)
7624 {
7625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7626
7627 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7628 }
7629
swap_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)7630 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7631 struct cftype *cft)
7632 {
7633 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7634
7635 return (u64)memcg->swap.watermark * PAGE_SIZE;
7636 }
7637
swap_high_show(struct seq_file * m,void * v)7638 static int swap_high_show(struct seq_file *m, void *v)
7639 {
7640 return seq_puts_memcg_tunable(m,
7641 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7642 }
7643
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7644 static ssize_t swap_high_write(struct kernfs_open_file *of,
7645 char *buf, size_t nbytes, loff_t off)
7646 {
7647 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7648 unsigned long high;
7649 int err;
7650
7651 buf = strstrip(buf);
7652 err = page_counter_memparse(buf, "max", &high);
7653 if (err)
7654 return err;
7655
7656 page_counter_set_high(&memcg->swap, high);
7657
7658 return nbytes;
7659 }
7660
swap_max_show(struct seq_file * m,void * v)7661 static int swap_max_show(struct seq_file *m, void *v)
7662 {
7663 return seq_puts_memcg_tunable(m,
7664 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7665 }
7666
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7667 static ssize_t swap_max_write(struct kernfs_open_file *of,
7668 char *buf, size_t nbytes, loff_t off)
7669 {
7670 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7671 unsigned long max;
7672 int err;
7673
7674 buf = strstrip(buf);
7675 err = page_counter_memparse(buf, "max", &max);
7676 if (err)
7677 return err;
7678
7679 xchg(&memcg->swap.max, max);
7680
7681 return nbytes;
7682 }
7683
swap_events_show(struct seq_file * m,void * v)7684 static int swap_events_show(struct seq_file *m, void *v)
7685 {
7686 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7687
7688 seq_printf(m, "high %lu\n",
7689 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7690 seq_printf(m, "max %lu\n",
7691 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7692 seq_printf(m, "fail %lu\n",
7693 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7694
7695 return 0;
7696 }
7697
7698 static struct cftype swap_files[] = {
7699 {
7700 .name = "swap.current",
7701 .flags = CFTYPE_NOT_ON_ROOT,
7702 .read_u64 = swap_current_read,
7703 },
7704 {
7705 .name = "swap.high",
7706 .flags = CFTYPE_NOT_ON_ROOT,
7707 .seq_show = swap_high_show,
7708 .write = swap_high_write,
7709 },
7710 {
7711 .name = "swap.max",
7712 .flags = CFTYPE_NOT_ON_ROOT,
7713 .seq_show = swap_max_show,
7714 .write = swap_max_write,
7715 },
7716 {
7717 .name = "swap.peak",
7718 .flags = CFTYPE_NOT_ON_ROOT,
7719 .read_u64 = swap_peak_read,
7720 },
7721 {
7722 .name = "swap.events",
7723 .flags = CFTYPE_NOT_ON_ROOT,
7724 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7725 .seq_show = swap_events_show,
7726 },
7727 { } /* terminate */
7728 };
7729
7730 static struct cftype memsw_files[] = {
7731 {
7732 .name = "memsw.usage_in_bytes",
7733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7734 .read_u64 = mem_cgroup_read_u64,
7735 },
7736 {
7737 .name = "memsw.max_usage_in_bytes",
7738 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7739 .write = mem_cgroup_reset,
7740 .read_u64 = mem_cgroup_read_u64,
7741 },
7742 {
7743 .name = "memsw.limit_in_bytes",
7744 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7745 .write = mem_cgroup_write,
7746 .read_u64 = mem_cgroup_read_u64,
7747 },
7748 {
7749 .name = "memsw.failcnt",
7750 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7751 .write = mem_cgroup_reset,
7752 .read_u64 = mem_cgroup_read_u64,
7753 },
7754 { }, /* terminate */
7755 };
7756
7757 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7758 /**
7759 * obj_cgroup_may_zswap - check if this cgroup can zswap
7760 * @objcg: the object cgroup
7761 *
7762 * Check if the hierarchical zswap limit has been reached.
