1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
35
36 /**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128 };
129
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136 };
137 #endif
138
139 /*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152 #define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163
memblock_has_mirror(void)164 bool __init_memblock memblock_has_mirror(void)
165 {
166 return system_has_some_mirror;
167 }
168
choose_memblock_flags(void)169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179
180 /*
181 * Address comparison utilities
182 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)183 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
184 phys_addr_t base2, phys_addr_t size2)
185 {
186 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
187 }
188
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)189 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
190 phys_addr_t base, phys_addr_t size)
191 {
192 unsigned long i;
193
194 memblock_cap_size(base, &size);
195
196 for (i = 0; i < type->cnt; i++)
197 if (memblock_addrs_overlap(base, size, type->regions[i].base,
198 type->regions[i].size))
199 break;
200 return i < type->cnt;
201 }
202
203 /**
204 * __memblock_find_range_bottom_up - find free area utility in bottom-up
205 * @start: start of candidate range
206 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
207 * %MEMBLOCK_ALLOC_ACCESSIBLE
208 * @size: size of free area to find
209 * @align: alignment of free area to find
210 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
211 * @flags: pick from blocks based on memory attributes
212 *
213 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
214 *
215 * Return:
216 * Found address on success, 0 on failure.
217 */
218 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)219 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
220 phys_addr_t size, phys_addr_t align, int nid,
221 enum memblock_flags flags)
222 {
223 phys_addr_t this_start, this_end, cand;
224 u64 i;
225
226 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
227 this_start = clamp(this_start, start, end);
228 this_end = clamp(this_end, start, end);
229
230 cand = round_up(this_start, align);
231 if (cand < this_end && this_end - cand >= size)
232 return cand;
233 }
234
235 return 0;
236 }
237
238 /**
239 * __memblock_find_range_top_down - find free area utility, in top-down
240 * @start: start of candidate range
241 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
242 * %MEMBLOCK_ALLOC_ACCESSIBLE
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
246 * @flags: pick from blocks based on memory attributes
247 *
248 * Utility called from memblock_find_in_range_node(), find free area top-down.
249 *
250 * Return:
251 * Found address on success, 0 on failure.
252 */
253 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)254 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
255 phys_addr_t size, phys_addr_t align, int nid,
256 enum memblock_flags flags)
257 {
258 phys_addr_t this_start, this_end, cand;
259 u64 i;
260
261 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
262 NULL) {
263 this_start = clamp(this_start, start, end);
264 this_end = clamp(this_end, start, end);
265
266 if (this_end < size)
267 continue;
268
269 cand = round_down(this_end - size, align);
270 if (cand >= this_start)
271 return cand;
272 }
273
274 return 0;
275 }
276
277 /**
278 * memblock_find_in_range_node - find free area in given range and node
279 * @size: size of free area to find
280 * @align: alignment of free area to find
281 * @start: start of candidate range
282 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
283 * %MEMBLOCK_ALLOC_ACCESSIBLE
284 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
285 * @flags: pick from blocks based on memory attributes
286 *
287 * Find @size free area aligned to @align in the specified range and node.
288 *
289 * Return:
290 * Found address on success, 0 on failure.
291 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)292 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
293 phys_addr_t align, phys_addr_t start,
294 phys_addr_t end, int nid,
295 enum memblock_flags flags)
296 {
297 /* pump up @end */
298 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
299 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
300 end = memblock.current_limit;
301
302 /* avoid allocating the first page */
303 start = max_t(phys_addr_t, start, PAGE_SIZE);
304 end = max(start, end);
305
306 if (memblock_bottom_up())
307 return __memblock_find_range_bottom_up(start, end, size, align,
308 nid, flags);
309 else
310 return __memblock_find_range_top_down(start, end, size, align,
311 nid, flags);
312 }
313
314 /**
315 * memblock_find_in_range - find free area in given range
316 * @start: start of candidate range
317 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
318 * %MEMBLOCK_ALLOC_ACCESSIBLE
319 * @size: size of free area to find
320 * @align: alignment of free area to find
321 *
322 * Find @size free area aligned to @align in the specified range.
323 *
324 * Return:
325 * Found address on success, 0 on failure.
326 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)327 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
328 phys_addr_t end, phys_addr_t size,
329 phys_addr_t align)
330 {
331 phys_addr_t ret;
332 enum memblock_flags flags = choose_memblock_flags();
333
334 again:
335 ret = memblock_find_in_range_node(size, align, start, end,
336 NUMA_NO_NODE, flags);
337
338 if (!ret && (flags & MEMBLOCK_MIRROR)) {
339 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
340 &size);
341 flags &= ~MEMBLOCK_MIRROR;
342 goto again;
343 }
344
345 return ret;
346 }
347
memblock_remove_region(struct memblock_type * type,unsigned long r)348 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
349 {
350 type->total_size -= type->regions[r].size;
351 memmove(&type->regions[r], &type->regions[r + 1],
352 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
353 type->cnt--;
354
355 /* Special case for empty arrays */
356 if (type->cnt == 0) {
357 WARN_ON(type->total_size != 0);
358 type->cnt = 1;
359 type->regions[0].base = 0;
360 type->regions[0].size = 0;
361 type->regions[0].flags = 0;
362 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
363 }
364 }
365
366 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
367 /**
368 * memblock_discard - discard memory and reserved arrays if they were allocated
369 */
memblock_discard(void)370 void __init memblock_discard(void)
371 {
372 phys_addr_t addr, size;
373
374 if (memblock.reserved.regions != memblock_reserved_init_regions) {
375 addr = __pa(memblock.reserved.regions);
376 size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 memblock.reserved.max);
378 if (memblock_reserved_in_slab)
379 kfree(memblock.reserved.regions);
380 else
381 memblock_free_late(addr, size);
382 }
383
384 if (memblock.memory.regions != memblock_memory_init_regions) {
385 addr = __pa(memblock.memory.regions);
386 size = PAGE_ALIGN(sizeof(struct memblock_region) *
387 memblock.memory.max);
388 if (memblock_memory_in_slab)
389 kfree(memblock.memory.regions);
390 else
391 memblock_free_late(addr, size);
392 }
393
394 memblock_memory = NULL;
395 }
396 #endif
397
398 /**
399 * memblock_double_array - double the size of the memblock regions array
400 * @type: memblock type of the regions array being doubled
401 * @new_area_start: starting address of memory range to avoid overlap with
402 * @new_area_size: size of memory range to avoid overlap with
403 *
404 * Double the size of the @type regions array. If memblock is being used to
405 * allocate memory for a new reserved regions array and there is a previously
406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407 * waiting to be reserved, ensure the memory used by the new array does
408 * not overlap.
409 *
410 * Return:
411 * 0 on success, -1 on failure.
412 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)413 static int __init_memblock memblock_double_array(struct memblock_type *type,
414 phys_addr_t new_area_start,
415 phys_addr_t new_area_size)
416 {
417 struct memblock_region *new_array, *old_array;
418 phys_addr_t old_alloc_size, new_alloc_size;
419 phys_addr_t old_size, new_size, addr, new_end;
420 int use_slab = slab_is_available();
421 int *in_slab;
422
423 /* We don't allow resizing until we know about the reserved regions
424 * of memory that aren't suitable for allocation
425 */
426 if (!memblock_can_resize)
427 return -1;
428
429 /* Calculate new doubled size */
430 old_size = type->max * sizeof(struct memblock_region);
431 new_size = old_size << 1;
432 /*
433 * We need to allocated new one align to PAGE_SIZE,
434 * so we can free them completely later.
