1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_folio(struct folio * folio,unsigned int order)58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 1 << order);
62 }
63 #else
hugetlb_cma_folio(struct folio * folio,unsigned int order)64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
83 */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
subpool_is_free(struct hugepage_subpool * spool)102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 if (spool->count)
105 return false;
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
110
111 return true;
112 }
113
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
116 {
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
125 -spool->min_hpages);
126 kfree(spool);
127 }
128 }
129
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 long min_hpages)
132 {
133 struct hugepage_subpool *spool;
134
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 if (!spool)
137 return NULL;
138
139 spin_lock_init(&spool->lock);
140 spool->count = 1;
141 spool->max_hpages = max_hpages;
142 spool->hstate = h;
143 spool->min_hpages = min_hpages;
144
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 kfree(spool);
147 return NULL;
148 }
149 spool->rsv_hpages = min_hpages;
150
151 return spool;
152 }
153
hugepage_put_subpool(struct hugepage_subpool * spool)154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 unsigned long flags;
157
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
160 spool->count--;
161 unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
171 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 long delta)
174 {
175 long ret = delta;
176
177 if (!spool)
178 return ret;
179
180 spin_lock_irq(&spool->lock);
181
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
185 else {
186 ret = -ENOMEM;
187 goto unlock_ret;
188 }
189 }
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
194 /*
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
197 */
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
200 } else {
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
203 }
204 }
205
206 unlock_ret:
207 spin_unlock_irq(&spool->lock);
208 return ret;
209 }
210
211 /*
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
216 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 long delta)
219 {
220 long ret = delta;
221 unsigned long flags;
222
223 if (!spool)
224 return delta;
225
226 spin_lock_irqsave(&spool->lock, flags);
227
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
230
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = 0;
235 else
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
241 }
242
243 /*
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
246 */
247 unlock_or_release_subpool(spool, flags);
248
249 return ret;
250 }
251
subpool_inode(struct inode * inode)252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
subpool_vma(struct vm_area_struct * vma)257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263 * hugetlb vma_lock helper routines
264 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
273
274 down_read(&resv_map->rw_sema);
275 }
276 }
277
hugetlb_vma_unlock_read(struct vm_area_struct * vma)278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
286
287 up_read(&resv_map->rw_sema);
288 }
289 }
290
hugetlb_vma_lock_write(struct vm_area_struct * vma)291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
299
300 down_write(&resv_map->rw_sema);
301 }
302 }
303
hugetlb_vma_unlock_write(struct vm_area_struct * vma)304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
312
313 up_write(&resv_map->rw_sema);
314 }
315 }
316
hugetlb_vma_trylock_write(struct vm_area_struct * vma)317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
326
327 return down_write_trylock(&resv_map->rw_sema);
328 }
329
330 return 1;
331 }
332
hugetlb_vma_assert_locked(struct vm_area_struct * vma)333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
341
342 lockdep_assert_held(&resv_map->rw_sema);
343 }
344 }
345
hugetlb_vma_lock_release(struct kref * kref)346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
350
351 kfree(vma_lock);
352 }
353
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 struct vm_area_struct *vma = vma_lock->vma;
357
358 /*
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
362 */
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
377
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
380 }
381 }
382
hugetlb_vma_lock_free(struct vm_area_struct * vma)383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 /*
386 * Only present in sharable vmas.
387 */
388 if (!vma || !__vma_shareable_lock(vma))
389 return;
390
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
396 }
397 }
398
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 struct hugetlb_vma_lock *vma_lock;
402
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 return;
406
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
409 return;
410
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 if (!vma_lock) {
413 /*
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
422 */
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 return;
425 }
426
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
429 vma_lock->vma = vma;
430 vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434 * it for use.
435 */
436 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 struct file_region *nrg;
440
441 VM_BUG_ON(resv->region_cache_count <= 0);
442
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
446
447 nrg->from = from;
448 nrg->to = to;
449
450 return nrg;
451 }
452
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
458 nrg->css = rg->css;
459 if (rg->css)
460 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 struct hstate *h,
467 struct resv_map *resv,
468 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 if (h_cg) {
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
475 /*
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
483 * untouched.
484 */
485 css_get(&h_cg->css);
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
489 * a resv_map.
490 */
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 } else {
493 nrg->reservation_counter = NULL;
494 nrg->css = NULL;
495 }
496 #endif
497 }
498
put_uncharge_info(struct file_region * rg)499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 if (rg->css)
503 css_put(rg->css);
504 #endif
505 }
506
has_same_uncharge_info(struct file_region * rg,struct file_region * org)507 static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
512 rg->css == org->css;
513
514 #else
515 return true;
516 #endif
517 }
518
coalesce_file_region(struct resv_map * resv,struct file_region * rg)519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 struct file_region *nrg, *prg;
522
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
526 prg->to = rg->to;
527
528 list_del(&rg->link);
529 put_uncharge_info(rg);
530 kfree(rg);
531
532 rg = prg;
533 }
534
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
539
540 list_del(&rg->link);
541 put_uncharge_info(rg);
542 kfree(rg);
543 }
544 }
545
546 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
550 {
551 struct file_region *nrg;
552
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
558 } else
559 *regions_needed += 1;
560
561 return to - from;
562 }
563
564 /*
565 * Must be called with resv->lock held.
566 *
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
571 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
575 {
576 long add = 0;
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
581
582 if (regions_needed)
583 *regions_needed = 0;
584
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
587 * bounds checking.
588 */
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
594 */
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
597 continue;
598 }
599
600 /* When we find a region that starts beyond our range, we've
601 * finished.
602 */
603 if (iter->from >= t) {
604 rg = iter->link.prev;
605 break;
606 }
607
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
610 */
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
614 iter->from, h, h_cg,
615 regions_needed);
616
617 last_accounted_offset = iter->to;
618 }
619
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
622 */
623 if (!rg)
624 rg = head->prev;
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
628
629 return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)634 static int allocate_file_region_entries(struct resv_map *resv,
635 int regions_needed)
636 __must_hold(&resv->lock)
637 {
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
641
642 VM_BUG_ON(regions_needed < 0);
643
644 /*
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
647 *
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
652 */
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
657
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
661 */
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 if (!trg)
668 goto out_of_memory;
669 list_add(&trg->link, &allocated_regions);
670 }
671
672 spin_lock(&resv->lock);
673
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
676 }
677
678 return 0;
679
680 out_of_memory:
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 list_del(&rg->link);
683 kfree(rg);
684 }
685 return -ENOMEM;
686 }
687
688 /*
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
695 *
696 * regions_needed is the out value provided by a previous call to region_chg.
697 *
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
704 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)705 static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
708 {
709 long add = 0, actual_regions_needed = 0;
710
711 spin_lock(&resv->lock);
712 retry:
713
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
717
718 /*
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
725 * operation.
726 */
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
733 */
734 VM_BUG_ON(t - f <= 1);
735
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
738 return -ENOMEM;
739 }
740
741 goto retry;
742 }
743
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746 resv->adds_in_progress -= in_regions_needed;
747
748 spin_unlock(&resv->lock);
749 return add;
750 }
751
752 /*
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
762 *
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
766 *
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
771 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)772 static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
774 {
775 long chg = 0;
776
777 spin_lock(&resv->lock);
778
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 out_regions_needed);
782
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
785
786 if (allocate_file_region_entries(resv, *out_regions_needed))
787 return -ENOMEM;
788
789 resv->adds_in_progress += *out_regions_needed;
790
791 spin_unlock(&resv->lock);
792 return chg;
793 }
794
795 /*
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
803 *
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
807 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)808 static void region_abort(struct resv_map *resv, long f, long t,
809 long regions_needed)
810 {
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
815 }
816
817 /*
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
822 *
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
830 */
region_del(struct resv_map * resv,long f,long t)831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
836 long del = 0;
837
838 retry:
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
841 /*
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
847 */
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 continue;
850
851 if (rg->from >= t)
852 break;
853
854 if (f > rg->from && t < rg->to) { /* Must split region */
855 /*
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
858 */
859 if (!nrg &&
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
862 struct file_region,
863 link);
864 list_del(&nrg->link);
865 resv->region_cache_count--;
866 }
867
868 if (!nrg) {
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 if (!nrg)
872 return -ENOMEM;
873 goto retry;
874 }
875
876 del += t - f;
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
879
880 /* New entry for end of split region */
881 nrg->from = t;
882 nrg->to = rg->to;
883
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886 INIT_LIST_HEAD(&nrg->link);
887
888 /* Original entry is trimmed */
889 rg->to = f;
890
891 list_add(&nrg->link, &rg->link);
892 nrg = NULL;
893 break;
894 }
895
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
900 list_del(&rg->link);
901 kfree(rg);
902 continue;
903 }
904
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
908
909 del += t - rg->from;
910 rg->from = t;
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
913 rg->to - f, false);
914
915 del += rg->to - f;
916 rg->to = f;
917 }
918 }
919
920 spin_unlock(&resv->lock);
921 kfree(nrg);
922 return del;
923 }
924
925 /*
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
932 * counts.