7763 *
7764 * This doesn't check for specific headroom, and it is not atomic
7765 * either. But with zswap, the size of the allocation is only known
7766 * once compression has occured, and this optimistic pre-check avoids
7767 * spending cycles on compression when there is already no room left
7768 * or zswap is disabled altogether somewhere in the hierarchy.
7769 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7770 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7771 {
7772 struct mem_cgroup *memcg, *original_memcg;
7773 bool ret = true;
7774
7775 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7776 return true;
7777
7778 original_memcg = get_mem_cgroup_from_objcg(objcg);
7779 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7780 memcg = parent_mem_cgroup(memcg)) {
7781 unsigned long max = READ_ONCE(memcg->zswap_max);
7782 unsigned long pages;
7783
7784 if (max == PAGE_COUNTER_MAX)
7785 continue;
7786 if (max == 0) {
7787 ret = false;
7788 break;
7789 }
7790
7791 cgroup_rstat_flush(memcg->css.cgroup);
7792 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7793 if (pages < max)
7794 continue;
7795 ret = false;
7796 break;
7797 }
7798 mem_cgroup_put(original_memcg);
7799 return ret;
7800 }
7801
7802 /**
7803 * obj_cgroup_charge_zswap - charge compression backend memory
7804 * @objcg: the object cgroup
7805 * @size: size of compressed object
7806 *
7807 * This forces the charge after obj_cgroup_may_zswap() allowed
7808 * compression and storage in zwap for this cgroup to go ahead.
7809 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7810 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7811 {
7812 struct mem_cgroup *memcg;
7813
7814 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7815 return;
7816
7817 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7818
7819 /* PF_MEMALLOC context, charging must succeed */
7820 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7821 VM_WARN_ON_ONCE(1);
7822
7823 rcu_read_lock();
7824 memcg = obj_cgroup_memcg(objcg);
7825 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7826 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7827 rcu_read_unlock();
7828 }
7829
7830 /**
7831 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7832 * @objcg: the object cgroup
7833 * @size: size of compressed object
7834 *
7835 * Uncharges zswap memory on page in.
7836 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7837 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7838 {
7839 struct mem_cgroup *memcg;
7840
7841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7842 return;
7843
7844 obj_cgroup_uncharge(objcg, size);
7845
7846 rcu_read_lock();
7847 memcg = obj_cgroup_memcg(objcg);
7848 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7849 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7850 rcu_read_unlock();
7851 }
7852
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7853 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7854 struct cftype *cft)
7855 {
7856 cgroup_rstat_flush(css->cgroup);
7857 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7858 }
7859
zswap_max_show(struct seq_file * m,void * v)7860 static int zswap_max_show(struct seq_file *m, void *v)
7861 {
7862 return seq_puts_memcg_tunable(m,
7863 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7864 }
7865
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7866 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7867 char *buf, size_t nbytes, loff_t off)
7868 {
7869 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7870 unsigned long max;
7871 int err;
7872
7873 buf = strstrip(buf);
7874 err = page_counter_memparse(buf, "max", &max);
7875 if (err)
7876 return err;
7877
7878 xchg(&memcg->zswap_max, max);
7879
7880 return nbytes;
7881 }
7882
7883 static struct cftype zswap_files[] = {
7884 {
7885 .name = "zswap.current",
7886 .flags = CFTYPE_NOT_ON_ROOT,
7887 .read_u64 = zswap_current_read,
7888 },
7889 {
7890 .name = "zswap.max",
7891 .flags = CFTYPE_NOT_ON_ROOT,
7892 .seq_show = zswap_max_show,
7893 .write = zswap_max_write,
7894 },
7895 { } /* terminate */
7896 };
7897 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7898
mem_cgroup_swap_init(void)7899 static int __init mem_cgroup_swap_init(void)
7900 {
7901 if (mem_cgroup_disabled())
7902 return 0;
7903
7904 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7905 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7906 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7907 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7908 #endif
7909 return 0;
7910 }
7911 subsys_initcall(mem_cgroup_swap_init);
7912
7913 #endif /* CONFIG_SWAP */
7914