435 */
436 old_alloc_size = PAGE_ALIGN(old_size);
437 new_alloc_size = PAGE_ALIGN(new_size);
438
439 /* Retrieve the slab flag */
440 if (type == &memblock.memory)
441 in_slab = &memblock_memory_in_slab;
442 else
443 in_slab = &memblock_reserved_in_slab;
444
445 /* Try to find some space for it */
446 if (use_slab) {
447 new_array = kmalloc(new_size, GFP_KERNEL);
448 addr = new_array ? __pa(new_array) : 0;
449 } else {
450 /* only exclude range when trying to double reserved.regions */
451 if (type != &memblock.reserved)
452 new_area_start = new_area_size = 0;
453
454 addr = memblock_find_in_range(new_area_start + new_area_size,
455 memblock.current_limit,
456 new_alloc_size, PAGE_SIZE);
457 if (!addr && new_area_size)
458 addr = memblock_find_in_range(0,
459 min(new_area_start, memblock.current_limit),
460 new_alloc_size, PAGE_SIZE);
461
462 new_array = addr ? __va(addr) : NULL;
463 }
464 if (!addr) {
465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 type->name, type->max, type->max * 2);
467 return -1;
468 }
469
470 new_end = addr + new_size - 1;
471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 type->name, type->max * 2, &addr, &new_end);
473
474 /*
475 * Found space, we now need to move the array over before we add the
476 * reserved region since it may be our reserved array itself that is
477 * full.
478 */
479 memcpy(new_array, type->regions, old_size);
480 memset(new_array + type->max, 0, old_size);
481 old_array = type->regions;
482 type->regions = new_array;
483 type->max <<= 1;
484
485 /* Free old array. We needn't free it if the array is the static one */
486 if (*in_slab)
487 kfree(old_array);
488 else if (old_array != memblock_memory_init_regions &&
489 old_array != memblock_reserved_init_regions)
490 memblock_free(old_array, old_alloc_size);
491
492 /*
493 * Reserve the new array if that comes from the memblock. Otherwise, we
494 * needn't do it
495 */
496 if (!use_slab)
497 BUG_ON(memblock_reserve(addr, new_alloc_size));
498
499 /* Update slab flag */
500 *in_slab = use_slab;
501
502 return 0;
503 }
504
505 /**
506 * memblock_merge_regions - merge neighboring compatible regions
507 * @type: memblock type to scan
508 * @start_rgn: start scanning from (@start_rgn - 1)
509 * @end_rgn: end scanning at (@end_rgn - 1)
510 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
511 */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)512 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
513 unsigned long start_rgn,
514 unsigned long end_rgn)
515 {
516 int i = 0;
517 if (start_rgn)
518 i = start_rgn - 1;
519 end_rgn = min(end_rgn, type->cnt - 1);
520 while (i < end_rgn) {
521 struct memblock_region *this = &type->regions[i];
522 struct memblock_region *next = &type->regions[i + 1];
523
524 if (this->base + this->size != next->base ||
525 memblock_get_region_node(this) !=
526 memblock_get_region_node(next) ||
527 this->flags != next->flags) {
528 BUG_ON(this->base + this->size > next->base);
529 i++;
530 continue;
531 }
532
533 this->size += next->size;
534 /* move forward from next + 1, index of which is i + 2 */
535 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 type->cnt--;
537 end_rgn--;
538 }
539 }
540
541 /**
542 * memblock_insert_region - insert new memblock region
543 * @type: memblock type to insert into
544 * @idx: index for the insertion point
545 * @base: base address of the new region
546 * @size: size of the new region
547 * @nid: node id of the new region
548 * @flags: flags of the new region
549 *
550 * Insert new memblock region [@base, @base + @size) into @type at @idx.
551 * @type must already have extra room to accommodate the new region.
552 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)553 static void __init_memblock memblock_insert_region(struct memblock_type *type,
554 int idx, phys_addr_t base,
555 phys_addr_t size,
556 int nid,
557 enum memblock_flags flags)
558 {
559 struct memblock_region *rgn = &type->regions[idx];
560
561 BUG_ON(type->cnt >= type->max);
562 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
563 rgn->base = base;
564 rgn->size = size;
565 rgn->flags = flags;
566 memblock_set_region_node(rgn, nid);
567 type->cnt++;
568 type->total_size += size;
569 }
570
571 /**
572 * memblock_add_range - add new memblock region
573 * @type: memblock type to add new region into
574 * @base: base address of the new region
575 * @size: size of the new region
576 * @nid: nid of the new region
577 * @flags: flags of the new region
578 *
579 * Add new memblock region [@base, @base + @size) into @type. The new region
580 * is allowed to overlap with existing ones - overlaps don't affect already
581 * existing regions. @type is guaranteed to be minimal (all neighbouring
582 * compatible regions are merged) after the addition.
583 *
584 * Return:
585 * 0 on success, -errno on failure.
586 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)587 static int __init_memblock memblock_add_range(struct memblock_type *type,
588 phys_addr_t base, phys_addr_t size,
589 int nid, enum memblock_flags flags)
590 {
591 bool insert = false;
592 phys_addr_t obase = base;
593 phys_addr_t end = base + memblock_cap_size(base, &size);
594 int idx, nr_new, start_rgn = -1, end_rgn;
595 struct memblock_region *rgn;
596
597 if (!size)
598 return 0;
599
600 /* special case for empty array */
601 if (type->regions[0].size == 0) {
602 WARN_ON(type->cnt != 1 || type->total_size);
603 type->regions[0].base = base;
604 type->regions[0].size = size;
605 type->regions[0].flags = flags;
606 memblock_set_region_node(&type->regions[0], nid);
607 type->total_size = size;
608 return 0;
609 }
610
611 /*
612 * The worst case is when new range overlaps all existing regions,
613 * then we'll need type->cnt + 1 empty regions in @type. So if
614 * type->cnt * 2 + 1 is less than or equal to type->max, we know
615 * that there is enough empty regions in @type, and we can insert
616 * regions directly.
617 */
618 if (type->cnt * 2 + 1 <= type->max)
619 insert = true;
620
621 repeat:
622 /*
623 * The following is executed twice. Once with %false @insert and
624 * then with %true. The first counts the number of regions needed
625 * to accommodate the new area. The second actually inserts them.
626 */
627 base = obase;
628 nr_new = 0;
629
630 for_each_memblock_type(idx, type, rgn) {
631 phys_addr_t rbase = rgn->base;
632 phys_addr_t rend = rbase + rgn->size;
633
634 if (rbase >= end)
635 break;
636 if (rend <= base)
637 continue;
638 /*
639 * @rgn overlaps. If it separates the lower part of new
640 * area, insert that portion.
641 */
642 if (rbase > base) {
643 #ifdef CONFIG_NUMA
644 WARN_ON(nid != memblock_get_region_node(rgn));
645 #endif
646 WARN_ON(flags != rgn->flags);
647 nr_new++;
648 if (insert) {
649 if (start_rgn == -1)
650 start_rgn = idx;
651 end_rgn = idx + 1;
652 memblock_insert_region(type, idx++, base,
653 rbase - base, nid,
654 flags);
655 }
656 }
657 /* area below @rend is dealt with, forget about it */
658 base = min(rend, end);
659 }
660
661 /* insert the remaining portion */
662 if (base < end) {
663 nr_new++;
664 if (insert) {
665 if (start_rgn == -1)
666 start_rgn = idx;
667 end_rgn = idx + 1;
668 memblock_insert_region(type, idx, base, end - base,
669 nid, flags);
670 }
671 }
672
673 if (!nr_new)
674 return 0;
675
676 /*
677 * If this was the first round, resize array and repeat for actual
678 * insertions; otherwise, merge and return.