933 */
hugetlb_fix_reserve_counts(struct inode * inode)934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 struct hugepage_subpool *spool = subpool_inode(inode);
937 long rsv_adjust;
938 bool reserved = false;
939
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
943
944 if (!hugetlb_acct_memory(h, 1))
945 reserved = true;
946 } else if (!rsv_adjust) {
947 reserved = true;
948 }
949
950 if (!reserved)
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
957 */
region_count(struct resv_map * resv,long f,long t)958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
962 long chg = 0;
963
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
967 long seg_from;
968 long seg_to;
969
970 if (rg->to <= f)
971 continue;
972 if (rg->from >= t)
973 break;
974
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
977
978 chg += seg_to - seg_from;
979 }
980 spin_unlock(&resv->lock);
981
982 return chg;
983 }
984
985 /*
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
988 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
991 {
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
994 }
995
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 unsigned long address)
998 {
999 return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003 /**
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1006 *
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1009 *
1010 * Return: The default size of the folios allocated when backing a VMA.
1011 */
vma_kernel_pagesize(struct vm_area_struct * vma)1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 if (vma->vm_ops && vma->vm_ops->pagesize)
1015 return vma->vm_ops->pagesize(vma);
1016 return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020 /*
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1025 */
vma_mmu_pagesize(struct vm_area_struct * vma)1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 return vma_kernel_pagesize(vma);
1029 }
1030
1031 /*
1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1034 * alignment.
1035 */
1036 #define HPAGE_RESV_OWNER (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040 /*
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1044 *
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1049 *
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping. A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated. A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1058 */
get_vma_private_data(struct vm_area_struct * vma)1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 return (unsigned long)vma->vm_private_data;
1062 }
1063
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 unsigned long value)
1066 {
1067 vma->vm_private_data = (void *)value;
1068 }
1069
1070 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 struct hugetlb_cgroup *h_cg,
1073 struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 if (!h_cg || !h) {
1077 resv_map->reservation_counter = NULL;
1078 resv_map->pages_per_hpage = 0;
1079 resv_map->css = NULL;
1080 } else {
1081 resv_map->reservation_counter =
1082 &h_cg->rsvd_hugepage[hstate_index(h)];
1083 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 resv_map->css = &h_cg->css;
1085 }
1086 #endif
1087 }
1088
resv_map_alloc(void)1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094 if (!resv_map || !rg) {
1095 kfree(resv_map);
1096 kfree(rg);
1097 return NULL;
1098 }
1099
1100 kref_init(&resv_map->refs);
1101 spin_lock_init(&resv_map->lock);
1102 INIT_LIST_HEAD(&resv_map->regions);
1103 init_rwsem(&resv_map->rw_sema);
1104
1105 resv_map->adds_in_progress = 0;
1106 /*
1107 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 * fields don't do cgroup accounting. On private mappings, these will be
1109 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 * reservations are to be un-charged from here.
1111 */
1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114 INIT_LIST_HEAD(&resv_map->region_cache);
1115 list_add(&rg->link, &resv_map->region_cache);
1116 resv_map->region_cache_count = 1;
1117
1118 return resv_map;
1119 }
1120
resv_map_release(struct kref * ref)1121 void resv_map_release(struct kref *ref)
1122 {
1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 struct list_head *head = &resv_map->region_cache;
1125 struct file_region *rg, *trg;
1126
1127 /* Clear out any active regions before we release the map. */
1128 region_del(resv_map, 0, LONG_MAX);
1129
1130 /* ... and any entries left in the cache */
1131 list_for_each_entry_safe(rg, trg, head, link) {
1132 list_del(&rg->link);
1133 kfree(rg);
1134 }
1135
1136 VM_BUG_ON(resv_map->adds_in_progress);
1137
1138 kfree(resv_map);
1139 }
1140
inode_resv_map(struct inode * inode)1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 /*
1144 * At inode evict time, i_mapping may not point to the original
1145 * address space within the inode. This original address space
1146 * contains the pointer to the resv_map. So, always use the
1147 * address space embedded within the inode.
1148 * The VERY common case is inode->mapping == &inode->i_data but,
1149 * this may not be true for device special inodes.
1150 */
1151 return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153
vma_resv_map(struct vm_area_struct * vma)1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 struct address_space *mapping = vma->vm_file->f_mapping;
1159 struct inode *inode = mapping->host;
1160
1161 return inode_resv_map(inode);
1162
1163 } else {
1164 return (struct resv_map *)(get_vma_private_data(vma) &
1165 ~HPAGE_RESV_MASK);
1166 }
1167 }
1168
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174 set_vma_private_data(vma, (unsigned long)map);
1175 }
1176
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189 return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191
hugetlb_dup_vma_private(struct vm_area_struct * vma)1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193 {
1194 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195 /*
1196 * Clear vm_private_data
1197 * - For shared mappings this is a per-vma semaphore that may be
1198 * allocated in a subsequent call to hugetlb_vm_op_open.
1199 * Before clearing, make sure pointer is not associated with vma
1200 * as this will leak the structure. This is the case when called
1201 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202 * been called to allocate a new structure.
1203 * - For MAP_PRIVATE mappings, this is the reserve map which does
1204 * not apply to children. Faults generated by the children are
1205 * not guaranteed to succeed, even if read-only.
1206 */
1207 if (vma->vm_flags & VM_MAYSHARE) {
1208 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209
1210 if (vma_lock && vma_lock->vma != vma)
1211 vma->vm_private_data = NULL;
1212 } else
1213 vma->vm_private_data = NULL;
1214 }
1215
1216 /*
1217 * Reset and decrement one ref on hugepage private reservation.
1218 * Called with mm->mmap_lock writer semaphore held.
1219 * This function should be only used by move_vma() and operate on
1220 * same sized vma. It should never come here with last ref on the
1221 * reservation.
1222 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224 {
1225 /*
1226 * Clear the old hugetlb private page reservation.
1227 * It has already been transferred to new_vma.
1228 *
1229 * During a mremap() operation of a hugetlb vma we call move_vma()
1230 * which copies vma into new_vma and unmaps vma. After the copy
1231 * operation both new_vma and vma share a reference to the resv_map
1232 * struct, and at that point vma is about to be unmapped. We don't
1233 * want to return the reservation to the pool at unmap of vma because
1234 * the reservation still lives on in new_vma, so simply decrement the
1235 * ref here and remove the resv_map reference from this vma.
1236 */
1237 struct resv_map *reservations = vma_resv_map(vma);
1238
1239 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241 kref_put(&reservations->refs, resv_map_release);
1242 }
1243
1244 hugetlb_dup_vma_private(vma);
1245 }
1246
1247 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249 {
1250 if (vma->vm_flags & VM_NORESERVE) {
1251 /*
1252 * This address is already reserved by other process(chg == 0),
1253 * so, we should decrement reserved count. Without decrementing,
1254 * reserve count remains after releasing inode, because this
1255 * allocated page will go into page cache and is regarded as
1256 * coming from reserved pool in releasing step. Currently, we
1257 * don't have any other solution to deal with this situation
1258 * properly, so add work-around here.
1259 */
1260 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261 return true;
1262 else
1263 return false;
1264 }
1265
1266 /* Shared mappings always use reserves */
1267 if (vma->vm_flags & VM_MAYSHARE) {
1268 /*
1269 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1270 * be a region map for all pages. The only situation where
1271 * there is no region map is if a hole was punched via
1272 * fallocate. In this case, there really are no reserves to
1273 * use. This situation is indicated if chg != 0.
1274 */
1275 if (chg)
1276 return false;
1277 else
1278 return true;
1279 }
1280
1281 /*
1282 * Only the process that called mmap() has reserves for
1283 * private mappings.
1284 */
1285 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286 /*
1287 * Like the shared case above, a hole punch or truncate
1288 * could have been performed on the private mapping.
1289 * Examine the value of chg to determine if reserves
1290 * actually exist or were previously consumed.
1291 * Very Subtle - The value of chg comes from a previous
1292 * call to vma_needs_reserves(). The reserve map for
1293 * private mappings has different (opposite) semantics
1294 * than that of shared mappings. vma_needs_reserves()
1295 * has already taken this difference in semantics into
1296 * account. Therefore, the meaning of chg is the same
1297 * as in the shared case above. Code could easily be
1298 * combined, but keeping it separate draws attention to
1299 * subtle differences.