679 */
680 if (!insert) {
681 while (type->cnt + nr_new > type->max)
682 if (memblock_double_array(type, obase, size) < 0)
683 return -ENOMEM;
684 insert = true;
685 goto repeat;
686 } else {
687 memblock_merge_regions(type, start_rgn, end_rgn);
688 return 0;
689 }
690 }
691
692 /**
693 * memblock_add_node - add new memblock region within a NUMA node
694 * @base: base address of the new region
695 * @size: size of the new region
696 * @nid: nid of the new region
697 * @flags: flags of the new region
698 *
699 * Add new memblock region [@base, @base + @size) to the "memory"
700 * type. See memblock_add_range() description for mode details
701 *
702 * Return:
703 * 0 on success, -errno on failure.
704 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)705 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
706 int nid, enum memblock_flags flags)
707 {
708 phys_addr_t end = base + size - 1;
709
710 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
711 &base, &end, nid, flags, (void *)_RET_IP_);
712
713 return memblock_add_range(&memblock.memory, base, size, nid, flags);
714 }
715
716 /**
717 * memblock_add - add new memblock region
718 * @base: base address of the new region
719 * @size: size of the new region
720 *
721 * Add new memblock region [@base, @base + @size) to the "memory"
722 * type. See memblock_add_range() description for mode details
723 *
724 * Return:
725 * 0 on success, -errno on failure.
726 */
memblock_add(phys_addr_t base,phys_addr_t size)727 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
728 {
729 phys_addr_t end = base + size - 1;
730
731 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
732 &base, &end, (void *)_RET_IP_);
733
734 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
735 }
736
737 /**
738 * memblock_isolate_range - isolate given range into disjoint memblocks
739 * @type: memblock type to isolate range for
740 * @base: base of range to isolate
741 * @size: size of range to isolate
742 * @start_rgn: out parameter for the start of isolated region
743 * @end_rgn: out parameter for the end of isolated region
744 *
745 * Walk @type and ensure that regions don't cross the boundaries defined by
746 * [@base, @base + @size). Crossing regions are split at the boundaries,
747 * which may create at most two more regions. The index of the first
748 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
749 *
750 * Return:
751 * 0 on success, -errno on failure.
752 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)753 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
754 phys_addr_t base, phys_addr_t size,
755 int *start_rgn, int *end_rgn)
756 {
757 phys_addr_t end = base + memblock_cap_size(base, &size);
758 int idx;
759 struct memblock_region *rgn;
760
761 *start_rgn = *end_rgn = 0;
762
763 if (!size)
764 return 0;
765
766 /* we'll create at most two more regions */
767 while (type->cnt + 2 > type->max)
768 if (memblock_double_array(type, base, size) < 0)
769 return -ENOMEM;
770
771 for_each_memblock_type(idx, type, rgn) {
772 phys_addr_t rbase = rgn->base;
773 phys_addr_t rend = rbase + rgn->size;
774
775 if (rbase >= end)
776 break;
777 if (rend <= base)
778 continue;
779
780 if (rbase < base) {
781 /*
782 * @rgn intersects from below. Split and continue
783 * to process the next region - the new top half.
784 */
785 rgn->base = base;
786 rgn->size -= base - rbase;
787 type->total_size -= base - rbase;
788 memblock_insert_region(type, idx, rbase, base - rbase,
789 memblock_get_region_node(rgn),
790 rgn->flags);
791 } else if (rend > end) {
792 /*
793 * @rgn intersects from above. Split and redo the
794 * current region - the new bottom half.
795 */
796 rgn->base = end;
797 rgn->size -= end - rbase;
798 type->total_size -= end - rbase;
799 memblock_insert_region(type, idx--, rbase, end - rbase,
800 memblock_get_region_node(rgn),
801 rgn->flags);
802 } else {
803 /* @rgn is fully contained, record it */
804 if (!*end_rgn)
805 *start_rgn = idx;
806 *end_rgn = idx + 1;
807 }
808 }
809
810 return 0;
811 }
812
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)813 static int __init_memblock memblock_remove_range(struct memblock_type *type,
814 phys_addr_t base, phys_addr_t size)
815 {
816 int start_rgn, end_rgn;
817 int i, ret;
818
819 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
820 if (ret)
821 return ret;
822
823 for (i = end_rgn - 1; i >= start_rgn; i--)
824 memblock_remove_region(type, i);
825 return 0;
826 }
827
memblock_remove(phys_addr_t base,phys_addr_t size)828 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
829 {
830 phys_addr_t end = base + size - 1;
831
832 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
833 &base, &end, (void *)_RET_IP_);
834
835 return memblock_remove_range(&memblock.memory, base, size);
836 }
837
838 /**
839 * memblock_free - free boot memory allocation
840 * @ptr: starting address of the boot memory allocation
841 * @size: size of the boot memory block in bytes
842 *
843 * Free boot memory block previously allocated by memblock_alloc_xx() API.
844 * The freeing memory will not be released to the buddy allocator.
845 */
memblock_free(void * ptr,size_t size)846 void __init_memblock memblock_free(void *ptr, size_t size)
847 {
848 if (ptr)
849 memblock_phys_free(__pa(ptr), size);
850 }
851
852 /**
853 * memblock_phys_free - free boot memory block
854 * @base: phys starting address of the boot memory block
855 * @size: size of the boot memory block in bytes
856 *
857 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
858 * The freeing memory will not be released to the buddy allocator.
859 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)860 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
861 {
862 phys_addr_t end = base + size - 1;
863
864 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
865 &base, &end, (void *)_RET_IP_);
866
867 kmemleak_free_part_phys(base, size);
868 return memblock_remove_range(&memblock.reserved, base, size);
869 }
870
memblock_reserve(phys_addr_t base,phys_addr_t size)871 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
872 {
873 phys_addr_t end = base + size - 1;
874
875 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
876 &base, &end, (void *)_RET_IP_);
877
878 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
879 }
880
881 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)882 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
883 {
884 phys_addr_t end = base + size - 1;
885
886 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
887 &base, &end, (void *)_RET_IP_);
888
889 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
890 }
891 #endif
892
893 /**
894 * memblock_setclr_flag - set or clear flag for a memory region
895 * @base: base address of the region
896 * @size: size of the region
897 * @set: set or clear the flag
898 * @flag: the flag to update
899 *
900 * This function isolates region [@base, @base + @size), and sets/clears flag
901 *
902 * Return: 0 on success, -errno on failure.
903 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)904 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
905 phys_addr_t size, int set, int flag)
906 {
907 struct memblock_type *type = &memblock.memory;
908 int i, ret, start_rgn, end_rgn;
909
910 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
911 if (ret)
912 return ret;
913
914 for (i = start_rgn; i < end_rgn; i++) {
915 struct memblock_region *r = &type->regions[i];
916
917 if (set)
918 r->flags |= flag;
919 else
920 r->flags &= ~flag;
921 }
922
923 memblock_merge_regions(type, start_rgn, end_rgn);
924 return 0;
925 }
926
927 /**
928 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
929 * @base: the base phys addr of the region
930 * @size: the size of the region
931 *
932 * Return: 0 on success, -errno on failure.
933 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)934 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
935 {
936 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
937 }
938
939 /**
940 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
941 * @base: the base phys addr of the region
942 * @size: the size of the region
943 *
944 * Return: 0 on success, -errno on failure.
945 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)946 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
947 {
948 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
949 }
950
951 /**
952 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
953 * @base: the base phys addr of the region
954 * @size: the size of the region
955 *
956 * Return: 0 on success, -errno on failure.
957 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)958 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
959 {
960 if (!mirrored_kernelcore)
961 return 0;
962
963 system_has_some_mirror = true;
964
965 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
966 }
967
968 /**
969 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
970 * @base: the base phys addr of the region
971 * @size: the size of the region
972 *
973 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
974 * direct mapping of the physical memory. These regions will still be
975 * covered by the memory map. The struct page representing NOMAP memory
976 * frames in the memory map will be PageReserved()
977 *
978 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
979 * memblock, the caller must inform kmemleak to ignore that memory
980 *
981 * Return: 0 on success, -errno on failure.