1300 */
1301 if (chg)
1302 return false;
1303 else
1304 return true;
1305 }
1306
1307 return false;
1308 }
1309
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311 {
1312 int nid = folio_nid(folio);
1313
1314 lockdep_assert_held(&hugetlb_lock);
1315 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316
1317 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318 h->free_huge_pages++;
1319 h->free_huge_pages_node[nid]++;
1320 folio_set_hugetlb_freed(folio);
1321 }
1322
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324 int nid)
1325 {
1326 struct folio *folio;
1327 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328
1329 lockdep_assert_held(&hugetlb_lock);
1330 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331 if (pin && !folio_is_longterm_pinnable(folio))
1332 continue;
1333
1334 if (folio_test_hwpoison(folio))
1335 continue;
1336
1337 list_move(&folio->lru, &h->hugepage_activelist);
1338 folio_ref_unfreeze(folio, 1);
1339 folio_clear_hugetlb_freed(folio);
1340 h->free_huge_pages--;
1341 h->free_huge_pages_node[nid]--;
1342 return folio;
1343 }
1344
1345 return NULL;
1346 }
1347
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349 int nid, nodemask_t *nmask)
1350 {
1351 unsigned int cpuset_mems_cookie;
1352 struct zonelist *zonelist;
1353 struct zone *zone;
1354 struct zoneref *z;
1355 int node = NUMA_NO_NODE;
1356
1357 zonelist = node_zonelist(nid, gfp_mask);
1358
1359 retry_cpuset:
1360 cpuset_mems_cookie = read_mems_allowed_begin();
1361 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362 struct folio *folio;
1363
1364 if (!cpuset_zone_allowed(zone, gfp_mask))
1365 continue;
1366 /*
1367 * no need to ask again on the same node. Pool is node rather than
1368 * zone aware
1369 */
1370 if (zone_to_nid(zone) == node)
1371 continue;
1372 node = zone_to_nid(zone);
1373
1374 folio = dequeue_hugetlb_folio_node_exact(h, node);
1375 if (folio)
1376 return folio;
1377 }
1378 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379 goto retry_cpuset;
1380
1381 return NULL;
1382 }
1383
available_huge_pages(struct hstate * h)1384 static unsigned long available_huge_pages(struct hstate *h)
1385 {
1386 return h->free_huge_pages - h->resv_huge_pages;
1387 }
1388
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390 struct vm_area_struct *vma,
1391 unsigned long address, int avoid_reserve,
1392 long chg)
1393 {
1394 struct folio *folio = NULL;
1395 struct mempolicy *mpol;
1396 gfp_t gfp_mask;
1397 nodemask_t *nodemask;
1398 int nid;
1399
1400 /*
1401 * A child process with MAP_PRIVATE mappings created by their parent
1402 * have no page reserves. This check ensures that reservations are
1403 * not "stolen". The child may still get SIGKILLed
1404 */
1405 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1406 goto err;
1407
1408 /* If reserves cannot be used, ensure enough pages are in the pool */
1409 if (avoid_reserve && !available_huge_pages(h))
1410 goto err;
1411
1412 gfp_mask = htlb_alloc_mask(h);
1413 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414
1415 if (mpol_is_preferred_many(mpol)) {
1416 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417 nid, nodemask);
1418
1419 /* Fallback to all nodes if page==NULL */
1420 nodemask = NULL;
1421 }
1422
1423 if (!folio)
1424 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425 nid, nodemask);
1426
1427 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428 folio_set_hugetlb_restore_reserve(folio);
1429 h->resv_huge_pages--;
1430 }
1431
1432 mpol_cond_put(mpol);
1433 return folio;
1434
1435 err:
1436 return NULL;
1437 }
1438
1439 /*
1440 * common helper functions for hstate_next_node_to_{alloc|free}.
1441 * We may have allocated or freed a huge page based on a different
1442 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443 * be outside of *nodes_allowed. Ensure that we use an allowed
1444 * node for alloc or free.
1445 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447 {
1448 nid = next_node_in(nid, *nodes_allowed);
1449 VM_BUG_ON(nid >= MAX_NUMNODES);
1450
1451 return nid;
1452 }
1453
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455 {
1456 if (!node_isset(nid, *nodes_allowed))
1457 nid = next_node_allowed(nid, nodes_allowed);
1458 return nid;
1459 }
1460
1461 /*
1462 * returns the previously saved node ["this node"] from which to
1463 * allocate a persistent huge page for the pool and advance the
1464 * next node from which to allocate, handling wrap at end of node
1465 * mask.
1466 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1467 static int hstate_next_node_to_alloc(struct hstate *h,
1468 nodemask_t *nodes_allowed)
1469 {
1470 int nid;
1471
1472 VM_BUG_ON(!nodes_allowed);
1473
1474 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476
1477 return nid;
1478 }
1479
1480 /*
1481 * helper for remove_pool_huge_page() - return the previously saved
1482 * node ["this node"] from which to free a huge page. Advance the
1483 * next node id whether or not we find a free huge page to free so
1484 * that the next attempt to free addresses the next node.
1485 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487 {
1488 int nid;
1489
1490 VM_BUG_ON(!nodes_allowed);
1491
1492 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494
1495 return nid;
1496 }
1497
1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1499 for (nr_nodes = nodes_weight(*mask); \
1500 nr_nodes > 0 && \
1501 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1502 nr_nodes--)
1503
1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1505 for (nr_nodes = nodes_weight(*mask); \
1506 nr_nodes > 0 && \
1507 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1508 nr_nodes--)
1509
1510 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1511 static void __destroy_compound_gigantic_folio(struct folio *folio,
1512 unsigned int order, bool demote)
1513 {
1514 int i;
1515 int nr_pages = 1 << order;
1516 struct page *p;
1517
1518 atomic_set(&folio->_entire_mapcount, 0);
1519 atomic_set(&folio->_nr_pages_mapped, 0);
1520 atomic_set(&folio->_pincount, 0);
1521
1522 for (i = 1; i < nr_pages; i++) {
1523 p = folio_page(folio, i);
1524 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525 p->mapping = NULL;
1526 clear_compound_head(p);
1527 if (!demote)
1528 set_page_refcounted(p);
1529 }
1530
1531 __folio_clear_head(folio);
1532 }
1533
destroy_compound_hugetlb_folio_for_demote(struct folio * folio,unsigned int order)1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535 unsigned int order)
1536 {
1537 __destroy_compound_gigantic_folio(folio, order, true);
1538 }
1539
1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1541 static void destroy_compound_gigantic_folio(struct folio *folio,
1542 unsigned int order)
1543 {
1544 __destroy_compound_gigantic_folio(folio, order, false);
1545 }
1546
free_gigantic_folio(struct folio * folio,unsigned int order)1547 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548 {
1549 /*
1550 * If the page isn't allocated using the cma allocator,
1551 * cma_release() returns false.
1552 */
1553 #ifdef CONFIG_CMA
1554 int nid = folio_nid(folio);
1555
1556 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557 return;
1558 #endif
1559
1560 free_contig_range(folio_pfn(folio), 1 << order);
1561 }
1562
1563 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1566 {
1567 struct page *page;
1568 unsigned long nr_pages = pages_per_huge_page(h);
1569 if (nid == NUMA_NO_NODE)
1570 nid = numa_mem_id();
1571
1572 #ifdef CONFIG_CMA
1573 {
1574 int node;
1575
1576 if (hugetlb_cma[nid]) {
1577 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578 huge_page_order(h), true);
1579 if (page)
1580 return page_folio(page);
1581 }
1582
1583 if (!(gfp_mask & __GFP_THISNODE)) {
1584 for_each_node_mask(node, *nodemask) {
1585 if (node == nid || !hugetlb_cma[node])
1586 continue;
1587
1588 page = cma_alloc(hugetlb_cma[node], nr_pages,
1589 huge_page_order(h), true);
1590 if (page)
1591 return page_folio(page);
1592 }
1593 }
1594 }
1595 #endif
1596
1597 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598 return page ? page_folio(page) : NULL;
1599 }
1600
1601 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603 int nid, nodemask_t *nodemask)
1604 {
1605 return NULL;
1606 }
1607 #endif /* CONFIG_CONTIG_ALLOC */
1608
1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611 int nid, nodemask_t *nodemask)
1612 {
1613 return NULL;
1614 }
free_gigantic_folio(struct folio * folio,unsigned int order)1615 static inline void free_gigantic_folio(struct folio *folio,
1616 unsigned int order) { }
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1617 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618 unsigned int order) { }
1619 #endif
1620
__clear_hugetlb_destructor(struct hstate * h,struct folio * folio)1621 static inline void __clear_hugetlb_destructor(struct hstate *h,
1622 struct folio *folio)
1623 {
1624 lockdep_assert_held(&hugetlb_lock);
1625
1626 folio_clear_hugetlb(folio);
1627 }
1628
1629 /*
1630 * Remove hugetlb folio from lists.
1631 * If vmemmap exists for the folio, update dtor so that the folio appears
1632 * as just a compound page. Otherwise, wait until after allocating vmemmap
1633 * to update dtor.
1634 *
1635 * A reference is held on the folio, except in the case of demote.
1636 *
1637 * Must be called with hugetlb lock held.
1638 */
__remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus,bool demote)1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640 bool adjust_surplus,
1641 bool demote)
1642 {
1643 int nid = folio_nid(folio);
1644
1645 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647
1648 lockdep_assert_held(&hugetlb_lock);
1649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650 return;
1651
1652 list_del(&folio->lru);
1653
1654 if (folio_test_hugetlb_freed(folio)) {
1655 h->free_huge_pages--;
1656 h->free_huge_pages_node[nid]--;
1657 }
1658 if (adjust_surplus) {
1659 h->surplus_huge_pages--;
1660 h->surplus_huge_pages_node[nid]--;
1661 }
1662
1663 /*
1664 * We can only clear the hugetlb destructor after allocating vmemmap
1665 * pages. Otherwise, someone (memory error handling) may try to write
1666 * to tail struct pages.
1667 */
1668 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669 __clear_hugetlb_destructor(h, folio);
1670
1671 /*
1672 * In the case of demote we do not ref count the page as it will soon
1673 * be turned into a page of smaller size.
1674 */
1675 if (!demote)
1676 folio_ref_unfreeze(folio, 1);
1677
1678 h->nr_huge_pages--;
1679 h->nr_huge_pages_node[nid]--;
1680 }
1681
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683 bool adjust_surplus)
1684 {
1685 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686 }
1687
remove_hugetlb_folio_for_demote(struct hstate * h,struct folio * folio,bool adjust_surplus)1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689 bool adjust_surplus)
1690 {
1691 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692 }
1693
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695 bool adjust_surplus)
1696 {
1697 int zeroed;
1698 int nid = folio_nid(folio);
1699
1700 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701
1702 lockdep_assert_held(&hugetlb_lock);
1703
1704 INIT_LIST_HEAD(&folio->lru);
1705 h->nr_huge_pages++;
1706 h->nr_huge_pages_node[nid]++;
1707
1708 if (adjust_surplus) {
1709 h->surplus_huge_pages++;
1710 h->surplus_huge_pages_node[nid]++;
1711 }
1712
1713 folio_set_hugetlb(folio);
1714 folio_change_private(folio, NULL);
1715 /*
1716 * We have to set hugetlb_vmemmap_optimized again as above
1717 * folio_change_private(folio, NULL) cleared it.
1718 */
1719 folio_set_hugetlb_vmemmap_optimized(folio);
1720
1721 /*
1722 * This folio is about to be managed by the hugetlb allocator and
1723 * should have no users. Drop our reference, and check for others
1724 * just in case.
1725 */
1726 zeroed = folio_put_testzero(folio);
1727 if (unlikely(!zeroed))
1728 /*
1729 * It is VERY unlikely soneone else has taken a ref
1730 * on the folio. In this case, we simply return as
1731 * free_huge_folio() will be called when this other ref
1732 * is dropped.
1733 */
1734 return;
1735
1736 arch_clear_hugepage_flags(&folio->page);
1737 enqueue_hugetlb_folio(h, folio);
1738 }
1739
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1740 static void __update_and_free_hugetlb_folio(struct hstate *h,
1741 struct folio *folio)
1742 {
1743 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744
1745 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746 return;
1747
1748 /*
1749 * If we don't know which subpages are hwpoisoned, we can't free
1750 * the hugepage, so it's leaked intentionally.
1751 */
1752 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753 return;
1754
1755 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1756 spin_lock_irq(&hugetlb_lock);
1757 /*
1758 * If we cannot allocate vmemmap pages, just refuse to free the
1759 * page and put the page back on the hugetlb free list and treat
1760 * as a surplus page.
1761 */
1762 add_hugetlb_folio(h, folio, true);
1763 spin_unlock_irq(&hugetlb_lock);
1764 return;
1765 }
1766
1767 /*
1768 * Move PageHWPoison flag from head page to the raw error pages,
1769 * which makes any healthy subpages reusable.
1770 */
1771 if (unlikely(folio_test_hwpoison(folio)))
1772 folio_clear_hugetlb_hwpoison(folio);
1773
1774 /*
1775 * If vmemmap pages were allocated above, then we need to clear the
1776 * hugetlb destructor under the hugetlb lock.
1777 */
1778 if (clear_dtor) {
1779 spin_lock_irq(&hugetlb_lock);
1780 __clear_hugetlb_destructor(h, folio);
1781 spin_unlock_irq(&hugetlb_lock);
1782 }
1783
1784 /*
1785 * Non-gigantic pages demoted from CMA allocated gigantic pages
1786 * need to be given back to CMA in free_gigantic_folio.
1787 */
1788 if (hstate_is_gigantic(h) ||
1789 hugetlb_cma_folio(folio, huge_page_order(h))) {
1790 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1791 free_gigantic_folio(folio, huge_page_order(h));
1792 } else {
1793 __free_pages(&folio->page, huge_page_order(h));
1794 }
1795 }
1796
1797 /*
1798 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1799 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1800 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1801 * the vmemmap pages.
1802 *
1803 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1804 * freed and frees them one-by-one. As the page->mapping pointer is going
1805 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1806 * structure of a lockless linked list of huge pages to be freed.
1807 */
1808 static LLIST_HEAD(hpage_freelist);
1809
free_hpage_workfn(struct work_struct * work)1810 static void free_hpage_workfn(struct work_struct *work)
1811 {
1812 struct llist_node *node;
1813
1814 node = llist_del_all(&hpage_freelist);
1815
1816 while (node) {
1817 struct page *page;
1818 struct hstate *h;
1819
1820 page = container_of((struct address_space **)node,
1821 struct page, mapping);
1822 node = node->next;
1823 page->mapping = NULL;
1824 /*
1825 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1826 * folio_hstate() is going to trigger because a previous call to
1827 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1828 * not use folio_hstate() directly.
1829 */
1830 h = size_to_hstate(page_size(page));
1831
1832 __update_and_free_hugetlb_folio(h, page_folio(page));
1833
1834 cond_resched();
1835 }
1836 }
1837 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1838
flush_free_hpage_work(struct hstate * h)1839 static inline void flush_free_hpage_work(struct hstate *h)
1840 {
1841 if (hugetlb_vmemmap_optimizable(h))
1842 flush_work(&free_hpage_work);
1843 }
1844
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1845 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1846 bool atomic)
1847 {
1848 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1849 __update_and_free_hugetlb_folio(h, folio);
1850 return;
1851 }
1852
1853 /*
1854 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1855 *
1856 * Only call schedule_work() if hpage_freelist is previously
1857 * empty. Otherwise, schedule_work() had been called but the workfn
1858 * hasn't retrieved the list yet.
1859 */
1860 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1861 schedule_work(&free_hpage_work);
1862 }
1863
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1864 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1865 {
1866 struct page *page, *t_page;
1867 struct folio *folio;
1868
1869 list_for_each_entry_safe(page, t_page, list, lru) {
1870 folio = page_folio(page);
1871 update_and_free_hugetlb_folio(h, folio, false);
1872 cond_resched();
1873 }
1874 }
1875
size_to_hstate(unsigned long size)1876 struct hstate *size_to_hstate(unsigned long size)
1877 {
1878 struct hstate *h;
1879
1880 for_each_hstate(h) {
1881 if (huge_page_size(h) == size)
1882 return h;
1883 }
1884 return NULL;
1885 }
1886
free_huge_folio(struct folio * folio)1887 void free_huge_folio(struct folio *folio)
1888 {
1889 /*
1890 * Can't pass hstate in here because it is called from the
1891 * compound page destructor.
1892 */
1893 struct hstate *h = folio_hstate(folio);
1894 int nid = folio_nid(folio);
1895 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1896 bool restore_reserve;
1897 unsigned long flags;
1898
1899 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1900 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1901
1902 hugetlb_set_folio_subpool(folio, NULL);
1903 if (folio_test_anon(folio))
1904 __ClearPageAnonExclusive(&folio->page);
1905 folio->mapping = NULL;
1906 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1907 folio_clear_hugetlb_restore_reserve(folio);
1908
1909 /*
1910 * If HPageRestoreReserve was set on page, page allocation consumed a
1911 * reservation. If the page was associated with a subpool, there
1912 * would have been a page reserved in the subpool before allocation
1913 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1914 * reservation, do not call hugepage_subpool_put_pages() as this will
1915 * remove the reserved page from the subpool.
1916 */
1917 if (!restore_reserve) {
1918 /*
1919 * A return code of zero implies that the subpool will be
1920 * under its minimum size if the reservation is not restored
1921 * after page is free. Therefore, force restore_reserve
1922 * operation.
1923 */
1924 if (hugepage_subpool_put_pages(spool, 1) == 0)
1925 restore_reserve = true;
1926 }
1927
1928 spin_lock_irqsave(&hugetlb_lock, flags);
1929 folio_clear_hugetlb_migratable(folio);
1930 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1931 pages_per_huge_page(h), folio);
1932 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1933 pages_per_huge_page(h), folio);
1934 if (restore_reserve)
1935 h->resv_huge_pages++;
1936
1937 if (folio_test_hugetlb_temporary(folio)) {
1938 remove_hugetlb_folio(h, folio, false);
1939 spin_unlock_irqrestore(&hugetlb_lock, flags);
1940 update_and_free_hugetlb_folio(h, folio, true);
1941 } else if (h->surplus_huge_pages_node[nid]) {
1942 /* remove the page from active list */
1943 remove_hugetlb_folio(h, folio, true);
1944 spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 update_and_free_hugetlb_folio(h, folio, true);
1946 } else {
1947 arch_clear_hugepage_flags(&folio->page);
1948 enqueue_hugetlb_folio(h, folio);
1949 spin_unlock_irqrestore(&hugetlb_lock, flags);
1950 }
1951 }
1952
1953 /*
1954 * Must be called with the hugetlb lock held
1955 */
__prep_account_new_huge_page(struct hstate * h,int nid)1956 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1957 {
1958 lockdep_assert_held(&hugetlb_lock);
1959 h->nr_huge_pages++;
1960 h->nr_huge_pages_node[nid]++;
1961 }
1962
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1963 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1964 {
1965 hugetlb_vmemmap_optimize(h, &folio->page);
1966 INIT_LIST_HEAD(&folio->lru);
1967 folio_set_hugetlb(folio);
1968 hugetlb_set_folio_subpool(folio, NULL);
1969 set_hugetlb_cgroup(folio, NULL);
1970 set_hugetlb_cgroup_rsvd(folio, NULL);
1971 }
1972
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1974 {
1975 __prep_new_hugetlb_folio(h, folio);
1976 spin_lock_irq(&hugetlb_lock);
1977 __prep_account_new_huge_page(h, nid);
1978 spin_unlock_irq(&hugetlb_lock);
1979 }
1980
__prep_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1981 static bool __prep_compound_gigantic_folio(struct folio *folio,
1982 unsigned int order, bool demote)
1983 {
1984 int i, j;
1985 int nr_pages = 1 << order;
1986 struct page *p;
1987
1988 __folio_clear_reserved(folio);
1989 for (i = 0; i < nr_pages; i++) {
1990 p = folio_page(folio, i);
1991
1992 /*
1993 * For gigantic hugepages allocated through bootmem at
1994 * boot, it's safer to be consistent with the not-gigantic
1995 * hugepages and clear the PG_reserved bit from all tail pages
1996 * too. Otherwise drivers using get_user_pages() to access tail
1997 * pages may get the reference counting wrong if they see
1998 * PG_reserved set on a tail page (despite the head page not
1999 * having PG_reserved set). Enforcing this consistency between
2000 * head and tail pages allows drivers to optimize away a check
2001 * on the head page when they need know if put_page() is needed
2002 * after get_user_pages().