982 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)983 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
984 {
985 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
986 }
987
988 /**
989 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
990 * @base: the base phys addr of the region
991 * @size: the size of the region
992 *
993 * Return: 0 on success, -errno on failure.
994 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)995 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
996 {
997 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
998 }
999
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1000 static bool should_skip_region(struct memblock_type *type,
1001 struct memblock_region *m,
1002 int nid, int flags)
1003 {
1004 int m_nid = memblock_get_region_node(m);
1005
1006 /* we never skip regions when iterating memblock.reserved or physmem */
1007 if (type != memblock_memory)
1008 return false;
1009
1010 /* only memory regions are associated with nodes, check it */
1011 if (nid != NUMA_NO_NODE && nid != m_nid)
1012 return true;
1013
1014 /* skip hotpluggable memory regions if needed */
1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1016 !(flags & MEMBLOCK_HOTPLUG))
1017 return true;
1018
1019 /* if we want mirror memory skip non-mirror memory regions */
1020 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1021 return true;
1022
1023 /* skip nomap memory unless we were asked for it explicitly */
1024 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1025 return true;
1026
1027 /* skip driver-managed memory unless we were asked for it explicitly */
1028 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1029 return true;
1030
1031 return false;
1032 }
1033
1034 /**
1035 * __next_mem_range - next function for for_each_free_mem_range() etc.
1036 * @idx: pointer to u64 loop variable
1037 * @nid: node selector, %NUMA_NO_NODE for all nodes
1038 * @flags: pick from blocks based on memory attributes
1039 * @type_a: pointer to memblock_type from where the range is taken
1040 * @type_b: pointer to memblock_type which excludes memory from being taken
1041 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1042 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1043 * @out_nid: ptr to int for nid of the range, can be %NULL
1044 *
1045 * Find the first area from *@idx which matches @nid, fill the out
1046 * parameters, and update *@idx for the next iteration. The lower 32bit of
1047 * *@idx contains index into type_a and the upper 32bit indexes the
1048 * areas before each region in type_b. For example, if type_b regions
1049 * look like the following,
1050 *
1051 * 0:[0-16), 1:[32-48), 2:[128-130)
1052 *
1053 * The upper 32bit indexes the following regions.
1054 *
1055 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1056 *
1057 * As both region arrays are sorted, the function advances the two indices
1058 * in lockstep and returns each intersection.
1059 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1060 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1061 struct memblock_type *type_a,
1062 struct memblock_type *type_b, phys_addr_t *out_start,
1063 phys_addr_t *out_end, int *out_nid)
1064 {
1065 int idx_a = *idx & 0xffffffff;
1066 int idx_b = *idx >> 32;
1067
1068 if (WARN_ONCE(nid == MAX_NUMNODES,
1069 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1070 nid = NUMA_NO_NODE;
1071
1072 for (; idx_a < type_a->cnt; idx_a++) {
1073 struct memblock_region *m = &type_a->regions[idx_a];
1074
1075 phys_addr_t m_start = m->base;
1076 phys_addr_t m_end = m->base + m->size;
1077 int m_nid = memblock_get_region_node(m);
1078
1079 if (should_skip_region(type_a, m, nid, flags))
1080 continue;
1081
1082 if (!type_b) {
1083 if (out_start)
1084 *out_start = m_start;
1085 if (out_end)
1086 *out_end = m_end;
1087 if (out_nid)
1088 *out_nid = m_nid;
1089 idx_a++;
1090 *idx = (u32)idx_a | (u64)idx_b << 32;
1091 return;
1092 }
1093
1094 /* scan areas before each reservation */
1095 for (; idx_b < type_b->cnt + 1; idx_b++) {
1096 struct memblock_region *r;
1097 phys_addr_t r_start;
1098 phys_addr_t r_end;
1099
1100 r = &type_b->regions[idx_b];
1101 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1102 r_end = idx_b < type_b->cnt ?
1103 r->base : PHYS_ADDR_MAX;
1104
1105 /*
1106 * if idx_b advanced past idx_a,
1107 * break out to advance idx_a
1108 */
1109 if (r_start >= m_end)
1110 break;
1111 /* if the two regions intersect, we're done */
1112 if (m_start < r_end) {
1113 if (out_start)
1114 *out_start =
1115 max(m_start, r_start);
1116 if (out_end)
1117 *out_end = min(m_end, r_end);
1118 if (out_nid)
1119 *out_nid = m_nid;
1120 /*
1121 * The region which ends first is
1122 * advanced for the next iteration.
1123 */
1124 if (m_end <= r_end)
1125 idx_a++;
1126 else
1127 idx_b++;
1128 *idx = (u32)idx_a | (u64)idx_b << 32;
1129 return;
1130 }
1131 }
1132 }
1133
1134 /* signal end of iteration */
1135 *idx = ULLONG_MAX;
1136 }
1137
1138 /**
1139 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1140 *
1141 * @idx: pointer to u64 loop variable
1142 * @nid: node selector, %NUMA_NO_NODE for all nodes
1143 * @flags: pick from blocks based on memory attributes
1144 * @type_a: pointer to memblock_type from where the range is taken
1145 * @type_b: pointer to memblock_type which excludes memory from being taken
1146 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1147 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1148 * @out_nid: ptr to int for nid of the range, can be %NULL
1149 *
1150 * Finds the next range from type_a which is not marked as unsuitable
1151 * in type_b.
1152 *
1153 * Reverse of __next_mem_range().
1154 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1155 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1156 enum memblock_flags flags,
1157 struct memblock_type *type_a,
1158 struct memblock_type *type_b,
1159 phys_addr_t *out_start,
1160 phys_addr_t *out_end, int *out_nid)
1161 {
1162 int idx_a = *idx & 0xffffffff;
1163 int idx_b = *idx >> 32;
1164
1165 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1166 nid = NUMA_NO_NODE;
1167
1168 if (*idx == (u64)ULLONG_MAX) {
1169 idx_a = type_a->cnt - 1;
1170 if (type_b != NULL)
1171 idx_b = type_b->cnt;
1172 else
1173 idx_b = 0;
1174 }
1175
1176 for (; idx_a >= 0; idx_a--) {
1177 struct memblock_region *m = &type_a->regions[idx_a];
1178
1179 phys_addr_t m_start = m->base;
1180 phys_addr_t m_end = m->base + m->size;
1181 int m_nid = memblock_get_region_node(m);
1182
1183 if (should_skip_region(type_a, m, nid, flags))
1184 continue;
1185
1186 if (!type_b) {
1187 if (out_start)
1188 *out_start = m_start;
1189 if (out_end)
1190 *out_end = m_end;
1191 if (out_nid)
1192 *out_nid = m_nid;
1193 idx_a--;
1194 *idx = (u32)idx_a | (u64)idx_b << 32;
1195 return;
1196 }
1197
1198 /* scan areas before each reservation */
1199 for (; idx_b >= 0; idx_b--) {
1200 struct memblock_region *r;
1201 phys_addr_t r_start;
1202 phys_addr_t r_end;
1203
1204 r = &type_b->regions[idx_b];
1205 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1206 r_end = idx_b < type_b->cnt ?
1207 r->base : PHYS_ADDR_MAX;
1208 /*
1209 * if idx_b advanced past idx_a,
1210 * break out to advance idx_a
1211 */
1212
1213 if (r_end <= m_start)
1214 break;
1215 /* if the two regions intersect, we're done */
1216 if (m_end > r_start) {
1217 if (out_start)
1218 *out_start = max(m_start, r_start);
1219 if (out_end)
1220 *out_end = min(m_end, r_end);
1221 if (out_nid)
1222 *out_nid = m_nid;
1223 if (m_start >= r_start)
1224 idx_a--;
1225 else
1226 idx_b--;
1227 *idx = (u32)idx_a | (u64)idx_b << 32;
1228 return;
1229 }
1230 }
1231 }
1232 /* signal end of iteration */
1233 *idx = ULLONG_MAX;
1234 }
1235
1236 /*
1237 * Common iterator interface used to define for_each_mem_pfn_range().
1238 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1239 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1240 unsigned long *out_start_pfn,
1241 unsigned long *out_end_pfn, int *out_nid)
1242 {
1243 struct memblock_type *type = &memblock.memory;
1244 struct memblock_region *r;
1245 int r_nid;
1246
1247 while (++*idx < type->cnt) {
1248 r = &type->regions[*idx];
1249 r_nid = memblock_get_region_node(r);
1250
1251 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1252 continue;
1253 if (nid == MAX_NUMNODES || nid == r_nid)
1254 break;
1255 }
1256 if (*idx >= type->cnt) {
1257 *idx = -1;
1258 return;
1259 }
1260
1261 if (out_start_pfn)
1262 *out_start_pfn = PFN_UP(r->base);
1263 if (out_end_pfn)
1264 *out_end_pfn = PFN_DOWN(r->base + r->size);
1265 if (out_nid)
1266 *out_nid = r_nid;
1267 }
1268
1269 /**
1270 * memblock_set_node - set node ID on memblock regions
1271 * @base: base of area to set node ID for
1272 * @size: size of area to set node ID for
1273 * @type: memblock type to set node ID for
1274 * @nid: node ID to set
1275 *
1276 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1277 * Regions which cross the area boundaries are split as necessary.
1278 *
1279 * Return:
1280 * 0 on success, -errno on failure.
1281 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1282 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1283 struct memblock_type *type, int nid)
1284 {
1285 #ifdef CONFIG_NUMA
1286 int start_rgn, end_rgn;
1287 int i, ret;
1288
1289 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1290 if (ret)
1291 return ret;
1292
1293 for (i = start_rgn; i < end_rgn; i++)
1294 memblock_set_region_node(&type->regions[i], nid);
1295
1296 memblock_merge_regions(type, start_rgn, end_rgn);
1297 #endif
1298 return 0;
1299 }
1300
1301 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1302 /**
1303 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1304 *
1305 * @idx: pointer to u64 loop variable
1306 * @zone: zone in which all of the memory blocks reside
1307 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1308 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1309 *
1310 * This function is meant to be a zone/pfn specific wrapper for the
1311 * for_each_mem_range type iterators. Specifically they are used in the
1312 * deferred memory init routines and as such we were duplicating much of
1313 * this logic throughout the code. So instead of having it in multiple
1314 * locations it seemed like it would make more sense to centralize this to
1315 * one new iterator that does everything they need.
1316 */
1317 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1318 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1319 unsigned long *out_spfn, unsigned long *out_epfn)
1320 {
1321 int zone_nid = zone_to_nid(zone);
1322 phys_addr_t spa, epa;
1323
1324 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1325 &memblock.memory, &memblock.reserved,
1326 &spa, &epa, NULL);
1327
1328 while (*idx != U64_MAX) {
1329 unsigned long epfn = PFN_DOWN(epa);
1330 unsigned long spfn = PFN_UP(spa);
1331
1332 /*
1333 * Verify the end is at least past the start of the zone and
1334 * that we have at least one PFN to initialize.
1335 */
1336 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1337 /* if we went too far just stop searching */
1338 if (zone_end_pfn(zone) <= spfn) {
1339 *idx = U64_MAX;
1340 break;
1341 }
1342
1343 if (out_spfn)
1344 *out_spfn = max(zone->zone_start_pfn, spfn);
1345 if (out_epfn)
1346 *out_epfn = min(zone_end_pfn(zone), epfn);
1347
1348 return;
1349 }
1350
1351 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1352 &memblock.memory, &memblock.reserved,
1353 &spa, &epa, NULL);
1354 }
1355
1356 /* signal end of iteration */
1357 if (out_spfn)
1358 *out_spfn = ULONG_MAX;
1359 if (out_epfn)
1360 *out_epfn = 0;
1361 }
1362
1363 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1364
1365 /**
1366 * memblock_alloc_range_nid - allocate boot memory block
1367 * @size: size of memory block to be allocated in bytes
1368 * @align: alignment of the region and block's size
1369 * @start: the lower bound of the memory region to allocate (phys address)
1370 * @end: the upper bound of the memory region to allocate (phys address)
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1372 * @exact_nid: control the allocation fall back to other nodes
1373 *
1374 * The allocation is performed from memory region limited by
1375 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1376 *
1377 * If the specified node can not hold the requested memory and @exact_nid
1378 * is false, the allocation falls back to any node in the system.
1379 *
1380 * For systems with memory mirroring, the allocation is attempted first
1381 * from the regions with mirroring enabled and then retried from any
1382 * memory region.
1383 *
1384 * In addition, function using kmemleak_alloc_phys for allocated boot
1385 * memory block, it is never reported as leaks.
1386 *
1387 * Return:
1388 * Physical address of allocated memory block on success, %0 on failure.
1389 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1390 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1391 phys_addr_t align, phys_addr_t start,
1392 phys_addr_t end, int nid,
1393 bool exact_nid)
1394 {
1395 enum memblock_flags flags = choose_memblock_flags();
1396 phys_addr_t found;
1397
1398 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1399 nid = NUMA_NO_NODE;
1400
1401 if (!align) {
1402 /* Can't use WARNs this early in boot on powerpc */
1403 dump_stack();
1404 align = SMP_CACHE_BYTES;
1405 }
1406
1407 again:
1408 found = memblock_find_in_range_node(size, align, start, end, nid,
1409 flags);
1410 if (found && !memblock_reserve(found, size))
1411 goto done;
1412
1413 if (nid != NUMA_NO_NODE && !exact_nid) {
1414 found = memblock_find_in_range_node(size, align, start,
1415 end, NUMA_NO_NODE,
1416 flags);
1417 if (found && !memblock_reserve(found, size))
1418 goto done;
1419 }
1420
1421 if (flags & MEMBLOCK_MIRROR) {
1422 flags &= ~MEMBLOCK_MIRROR;
1423 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1424 &size);
1425 goto again;
1426 }
1427
1428 return 0;
1429
1430 done:
1431 /*
1432 * Skip kmemleak for those places like kasan_init() and
1433 * early_pgtable_alloc() due to high volume.
1434 */
1435 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1436 /*
1437 * Memblock allocated blocks are never reported as
1438 * leaks. This is because many of these blocks are
1439 * only referred via the physical address which is
1440 * not looked up by kmemleak.
1441 */
1442 kmemleak_alloc_phys(found, size, 0);
1443
1444 /*
1445 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1446 * require memory to be accepted before it can be used by the
1447 * guest.
1448 *
1449 * Accept the memory of the allocated buffer.
1450 */
1451 accept_memory(found, found + size);
1452
1453 return found;
1454 }
1455
1456 /**
1457 * memblock_phys_alloc_range - allocate a memory block inside specified range
1458 * @size: size of memory block to be allocated in bytes
1459 * @align: alignment of the region and block's size
1460 * @start: the lower bound of the memory region to allocate (physical address)
1461 * @end: the upper bound of the memory region to allocate (physical address)
1462 *
1463 * Allocate @size bytes in the between @start and @end.
1464 *
1465 * Return: physical address of the allocated memory block on success,
1466 * %0 on failure.
1467 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1468 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1469 phys_addr_t align,
1470 phys_addr_t start,
1471 phys_addr_t end)
1472 {
1473 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1474 __func__, (u64)size, (u64)align, &start, &end,
1475 (void *)_RET_IP_);
1476 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1477 false);
1478 }
1479
1480 /**
1481 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1482 * @size: size of memory block to be allocated in bytes
1483 * @align: alignment of the region and block's size
1484 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1485 *
1486 * Allocates memory block from the specified NUMA node. If the node
1487 * has no available memory, attempts to allocated from any node in the
1488 * system.