2003 */
2004 if (i != 0) /* head page cleared above */
2005 __ClearPageReserved(p);
2006 /*
2007 * Subtle and very unlikely
2008 *
2009 * Gigantic 'page allocators' such as memblock or cma will
2010 * return a set of pages with each page ref counted. We need
2011 * to turn this set of pages into a compound page with tail
2012 * page ref counts set to zero. Code such as speculative page
2013 * cache adding could take a ref on a 'to be' tail page.
2014 * We need to respect any increased ref count, and only set
2015 * the ref count to zero if count is currently 1. If count
2016 * is not 1, we return an error. An error return indicates
2017 * the set of pages can not be converted to a gigantic page.
2018 * The caller who allocated the pages should then discard the
2019 * pages using the appropriate free interface.
2020 *
2021 * In the case of demote, the ref count will be zero.
2022 */
2023 if (!demote) {
2024 if (!page_ref_freeze(p, 1)) {
2025 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2026 goto out_error;
2027 }
2028 } else {
2029 VM_BUG_ON_PAGE(page_count(p), p);
2030 }
2031 if (i != 0)
2032 set_compound_head(p, &folio->page);
2033 }
2034 __folio_set_head(folio);
2035 /* we rely on prep_new_hugetlb_folio to set the destructor */
2036 folio_set_order(folio, order);
2037 atomic_set(&folio->_entire_mapcount, -1);
2038 atomic_set(&folio->_nr_pages_mapped, 0);
2039 atomic_set(&folio->_pincount, 0);
2040 return true;
2041
2042 out_error:
2043 /* undo page modifications made above */
2044 for (j = 0; j < i; j++) {
2045 p = folio_page(folio, j);
2046 if (j != 0)
2047 clear_compound_head(p);
2048 set_page_refcounted(p);
2049 }
2050 /* need to clear PG_reserved on remaining tail pages */
2051 for (; j < nr_pages; j++) {
2052 p = folio_page(folio, j);
2053 __ClearPageReserved(p);
2054 }
2055 return false;
2056 }
2057
prep_compound_gigantic_folio(struct folio * folio,unsigned int order)2058 static bool prep_compound_gigantic_folio(struct folio *folio,
2059 unsigned int order)
2060 {
2061 return __prep_compound_gigantic_folio(folio, order, false);
2062 }
2063
prep_compound_gigantic_folio_for_demote(struct folio * folio,unsigned int order)2064 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2065 unsigned int order)
2066 {
2067 return __prep_compound_gigantic_folio(folio, order, true);
2068 }
2069
2070 /*
2071 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2072 * transparent huge pages. See the PageTransHuge() documentation for more
2073 * details.
2074 */
PageHuge(struct page * page)2075 int PageHuge(struct page *page)
2076 {
2077 struct folio *folio;
2078
2079 if (!PageCompound(page))
2080 return 0;
2081 folio = page_folio(page);
2082 return folio_test_hugetlb(folio);
2083 }
2084 EXPORT_SYMBOL_GPL(PageHuge);
2085
2086 /*
2087 * Find and lock address space (mapping) in write mode.
2088 *
2089 * Upon entry, the page is locked which means that page_mapping() is
2090 * stable. Due to locking order, we can only trylock_write. If we can
2091 * not get the lock, simply return NULL to caller.
2092 */
hugetlb_page_mapping_lock_write(struct page * hpage)2093 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2094 {
2095 struct address_space *mapping = page_mapping(hpage);
2096
2097 if (!mapping)
2098 return mapping;
2099
2100 if (i_mmap_trylock_write(mapping))
2101 return mapping;
2102
2103 return NULL;
2104 }
2105
hugetlb_basepage_index(struct page * page)2106 pgoff_t hugetlb_basepage_index(struct page *page)
2107 {
2108 struct page *page_head = compound_head(page);
2109 pgoff_t index = page_index(page_head);
2110 unsigned long compound_idx;
2111
2112 if (compound_order(page_head) > MAX_ORDER)
2113 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2114 else
2115 compound_idx = page - page_head;
2116
2117 return (index << compound_order(page_head)) + compound_idx;
2118 }
2119
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2120 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2121 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2122 nodemask_t *node_alloc_noretry)
2123 {
2124 int order = huge_page_order(h);
2125 struct page *page;
2126 bool alloc_try_hard = true;
2127 bool retry = true;
2128
2129 /*
2130 * By default we always try hard to allocate the page with
2131 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2132 * a loop (to adjust global huge page counts) and previous allocation
2133 * failed, do not continue to try hard on the same node. Use the
2134 * node_alloc_noretry bitmap to manage this state information.
2135 */
2136 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2137 alloc_try_hard = false;
2138 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2139 if (alloc_try_hard)
2140 gfp_mask |= __GFP_RETRY_MAYFAIL;
2141 if (nid == NUMA_NO_NODE)
2142 nid = numa_mem_id();
2143 retry:
2144 page = __alloc_pages(gfp_mask, order, nid, nmask);
2145
2146 /* Freeze head page */
2147 if (page && !page_ref_freeze(page, 1)) {
2148 __free_pages(page, order);
2149 if (retry) { /* retry once */
2150 retry = false;
2151 goto retry;
2152 }
2153 /* WOW! twice in a row. */
2154 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2155 page = NULL;
2156 }
2157
2158 /*
2159 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2160 * indicates an overall state change. Clear bit so that we resume
2161 * normal 'try hard' allocations.
2162 */
2163 if (node_alloc_noretry && page && !alloc_try_hard)
2164 node_clear(nid, *node_alloc_noretry);
2165
2166 /*
2167 * If we tried hard to get a page but failed, set bit so that
2168 * subsequent attempts will not try as hard until there is an
2169 * overall state change.
2170 */
2171 if (node_alloc_noretry && !page && alloc_try_hard)
2172 node_set(nid, *node_alloc_noretry);
2173
2174 if (!page) {
2175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2176 return NULL;
2177 }
2178
2179 __count_vm_event(HTLB_BUDDY_PGALLOC);
2180 return page_folio(page);
2181 }
2182
2183 /*
2184 * Common helper to allocate a fresh hugetlb page. All specific allocators
2185 * should use this function to get new hugetlb pages
2186 *
2187 * Note that returned page is 'frozen': ref count of head page and all tail
2188 * pages is zero.
2189 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2190 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2191 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2192 nodemask_t *node_alloc_noretry)
2193 {
2194 struct folio *folio;
2195 bool retry = false;
2196
2197 retry:
2198 if (hstate_is_gigantic(h))
2199 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2200 else
2201 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2202 nid, nmask, node_alloc_noretry);
2203 if (!folio)
2204 return NULL;
2205 if (hstate_is_gigantic(h)) {
2206 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2207 /*
2208 * Rare failure to convert pages to compound page.
2209 * Free pages and try again - ONCE!
2210 */
2211 free_gigantic_folio(folio, huge_page_order(h));
2212 if (!retry) {
2213 retry = true;
2214 goto retry;
2215 }
2216 return NULL;
2217 }
2218 }
2219 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2220
2221 return folio;
2222 }
2223
2224 /*
2225 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2226 * manner.
2227 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)2228 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2229 nodemask_t *node_alloc_noretry)
2230 {
2231 struct folio *folio;
2232 int nr_nodes, node;
2233 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2234
2235 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2236 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2237 nodes_allowed, node_alloc_noretry);
2238 if (folio) {
2239 free_huge_folio(folio); /* free it into the hugepage allocator */
2240 return 1;
2241 }
2242 }
2243
2244 return 0;
2245 }
2246
2247 /*
2248 * Remove huge page from pool from next node to free. Attempt to keep
2249 * persistent huge pages more or less balanced over allowed nodes.
2250 * This routine only 'removes' the hugetlb page. The caller must make
2251 * an additional call to free the page to low level allocators.
2252 * Called with hugetlb_lock locked.