1489 *
1490 * Return: physical address of the allocated memory block on success,
1491 * %0 on failure.
1492 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1493 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1494 {
1495 return memblock_alloc_range_nid(size, align, 0,
1496 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1497 }
1498
1499 /**
1500 * memblock_alloc_internal - allocate boot memory block
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @min_addr: the lower bound of the memory region to allocate (phys address)
1504 * @max_addr: the upper bound of the memory region to allocate (phys address)
1505 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1506 * @exact_nid: control the allocation fall back to other nodes
1507 *
1508 * Allocates memory block using memblock_alloc_range_nid() and
1509 * converts the returned physical address to virtual.
1510 *
1511 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1512 * will fall back to memory below @min_addr. Other constraints, such
1513 * as node and mirrored memory will be handled again in
1514 * memblock_alloc_range_nid().
1515 *
1516 * Return:
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1519 static void * __init memblock_alloc_internal(
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
1522 int nid, bool exact_nid)
1523 {
1524 phys_addr_t alloc;
1525
1526 /*
1527 * Detect any accidental use of these APIs after slab is ready, as at
1528 * this moment memblock may be deinitialized already and its
1529 * internal data may be destroyed (after execution of memblock_free_all)
1530 */
1531 if (WARN_ON_ONCE(slab_is_available()))
1532 return kzalloc_node(size, GFP_NOWAIT, nid);
1533
1534 if (max_addr > memblock.current_limit)
1535 max_addr = memblock.current_limit;
1536
1537 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1538 exact_nid);
1539
1540 /* retry allocation without lower limit */
1541 if (!alloc && min_addr)
1542 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1543 exact_nid);
1544
1545 if (!alloc)
1546 return NULL;
1547
1548 return phys_to_virt(alloc);
1549 }
1550
1551 /**
1552 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1553 * without zeroing memory
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region from where the allocation
1557 * is preferred (phys address)
1558 * @max_addr: the upper bound of the memory region from where the allocation
1559 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1560 * allocate only from memory limited by memblock.current_limit value
1561 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1562 *
1563 * Public function, provides additional debug information (including caller
1564 * info), if enabled. Does not zero allocated memory.
1565 *
1566 * Return:
1567 * Virtual address of allocated memory block on success, NULL on failure.
1568 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1569 void * __init memblock_alloc_exact_nid_raw(
1570 phys_addr_t size, phys_addr_t align,
1571 phys_addr_t min_addr, phys_addr_t max_addr,
1572 int nid)
1573 {
1574 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1575 __func__, (u64)size, (u64)align, nid, &min_addr,
1576 &max_addr, (void *)_RET_IP_);
1577
1578 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1579 true);
1580 }
1581
1582 /**
1583 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1584 * memory and without panicking
1585 * @size: size of memory block to be allocated in bytes
1586 * @align: alignment of the region and block's size
1587 * @min_addr: the lower bound of the memory region from where the allocation
1588 * is preferred (phys address)
1589 * @max_addr: the upper bound of the memory region from where the allocation
1590 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1591 * allocate only from memory limited by memblock.current_limit value
1592 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1593 *
1594 * Public function, provides additional debug information (including caller
1595 * info), if enabled. Does not zero allocated memory, does not panic if request
1596 * cannot be satisfied.
1597 *
1598 * Return:
1599 * Virtual address of allocated memory block on success, NULL on failure.
1600 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1601 void * __init memblock_alloc_try_nid_raw(
1602 phys_addr_t size, phys_addr_t align,
1603 phys_addr_t min_addr, phys_addr_t max_addr,
1604 int nid)
1605 {
1606 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1607 __func__, (u64)size, (u64)align, nid, &min_addr,
1608 &max_addr, (void *)_RET_IP_);
1609
1610 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1611 false);
1612 }
1613
1614 /**
1615 * memblock_alloc_try_nid - allocate boot memory block
1616 * @size: size of memory block to be allocated in bytes
1617 * @align: alignment of the region and block's size
1618 * @min_addr: the lower bound of the memory region from where the allocation
1619 * is preferred (phys address)
1620 * @max_addr: the upper bound of the memory region from where the allocation
1621 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1622 * allocate only from memory limited by memblock.current_limit value
1623 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1624 *
1625 * Public function, provides additional debug information (including caller
1626 * info), if enabled. This function zeroes the allocated memory.
1627 *
1628 * Return:
1629 * Virtual address of allocated memory block on success, NULL on failure.
1630 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1631 void * __init memblock_alloc_try_nid(
1632 phys_addr_t size, phys_addr_t align,
1633 phys_addr_t min_addr, phys_addr_t max_addr,
1634 int nid)
1635 {
1636 void *ptr;
1637
1638 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1639 __func__, (u64)size, (u64)align, nid, &min_addr,
1640 &max_addr, (void *)_RET_IP_);
1641 ptr = memblock_alloc_internal(size, align,
1642 min_addr, max_addr, nid, false);
1643 if (ptr)
1644 memset(ptr, 0, size);
1645
1646 return ptr;
1647 }
1648
1649 /**
1650 * memblock_free_late - free pages directly to buddy allocator
1651 * @base: phys starting address of the boot memory block
1652 * @size: size of the boot memory block in bytes
1653 *
1654 * This is only useful when the memblock allocator has already been torn
1655 * down, but we are still initializing the system. Pages are released directly
1656 * to the buddy allocator.