2253 */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2254 static struct page *remove_pool_huge_page(struct hstate *h,
2255 nodemask_t *nodes_allowed,
2256 bool acct_surplus)
2257 {
2258 int nr_nodes, node;
2259 struct page *page = NULL;
2260 struct folio *folio;
2261
2262 lockdep_assert_held(&hugetlb_lock);
2263 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264 /*
2265 * If we're returning unused surplus pages, only examine
2266 * nodes with surplus pages.
2267 */
2268 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2269 !list_empty(&h->hugepage_freelists[node])) {
2270 page = list_entry(h->hugepage_freelists[node].next,
2271 struct page, lru);
2272 folio = page_folio(page);
2273 remove_hugetlb_folio(h, folio, acct_surplus);
2274 break;
2275 }
2276 }
2277
2278 return page;
2279 }
2280
2281 /*
2282 * Dissolve a given free hugepage into free buddy pages. This function does
2283 * nothing for in-use hugepages and non-hugepages.
2284 * This function returns values like below:
2285 *
2286 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2287 * when the system is under memory pressure and the feature of
2288 * freeing unused vmemmap pages associated with each hugetlb page
2289 * is enabled.
2290 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2291 * (allocated or reserved.)
2292 * 0: successfully dissolved free hugepages or the page is not a
2293 * hugepage (considered as already dissolved)
2294 */
dissolve_free_huge_page(struct page * page)2295 int dissolve_free_huge_page(struct page *page)
2296 {
2297 int rc = -EBUSY;
2298 struct folio *folio = page_folio(page);
2299
2300 retry:
2301 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2302 if (!folio_test_hugetlb(folio))
2303 return 0;
2304
2305 spin_lock_irq(&hugetlb_lock);
2306 if (!folio_test_hugetlb(folio)) {
2307 rc = 0;
2308 goto out;
2309 }
2310
2311 if (!folio_ref_count(folio)) {
2312 struct hstate *h = folio_hstate(folio);
2313 if (!available_huge_pages(h))
2314 goto out;
2315
2316 /*
2317 * We should make sure that the page is already on the free list
2318 * when it is dissolved.
2319 */
2320 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2321 spin_unlock_irq(&hugetlb_lock);
2322 cond_resched();
2323
2324 /*
2325 * Theoretically, we should return -EBUSY when we
2326 * encounter this race. In fact, we have a chance
2327 * to successfully dissolve the page if we do a
2328 * retry. Because the race window is quite small.
2329 * If we seize this opportunity, it is an optimization
2330 * for increasing the success rate of dissolving page.
2331 */
2332 goto retry;
2333 }
2334
2335 remove_hugetlb_folio(h, folio, false);
2336 h->max_huge_pages--;
2337 spin_unlock_irq(&hugetlb_lock);
2338
2339 /*
2340 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2341 * before freeing the page. update_and_free_hugtlb_folio will fail to
2342 * free the page if it can not allocate required vmemmap. We
2343 * need to adjust max_huge_pages if the page is not freed.
2344 * Attempt to allocate vmemmmap here so that we can take
2345 * appropriate action on failure.
2346 */
2347 rc = hugetlb_vmemmap_restore(h, &folio->page);
2348 if (!rc) {
2349 update_and_free_hugetlb_folio(h, folio, false);
2350 } else {
2351 spin_lock_irq(&hugetlb_lock);
2352 add_hugetlb_folio(h, folio, false);
2353 h->max_huge_pages++;
2354 spin_unlock_irq(&hugetlb_lock);
2355 }
2356
2357 return rc;
2358 }
2359 out:
2360 spin_unlock_irq(&hugetlb_lock);
2361 return rc;
2362 }
2363
2364 /*
2365 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2366 * make specified memory blocks removable from the system.
2367 * Note that this will dissolve a free gigantic hugepage completely, if any
2368 * part of it lies within the given range.
2369 * Also note that if dissolve_free_huge_page() returns with an error, all
2370 * free hugepages that were dissolved before that error are lost.
2371 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2372 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2373 {
2374 unsigned long pfn;
2375 struct page *page;
2376 int rc = 0;
2377 unsigned int order;
2378 struct hstate *h;
2379
2380 if (!hugepages_supported())
2381 return rc;
2382
2383 order = huge_page_order(&default_hstate);
2384 for_each_hstate(h)
2385 order = min(order, huge_page_order(h));
2386
2387 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2388 page = pfn_to_page(pfn);
2389 rc = dissolve_free_huge_page(page);
2390 if (rc)
2391 break;
2392 }
2393
2394 return rc;
2395 }
2396
2397 /*
2398 * Allocates a fresh surplus page from the page allocator.
2399 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2400 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2401 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2402 {
2403 struct folio *folio = NULL;
2404
2405 if (hstate_is_gigantic(h))
2406 return NULL;
2407
2408 spin_lock_irq(&hugetlb_lock);
2409 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2410 goto out_unlock;
2411 spin_unlock_irq(&hugetlb_lock);
2412
2413 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2414 if (!folio)
2415 return NULL;
2416
2417 spin_lock_irq(&hugetlb_lock);
2418 /*
2419 * We could have raced with the pool size change.
2420 * Double check that and simply deallocate the new page
2421 * if we would end up overcommiting the surpluses. Abuse
2422 * temporary page to workaround the nasty free_huge_folio
2423 * codeflow
2424 */
2425 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2426 folio_set_hugetlb_temporary(folio);
2427 spin_unlock_irq(&hugetlb_lock);
2428 free_huge_folio(folio);
2429 return NULL;
2430 }
2431
2432 h->surplus_huge_pages++;
2433 h->surplus_huge_pages_node[folio_nid(folio)]++;
2434
2435 out_unlock:
2436 spin_unlock_irq(&hugetlb_lock);
2437
2438 return folio;
2439 }
2440
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2441 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2442 int nid, nodemask_t *nmask)
2443 {
2444 struct folio *folio;
2445
2446 if (hstate_is_gigantic(h))
2447 return NULL;
2448
2449 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2450 if (!folio)
2451 return NULL;
2452
2453 /* fresh huge pages are frozen */
2454 folio_ref_unfreeze(folio, 1);
2455 /*
2456 * We do not account these pages as surplus because they are only
2457 * temporary and will be released properly on the last reference
2458 */
2459 folio_set_hugetlb_temporary(folio);
2460
2461 return folio;
2462 }
2463
2464 /*
2465 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2466 */
2467 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2468 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2469 struct vm_area_struct *vma, unsigned long addr)
2470 {
2471 struct folio *folio = NULL;
2472 struct mempolicy *mpol;
2473 gfp_t gfp_mask = htlb_alloc_mask(h);
2474 int nid;
2475 nodemask_t *nodemask;
2476
2477 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2478 if (mpol_is_preferred_many(mpol)) {
2479 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2480
2481 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2482 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2483
2484 /* Fallback to all nodes if page==NULL */
2485 nodemask = NULL;
2486 }
2487
2488 if (!folio)
2489 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2490 mpol_cond_put(mpol);
2491 return folio;
2492 }
2493
2494 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2495 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2496 nodemask_t *nmask, gfp_t gfp_mask)
2497 {
2498 spin_lock_irq(&hugetlb_lock);
2499 if (available_huge_pages(h)) {
2500 struct folio *folio;
2501
2502 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2503 preferred_nid, nmask);
2504 if (folio) {
2505 spin_unlock_irq(&hugetlb_lock);
2506 return folio;
2507 }
2508 }
2509 spin_unlock_irq(&hugetlb_lock);
2510
2511 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2512 }
2513
2514 /* mempolicy aware migration callback */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2515 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2516 unsigned long address)
2517 {
2518 struct mempolicy *mpol;
2519 nodemask_t *nodemask;
2520 struct folio *folio;
2521 gfp_t gfp_mask;
2522 int node;
2523
2524 gfp_mask = htlb_alloc_mask(h);
2525 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2526 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2527 mpol_cond_put(mpol);
2528
2529 return folio;
2530 }
2531
2532 /*
2533 * Increase the hugetlb pool such that it can accommodate a reservation
2534 * of size 'delta'.
2535 */
gather_surplus_pages(struct hstate * h,long delta)2536 static int gather_surplus_pages(struct hstate *h, long delta)
2537 __must_hold(&hugetlb_lock)
2538 {
2539 LIST_HEAD(surplus_list);
2540 struct folio *folio, *tmp;
2541 int ret;
2542 long i;
2543 long needed, allocated;
2544 bool alloc_ok = true;
2545
2546 lockdep_assert_held(&hugetlb_lock);
2547 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2548 if (needed <= 0) {
2549 h->resv_huge_pages += delta;
2550 return 0;
2551 }
2552
2553 allocated = 0;
2554
2555 ret = -ENOMEM;
2556 retry:
2557 spin_unlock_irq(&hugetlb_lock);
2558 for (i = 0; i < needed; i++) {
2559 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2560 NUMA_NO_NODE, NULL);
2561 if (!folio) {
2562 alloc_ok = false;
2563 break;
2564 }
2565 list_add(&folio->lru, &surplus_list);
2566 cond_resched();
2567 }
2568 allocated += i;
2569
2570 /*
2571 * After retaking hugetlb_lock, we need to recalculate 'needed'
2572 * because either resv_huge_pages or free_huge_pages may have changed.