1657 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1658 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1659 {
1660 phys_addr_t cursor, end;
1661
1662 end = base + size - 1;
1663 memblock_dbg("%s: [%pa-%pa] %pS\n",
1664 __func__, &base, &end, (void *)_RET_IP_);
1665 kmemleak_free_part_phys(base, size);
1666 cursor = PFN_UP(base);
1667 end = PFN_DOWN(base + size);
1668
1669 for (; cursor < end; cursor++) {
1670 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1671 totalram_pages_inc();
1672 }
1673 }
1674
1675 /*
1676 * Remaining API functions
1677 */
1678
memblock_phys_mem_size(void)1679 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1680 {
1681 return memblock.memory.total_size;
1682 }
1683
memblock_reserved_size(void)1684 phys_addr_t __init_memblock memblock_reserved_size(void)
1685 {
1686 return memblock.reserved.total_size;
1687 }
1688
1689 /* lowest address */
memblock_start_of_DRAM(void)1690 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1691 {
1692 return memblock.memory.regions[0].base;
1693 }
1694
memblock_end_of_DRAM(void)1695 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1696 {
1697 int idx = memblock.memory.cnt - 1;
1698
1699 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1700 }
1701
__find_max_addr(phys_addr_t limit)1702 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1703 {
1704 phys_addr_t max_addr = PHYS_ADDR_MAX;
1705 struct memblock_region *r;
1706
1707 /*
1708 * translate the memory @limit size into the max address within one of
1709 * the memory memblock regions, if the @limit exceeds the total size
1710 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1711 */
1712 for_each_mem_region(r) {
1713 if (limit <= r->size) {
1714 max_addr = r->base + limit;
1715 break;
1716 }
1717 limit -= r->size;
1718 }
1719
1720 return max_addr;
1721 }
1722
memblock_enforce_memory_limit(phys_addr_t limit)1723 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1724 {
1725 phys_addr_t max_addr;
1726
1727 if (!limit)
1728 return;
1729
1730 max_addr = __find_max_addr(limit);
1731
1732 /* @limit exceeds the total size of the memory, do nothing */
1733 if (max_addr == PHYS_ADDR_MAX)
1734 return;
1735
1736 /* truncate both memory and reserved regions */
1737 memblock_remove_range(&memblock.memory, max_addr,
1738 PHYS_ADDR_MAX);
1739 memblock_remove_range(&memblock.reserved, max_addr,
1740 PHYS_ADDR_MAX);
1741 }
1742
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1743 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1744 {
1745 int start_rgn, end_rgn;
1746 int i, ret;
1747
1748 if (!size)
1749 return;
1750
1751 if (!memblock_memory->total_size) {
1752 pr_warn("%s: No memory registered yet\n", __func__);
1753 return;
1754 }
1755
1756 ret = memblock_isolate_range(&memblock.memory, base, size,
1757 &start_rgn, &end_rgn);
1758 if (ret)
1759 return;
1760
1761 /* remove all the MAP regions */
1762 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1763 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1764 memblock_remove_region(&memblock.memory, i);
1765
1766 for (i = start_rgn - 1; i >= 0; i--)
1767 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1768 memblock_remove_region(&memblock.memory, i);
1769
1770 /* truncate the reserved regions */
1771 memblock_remove_range(&memblock.reserved, 0, base);
1772 memblock_remove_range(&memblock.reserved,
1773 base + size, PHYS_ADDR_MAX);
1774 }
1775
memblock_mem_limit_remove_map(phys_addr_t limit)1776 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1777 {
1778 phys_addr_t max_addr;
1779
1780 if (!limit)
1781 return;
1782
1783 max_addr = __find_max_addr(limit);
1784
1785 /* @limit exceeds the total size of the memory, do nothing */
1786 if (max_addr == PHYS_ADDR_MAX)
1787 return;
1788
1789 memblock_cap_memory_range(0, max_addr);
1790 }
1791
memblock_search(struct memblock_type * type,phys_addr_t addr)1792 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1793 {
1794 unsigned int left = 0, right = type->cnt;
1795
1796 do {
1797 unsigned int mid = (right + left) / 2;
1798
1799 if (addr < type->regions[mid].base)
1800 right = mid;
1801 else if (addr >= (type->regions[mid].base +
1802 type->regions[mid].size))
1803 left = mid + 1;
1804 else
1805 return mid;
1806 } while (left < right);
1807 return -1;
1808 }
1809
memblock_is_reserved(phys_addr_t addr)1810 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1811 {
1812 return memblock_search(&memblock.reserved, addr) != -1;
1813 }
1814
memblock_is_memory(phys_addr_t addr)1815 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1816 {
1817 return memblock_search(&memblock.memory, addr) != -1;
1818 }
1819
memblock_is_map_memory(phys_addr_t addr)1820 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1821 {
1822 int i = memblock_search(&memblock.memory, addr);
1823
1824 if (i == -1)
1825 return false;
1826 return !memblock_is_nomap(&memblock.memory.regions[i]);
1827 }
1828
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1829 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1830 unsigned long *start_pfn, unsigned long *end_pfn)
1831 {
1832 struct memblock_type *type = &memblock.memory;
1833 int mid = memblock_search(type, PFN_PHYS(pfn));
1834
1835 if (mid == -1)
1836 return -1;
1837
1838 *start_pfn = PFN_DOWN(type->regions[mid].base);
1839 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1840
1841 return memblock_get_region_node(&type->regions[mid]);
1842 }
1843
1844 /**
1845 * memblock_is_region_memory - check if a region is a subset of memory
1846 * @base: base of region to check
1847 * @size: size of region to check
1848 *
1849 * Check if the region [@base, @base + @size) is a subset of a memory block.
1850 *
1851 * Return:
1852 * 0 if false, non-zero if true
1853 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1854 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1855 {
1856 int idx = memblock_search(&memblock.memory, base);
1857 phys_addr_t end = base + memblock_cap_size(base, &size);
1858
1859 if (idx == -1)
1860 return false;
1861 return (memblock.memory.regions[idx].base +
1862 memblock.memory.regions[idx].size) >= end;
1863 }
1864
1865 /**
1866 * memblock_is_region_reserved - check if a region intersects reserved memory
1867 * @base: base of region to check
1868 * @size: size of region to check
1869 *
1870 * Check if the region [@base, @base + @size) intersects a reserved
1871 * memory block.
1872 *
1873 * Return:
1874 * True if they intersect, false if not.
1875 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1876 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1877 {
1878 return memblock_overlaps_region(&memblock.reserved, base, size);
1879 }
1880
memblock_trim_memory(phys_addr_t align)1881 void __init_memblock memblock_trim_memory(phys_addr_t align)
1882 {
1883 phys_addr_t start, end, orig_start, orig_end;
1884 struct memblock_region *r;
1885
1886 for_each_mem_region(r) {
1887 orig_start = r->base;
1888 orig_end = r->base + r->size;
1889 start = round_up(orig_start, align);
1890 end = round_down(orig_end, align);
1891
1892 if (start == orig_start && end == orig_end)
1893 continue;
1894
1895 if (start < end) {
1896 r->base = start;
1897 r->size = end - start;
1898 } else {
1899 memblock_remove_region(&memblock.memory,
1900 r - memblock.memory.regions);
1901 r--;
1902 }
1903 }
1904 }
1905
memblock_set_current_limit(phys_addr_t limit)1906 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1907 {
1908 memblock.current_limit = limit;
1909 }
1910
memblock_get_current_limit(void)1911 phys_addr_t __init_memblock memblock_get_current_limit(void)
1912 {
1913 return memblock.current_limit;
1914 }
1915
memblock_dump(struct memblock_type * type)1916 static void __init_memblock memblock_dump(struct memblock_type *type)
1917 {
1918 phys_addr_t base, end, size;
1919 enum memblock_flags flags;
1920 int idx;
1921 struct memblock_region *rgn;
1922
1923 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1924
1925 for_each_memblock_type(idx, type, rgn) {
1926 char nid_buf[32] = "";
1927
1928 base = rgn->base;
1929 size = rgn->size;
1930 end = base + size - 1;
1931 flags = rgn->flags;
1932 #ifdef CONFIG_NUMA
1933 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1934 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1935 memblock_get_region_node(rgn));
1936 #endif
1937 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1938 type->name, idx, &base, &end, &size, nid_buf, flags);
1939 }
1940 }
1941
__memblock_dump_all(void)1942 static void __init_memblock __memblock_dump_all(void)
1943 {
1944 pr_info("MEMBLOCK configuration:\n");
1945 pr_info(" memory size = %pa reserved size = %pa\n",
1946 &memblock.memory.total_size,
1947 &memblock.reserved.total_size);
1948
1949 memblock_dump(&memblock.memory);
1950 memblock_dump(&memblock.reserved);
1951 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1952 memblock_dump(&physmem);
1953 #endif
1954 }
1955
memblock_dump_all(void)1956 void __init_memblock memblock_dump_all(void)
1957 {
1958 if (memblock_debug)
1959 __memblock_dump_all();
1960 }
1961
memblock_allow_resize(void)1962 void __init memblock_allow_resize(void)
1963 {
1964 memblock_can_resize = 1;
1965 }
1966
early_memblock(char * p)1967 static int __init early_memblock(char *p)
1968 {
1969 if (p && strstr(p, "debug"))
1970 memblock_debug = 1;
1971 return 0;
1972 }
1973 early_param("memblock", early_memblock);
1974
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1975 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1976 {
1977 struct page *start_pg, *end_pg;
1978 phys_addr_t pg, pgend;
1979
1980 /*
1981 * Convert start_pfn/end_pfn to a struct page pointer.
1982 */
1983 start_pg = pfn_to_page(start_pfn - 1) + 1;
1984 end_pg = pfn_to_page(end_pfn - 1) + 1;
1985
1986 /*
1987 * Convert to physical addresses, and round start upwards and end
1988 * downwards.