2573 */
2574 spin_lock_irq(&hugetlb_lock);
2575 needed = (h->resv_huge_pages + delta) -
2576 (h->free_huge_pages + allocated);
2577 if (needed > 0) {
2578 if (alloc_ok)
2579 goto retry;
2580 /*
2581 * We were not able to allocate enough pages to
2582 * satisfy the entire reservation so we free what
2583 * we've allocated so far.
2584 */
2585 goto free;
2586 }
2587 /*
2588 * The surplus_list now contains _at_least_ the number of extra pages
2589 * needed to accommodate the reservation. Add the appropriate number
2590 * of pages to the hugetlb pool and free the extras back to the buddy
2591 * allocator. Commit the entire reservation here to prevent another
2592 * process from stealing the pages as they are added to the pool but
2593 * before they are reserved.
2594 */
2595 needed += allocated;
2596 h->resv_huge_pages += delta;
2597 ret = 0;
2598
2599 /* Free the needed pages to the hugetlb pool */
2600 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2601 if ((--needed) < 0)
2602 break;
2603 /* Add the page to the hugetlb allocator */
2604 enqueue_hugetlb_folio(h, folio);
2605 }
2606 free:
2607 spin_unlock_irq(&hugetlb_lock);
2608
2609 /*
2610 * Free unnecessary surplus pages to the buddy allocator.
2611 * Pages have no ref count, call free_huge_folio directly.
2612 */
2613 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2614 free_huge_folio(folio);
2615 spin_lock_irq(&hugetlb_lock);
2616
2617 return ret;
2618 }
2619
2620 /*
2621 * This routine has two main purposes:
2622 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2623 * in unused_resv_pages. This corresponds to the prior adjustments made
2624 * to the associated reservation map.
2625 * 2) Free any unused surplus pages that may have been allocated to satisfy
2626 * the reservation. As many as unused_resv_pages may be freed.
2627 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2628 static void return_unused_surplus_pages(struct hstate *h,
2629 unsigned long unused_resv_pages)
2630 {
2631 unsigned long nr_pages;
2632 struct page *page;
2633 LIST_HEAD(page_list);
2634
2635 lockdep_assert_held(&hugetlb_lock);
2636 /* Uncommit the reservation */
2637 h->resv_huge_pages -= unused_resv_pages;
2638
2639 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2640 goto out;
2641
2642 /*
2643 * Part (or even all) of the reservation could have been backed
2644 * by pre-allocated pages. Only free surplus pages.
2645 */
2646 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2647
2648 /*
2649 * We want to release as many surplus pages as possible, spread
2650 * evenly across all nodes with memory. Iterate across these nodes
2651 * until we can no longer free unreserved surplus pages. This occurs
2652 * when the nodes with surplus pages have no free pages.
2653 * remove_pool_huge_page() will balance the freed pages across the
2654 * on-line nodes with memory and will handle the hstate accounting.
2655 */
2656 while (nr_pages--) {
2657 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2658 if (!page)
2659 goto out;
2660
2661 list_add(&page->lru, &page_list);
2662 }
2663
2664 out:
2665 spin_unlock_irq(&hugetlb_lock);
2666 update_and_free_pages_bulk(h, &page_list);
2667 spin_lock_irq(&hugetlb_lock);
2668 }
2669
2670
2671 /*
2672 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2673 * are used by the huge page allocation routines to manage reservations.
2674 *
2675 * vma_needs_reservation is called to determine if the huge page at addr
2676 * within the vma has an associated reservation. If a reservation is
2677 * needed, the value 1 is returned. The caller is then responsible for
2678 * managing the global reservation and subpool usage counts. After
2679 * the huge page has been allocated, vma_commit_reservation is called
2680 * to add the page to the reservation map. If the page allocation fails,
2681 * the reservation must be ended instead of committed. vma_end_reservation
2682 * is called in such cases.
2683 *
2684 * In the normal case, vma_commit_reservation returns the same value
2685 * as the preceding vma_needs_reservation call. The only time this
2686 * is not the case is if a reserve map was changed between calls. It
2687 * is the responsibility of the caller to notice the difference and
2688 * take appropriate action.
2689 *
2690 * vma_add_reservation is used in error paths where a reservation must
2691 * be restored when a newly allocated huge page must be freed. It is
2692 * to be called after calling vma_needs_reservation to determine if a
2693 * reservation exists.
2694 *
2695 * vma_del_reservation is used in error paths where an entry in the reserve
2696 * map was created during huge page allocation and must be removed. It is to
2697 * be called after calling vma_needs_reservation to determine if a reservation
2698 * exists.
2699 */
2700 enum vma_resv_mode {
2701 VMA_NEEDS_RESV,
2702 VMA_COMMIT_RESV,
2703 VMA_END_RESV,
2704 VMA_ADD_RESV,
2705 VMA_DEL_RESV,
2706 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2707 static long __vma_reservation_common(struct hstate *h,
2708 struct vm_area_struct *vma, unsigned long addr,
2709 enum vma_resv_mode mode)
2710 {
2711 struct resv_map *resv;
2712 pgoff_t idx;
2713 long ret;
2714 long dummy_out_regions_needed;
2715
2716 resv = vma_resv_map(vma);
2717 if (!resv)
2718 return 1;
2719
2720 idx = vma_hugecache_offset(h, vma, addr);
2721 switch (mode) {
2722 case VMA_NEEDS_RESV:
2723 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2724 /* We assume that vma_reservation_* routines always operate on
2725 * 1 page, and that adding to resv map a 1 page entry can only
2726 * ever require 1 region.
2727 */
2728 VM_BUG_ON(dummy_out_regions_needed != 1);
2729 break;
2730 case VMA_COMMIT_RESV:
2731 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732 /* region_add calls of range 1 should never fail. */
2733 VM_BUG_ON(ret < 0);
2734 break;
2735 case VMA_END_RESV:
2736 region_abort(resv, idx, idx + 1, 1);
2737 ret = 0;
2738 break;
2739 case VMA_ADD_RESV:
2740 if (vma->vm_flags & VM_MAYSHARE) {
2741 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742 /* region_add calls of range 1 should never fail. */
2743 VM_BUG_ON(ret < 0);
2744 } else {
2745 region_abort(resv, idx, idx + 1, 1);
2746 ret = region_del(resv, idx, idx + 1);
2747 }
2748 break;
2749 case VMA_DEL_RESV:
2750 if (vma->vm_flags & VM_MAYSHARE) {
2751 region_abort(resv, idx, idx + 1, 1);
2752 ret = region_del(resv, idx, idx + 1);
2753 } else {
2754 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2755 /* region_add calls of range 1 should never fail. */
2756 VM_BUG_ON(ret < 0);
2757 }
2758 break;
2759 default:
2760 BUG();
2761 }
2762
2763 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2764 return ret;
2765 /*
2766 * We know private mapping must have HPAGE_RESV_OWNER set.
2767 *
2768 * In most cases, reserves always exist for private mappings.
2769 * However, a file associated with mapping could have been
2770 * hole punched or truncated after reserves were consumed.
2771 * As subsequent fault on such a range will not use reserves.
2772 * Subtle - The reserve map for private mappings has the
2773 * opposite meaning than that of shared mappings. If NO
2774 * entry is in the reserve map, it means a reservation exists.
2775 * If an entry exists in the reserve map, it means the
2776 * reservation has already been consumed. As a result, the
2777 * return value of this routine is the opposite of the
2778 * value returned from reserve map manipulation routines above.
2779 */
2780 if (ret > 0)
2781 return 0;
2782 if (ret == 0)
2783 return 1;
2784 return ret;
2785 }
2786
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2787 static long vma_needs_reservation(struct hstate *h,
2788 struct vm_area_struct *vma, unsigned long addr)
2789 {
2790 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2791 }
2792
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2793 static long vma_commit_reservation(struct hstate *h,
2794 struct vm_area_struct *vma, unsigned long addr)
2795 {
2796 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2797 }
2798
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2799 static void vma_end_reservation(struct hstate *h,
2800 struct vm_area_struct *vma, unsigned long addr)
2801 {
2802 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2803 }
2804
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2805 static long vma_add_reservation(struct hstate *h,
2806 struct vm_area_struct *vma, unsigned long addr)
2807 {
2808 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2809 }
2810
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2811 static long vma_del_reservation(struct hstate *h,
2812 struct vm_area_struct *vma, unsigned long addr)
2813 {
2814 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2815 }
2816
2817 /*
2818 * This routine is called to restore reservation information on error paths.
2819 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2820 * and the hugetlb mutex should remain held when calling this routine.
2821 *
2822 * It handles two specific cases:
2823 * 1) A reservation was in place and the folio consumed the reservation.
2824 * hugetlb_restore_reserve is set in the folio.
2825 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2826 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2827 *
2828 * In case 1, free_huge_folio later in the error path will increment the
2829 * global reserve count. But, free_huge_folio does not have enough context
2830 * to adjust the reservation map. This case deals primarily with private
2831 * mappings. Adjust the reserve map here to be consistent with global
2832 * reserve count adjustments to be made by free_huge_folio. Make sure the
2833 * reserve map indicates there is a reservation present.