1989 */
1990 pg = PAGE_ALIGN(__pa(start_pg));
1991 pgend = __pa(end_pg) & PAGE_MASK;
1992
1993 /*
1994 * If there are free pages between these, free the section of the
1995 * memmap array.
1996 */
1997 if (pg < pgend)
1998 memblock_phys_free(pg, pgend - pg);
1999 }
2000
2001 /*
2002 * The mem_map array can get very big. Free the unused area of the memory map.
2003 */
free_unused_memmap(void)2004 static void __init free_unused_memmap(void)
2005 {
2006 unsigned long start, end, prev_end = 0;
2007 int i;
2008
2009 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2010 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2011 return;
2012
2013 /*
2014 * This relies on each bank being in address order.
2015 * The banks are sorted previously in bootmem_init().
2016 */
2017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2018 #ifdef CONFIG_SPARSEMEM
2019 /*
2020 * Take care not to free memmap entries that don't exist
2021 * due to SPARSEMEM sections which aren't present.
2022 */
2023 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2024 #endif
2025 /*
2026 * Align down here since many operations in VM subsystem
2027 * presume that there are no holes in the memory map inside
2028 * a pageblock
2029 */
2030 start = pageblock_start_pfn(start);
2031
2032 /*
2033 * If we had a previous bank, and there is a space
2034 * between the current bank and the previous, free it.
2035 */
2036 if (prev_end && prev_end < start)
2037 free_memmap(prev_end, start);
2038
2039 /*
2040 * Align up here since many operations in VM subsystem
2041 * presume that there are no holes in the memory map inside
2042 * a pageblock
2043 */
2044 prev_end = pageblock_align(end);
2045 }
2046
2047 #ifdef CONFIG_SPARSEMEM
2048 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2049 prev_end = pageblock_align(end);
2050 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2051 }
2052 #endif
2053 }
2054
__free_pages_memory(unsigned long start,unsigned long end)2055 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2056 {
2057 int order;
2058
2059 while (start < end) {
2060 /*
2061 * Free the pages in the largest chunks alignment allows.
2062 *
2063 * __ffs() behaviour is undefined for 0. start == 0 is
2064 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2065 */
2066 if (start)
2067 order = min_t(int, MAX_ORDER, __ffs(start));
2068 else
2069 order = MAX_ORDER;
2070
2071 while (start + (1UL << order) > end)
2072 order--;
2073
2074 memblock_free_pages(pfn_to_page(start), start, order);
2075
2076 start += (1UL << order);
2077 }
2078 }
2079
__free_memory_core(phys_addr_t start,phys_addr_t end)2080 static unsigned long __init __free_memory_core(phys_addr_t start,
2081 phys_addr_t end)
2082 {
2083 unsigned long start_pfn = PFN_UP(start);
2084 unsigned long end_pfn = min_t(unsigned long,
2085 PFN_DOWN(end), max_low_pfn);
2086
2087 if (start_pfn >= end_pfn)
2088 return 0;
2089
2090 __free_pages_memory(start_pfn, end_pfn);
2091
2092 return end_pfn - start_pfn;
2093 }
2094
memmap_init_reserved_pages(void)2095 static void __init memmap_init_reserved_pages(void)
2096 {
2097 struct memblock_region *region;
2098 phys_addr_t start, end;
2099 int nid;
2100
2101 /*
2102 * set nid on all reserved pages and also treat struct
2103 * pages for the NOMAP regions as PageReserved
2104 */
2105 for_each_mem_region(region) {
2106 nid = memblock_get_region_node(region);
2107 start = region->base;
2108 end = start + region->size;
2109
2110 if (memblock_is_nomap(region))
2111 reserve_bootmem_region(start, end, nid);
2112
2113 memblock_set_node(start, end, &memblock.reserved, nid);
2114 }
2115
2116 /* initialize struct pages for the reserved regions */
2117 for_each_reserved_mem_region(region) {
2118 nid = memblock_get_region_node(region);
2119 start = region->base;
2120 end = start + region->size;
2121
2122 reserve_bootmem_region(start, end, nid);
2123 }
2124 }
2125
free_low_memory_core_early(void)2126 static unsigned long __init free_low_memory_core_early(void)
2127 {
2128 unsigned long count = 0;
2129 phys_addr_t start, end;
2130 u64 i;
2131
2132 memblock_clear_hotplug(0, -1);
2133
2134 memmap_init_reserved_pages();
2135
2136 /*
2137 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2138 * because in some case like Node0 doesn't have RAM installed
2139 * low ram will be on Node1
2140 */
2141 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2142 NULL)
2143 count += __free_memory_core(start, end);
2144
2145 return count;
2146 }
2147
2148 static int reset_managed_pages_done __initdata;
2149
reset_node_managed_pages(pg_data_t * pgdat)2150 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2151 {
2152 struct zone *z;
2153
2154 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2155 atomic_long_set(&z->managed_pages, 0);
2156 }
2157
reset_all_zones_managed_pages(void)2158 void __init reset_all_zones_managed_pages(void)
2159 {
2160 struct pglist_data *pgdat;
2161
2162 if (reset_managed_pages_done)
2163 return;
2164
2165 for_each_online_pgdat(pgdat)
2166 reset_node_managed_pages(pgdat);
2167
2168 reset_managed_pages_done = 1;
2169 }
2170
2171 /**
2172 * memblock_free_all - release free pages to the buddy allocator
2173 */
memblock_free_all(void)2174 void __init memblock_free_all(void)
2175 {
2176 unsigned long pages;
2177
2178 free_unused_memmap();
2179 reset_all_zones_managed_pages();
2180
2181 pages = free_low_memory_core_early();
2182 totalram_pages_add(pages);
2183 }
2184
2185 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2186 static const char * const flagname[] = {
2187 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2188 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2189 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2190 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2191 };
2192
memblock_debug_show(struct seq_file * m,void * private)2193 static int memblock_debug_show(struct seq_file *m, void *private)
2194 {
2195 struct memblock_type *type = m->private;
2196 struct memblock_region *reg;
2197 int i, j, nid;
2198 unsigned int count = ARRAY_SIZE(flagname);
2199 phys_addr_t end;
2200
2201 for (i = 0; i < type->cnt; i++) {
2202 reg = &type->regions[i];
2203 end = reg->base + reg->size - 1;
2204 nid = memblock_get_region_node(reg);
2205
2206 seq_printf(m, "%4d: ", i);
2207 seq_printf(m, "%pa..%pa ", ®->base, &end);
2208 if (nid != MAX_NUMNODES)
2209 seq_printf(m, "%4d ", nid);
2210 else
2211 seq_printf(m, "%4c ", 'x');
2212 if (reg->flags) {
2213 for (j = 0; j < count; j++) {
2214 if (reg->flags & (1U << j)) {
2215 seq_printf(m, "%s\n", flagname[j]);
2216 break;
2217 }
2218 }
2219 if (j == count)
2220 seq_printf(m, "%s\n", "UNKNOWN");
2221 } else {
2222 seq_printf(m, "%s\n", "NONE");
2223 }
2224 }
2225 return 0;
2226 }
2227 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2228
memblock_init_debugfs(void)2229 static int __init memblock_init_debugfs(void)
2230 {
2231 struct dentry *root = debugfs_create_dir("memblock", NULL);
2232
2233 debugfs_create_file("memory", 0444, root,
2234 &memblock.memory, &memblock_debug_fops);
2235 debugfs_create_file("reserved", 0444, root,
2236 &memblock.reserved, &memblock_debug_fops);
2237 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2238 debugfs_create_file("physmem", 0444, root, &physmem,
2239 &memblock_debug_fops);
2240 #endif
2241
2242 return 0;
2243 }
2244 __initcall(memblock_init_debugfs);
2245
2246 #endif /* CONFIG_DEBUG_FS */
2247