2834 *
2835 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2836 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2837 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2838 unsigned long address, struct folio *folio)
2839 {
2840 long rc = vma_needs_reservation(h, vma, address);
2841
2842 if (folio_test_hugetlb_restore_reserve(folio)) {
2843 if (unlikely(rc < 0))
2844 /*
2845 * Rare out of memory condition in reserve map
2846 * manipulation. Clear hugetlb_restore_reserve so
2847 * that global reserve count will not be incremented
2848 * by free_huge_folio. This will make it appear
2849 * as though the reservation for this folio was
2850 * consumed. This may prevent the task from
2851 * faulting in the folio at a later time. This
2852 * is better than inconsistent global huge page
2853 * accounting of reserve counts.
2854 */
2855 folio_clear_hugetlb_restore_reserve(folio);
2856 else if (rc)
2857 (void)vma_add_reservation(h, vma, address);
2858 else
2859 vma_end_reservation(h, vma, address);
2860 } else {
2861 if (!rc) {
2862 /*
2863 * This indicates there is an entry in the reserve map
2864 * not added by alloc_hugetlb_folio. We know it was added
2865 * before the alloc_hugetlb_folio call, otherwise
2866 * hugetlb_restore_reserve would be set on the folio.
2867 * Remove the entry so that a subsequent allocation
2868 * does not consume a reservation.
2869 */
2870 rc = vma_del_reservation(h, vma, address);
2871 if (rc < 0)
2872 /*
2873 * VERY rare out of memory condition. Since
2874 * we can not delete the entry, set
2875 * hugetlb_restore_reserve so that the reserve
2876 * count will be incremented when the folio
2877 * is freed. This reserve will be consumed
2878 * on a subsequent allocation.
2879 */
2880 folio_set_hugetlb_restore_reserve(folio);
2881 } else if (rc < 0) {
2882 /*
2883 * Rare out of memory condition from
2884 * vma_needs_reservation call. Memory allocation is
2885 * only attempted if a new entry is needed. Therefore,
2886 * this implies there is not an entry in the
2887 * reserve map.
2888 *
2889 * For shared mappings, no entry in the map indicates
2890 * no reservation. We are done.
2891 */
2892 if (!(vma->vm_flags & VM_MAYSHARE))
2893 /*
2894 * For private mappings, no entry indicates
2895 * a reservation is present. Since we can
2896 * not add an entry, set hugetlb_restore_reserve
2897 * on the folio so reserve count will be
2898 * incremented when freed. This reserve will
2899 * be consumed on a subsequent allocation.
2900 */
2901 folio_set_hugetlb_restore_reserve(folio);
2902 } else
2903 /*
2904 * No reservation present, do nothing
2905 */
2906 vma_end_reservation(h, vma, address);
2907 }
2908 }
2909
2910 /*
2911 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2912 * the old one
2913 * @h: struct hstate old page belongs to
2914 * @old_folio: Old folio to dissolve
2915 * @list: List to isolate the page in case we need to
2916 * Returns 0 on success, otherwise negated error.
2917 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2918 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2919 struct folio *old_folio, struct list_head *list)
2920 {
2921 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2922 int nid = folio_nid(old_folio);
2923 struct folio *new_folio;
2924 int ret = 0;
2925
2926 /*
2927 * Before dissolving the folio, we need to allocate a new one for the
2928 * pool to remain stable. Here, we allocate the folio and 'prep' it
2929 * by doing everything but actually updating counters and adding to
2930 * the pool. This simplifies and let us do most of the processing
2931 * under the lock.
2932 */
2933 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2934 if (!new_folio)
2935 return -ENOMEM;
2936 __prep_new_hugetlb_folio(h, new_folio);
2937
2938 retry:
2939 spin_lock_irq(&hugetlb_lock);
2940 if (!folio_test_hugetlb(old_folio)) {
2941 /*
2942 * Freed from under us. Drop new_folio too.
2943 */
2944 goto free_new;
2945 } else if (folio_ref_count(old_folio)) {
2946 bool isolated;
2947
2948 /*
2949 * Someone has grabbed the folio, try to isolate it here.
2950 * Fail with -EBUSY if not possible.
2951 */
2952 spin_unlock_irq(&hugetlb_lock);
2953 isolated = isolate_hugetlb(old_folio, list);
2954 ret = isolated ? 0 : -EBUSY;
2955 spin_lock_irq(&hugetlb_lock);
2956 goto free_new;
2957 } else if (!folio_test_hugetlb_freed(old_folio)) {
2958 /*
2959 * Folio's refcount is 0 but it has not been enqueued in the
2960 * freelist yet. Race window is small, so we can succeed here if
2961 * we retry.
2962 */
2963 spin_unlock_irq(&hugetlb_lock);
2964 cond_resched();
2965 goto retry;
2966 } else {
2967 /*
2968 * Ok, old_folio is still a genuine free hugepage. Remove it from
2969 * the freelist and decrease the counters. These will be
2970 * incremented again when calling __prep_account_new_huge_page()
2971 * and enqueue_hugetlb_folio() for new_folio. The counters will
2972 * remain stable since this happens under the lock.
2973 */
2974 remove_hugetlb_folio(h, old_folio, false);
2975
2976 /*
2977 * Ref count on new_folio is already zero as it was dropped
2978 * earlier. It can be directly added to the pool free list.
2979 */
2980 __prep_account_new_huge_page(h, nid);
2981 enqueue_hugetlb_folio(h, new_folio);
2982
2983 /*
2984 * Folio has been replaced, we can safely free the old one.
2985 */
2986 spin_unlock_irq(&hugetlb_lock);
2987 update_and_free_hugetlb_folio(h, old_folio, false);
2988 }
2989
2990 return ret;
2991
2992 free_new:
2993 spin_unlock_irq(&hugetlb_lock);
2994 /* Folio has a zero ref count, but needs a ref to be freed */
2995 folio_ref_unfreeze(new_folio, 1);
2996 update_and_free_hugetlb_folio(h, new_folio, false);
2997
2998 return ret;
2999 }
3000
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)3001 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3002 {
3003 struct hstate *h;
3004 struct folio *folio = page_folio(page);
3005 int ret = -EBUSY;
3006
3007 /*
3008 * The page might have been dissolved from under our feet, so make sure
3009 * to carefully check the state under the lock.
3010 * Return success when racing as if we dissolved the page ourselves.
3011 */
3012 spin_lock_irq(&hugetlb_lock);
3013 if (folio_test_hugetlb(folio)) {
3014 h = folio_hstate(folio);
3015 } else {
3016 spin_unlock_irq(&hugetlb_lock);
3017 return 0;
3018 }
3019 spin_unlock_irq(&hugetlb_lock);
3020
3021 /*
3022 * Fence off gigantic pages as there is a cyclic dependency between
3023 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3024 * of bailing out right away without further retrying.
3025 */
3026 if (hstate_is_gigantic(h))
3027 return -ENOMEM;
3028
3029 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3030 ret = 0;
3031 else if (!folio_ref_count(folio))
3032 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3033
3034 return ret;
3035 }
3036
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)3037 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3038 unsigned long addr, int avoid_reserve)
3039 {
3040 struct hugepage_subpool *spool = subpool_vma(vma);
3041 struct hstate *h = hstate_vma(vma);
3042 struct folio *folio;
3043 long map_chg, map_commit;
3044 long gbl_chg;
3045 int ret, idx;
3046 struct hugetlb_cgroup *h_cg = NULL;
3047 bool deferred_reserve;
3048
3049 idx = hstate_index(h);
3050 /*
3051 * Examine the region/reserve map to determine if the process
3052 * has a reservation for the page to be allocated. A return
3053 * code of zero indicates a reservation exists (no change).
3054 */
3055 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3056 if (map_chg < 0)
3057 return ERR_PTR(-ENOMEM);
3058
3059 /*
3060 * Processes that did not create the mapping will have no
3061 * reserves as indicated by the region/reserve map. Check
3062 * that the allocation will not exceed the subpool limit.
3063 * Allocations for MAP_NORESERVE mappings also need to be
3064 * checked against any subpool limit.
3065 */
3066 if (map_chg || avoid_reserve) {
3067 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3068 if (gbl_chg < 0) {
3069 vma_end_reservation(h, vma, addr);
3070 return ERR_PTR(-ENOSPC);
3071 }
3072
3073 /*
3074 * Even though there was no reservation in the region/reserve
3075 * map, there could be reservations associated with the
3076 * subpool that can be used. This would be indicated if the
3077 * return value of hugepage_subpool_get_pages() is zero.
3078 * However, if avoid_reserve is specified we still avoid even
3079 * the subpool reservations.
3080 */
3081 if (avoid_reserve)
3082 gbl_chg = 1;
3083 }
3084
3085 /* If this allocation is not consuming a reservation, charge it now.
3086 */
3087 deferred_reserve = map_chg || avoid_reserve;
3088 if (deferred_reserve) {
3089 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3090 idx, pages_per_huge_page(h), &h_cg);
3091 if (ret)
3092 goto out_subpool_put;
3093 }
3094
3095 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3096 if (ret)
3097 goto out_uncharge_cgroup_reservation;
3098
3099 spin_lock_irq(&hugetlb_lock);
3100 /*
3101 * glb_chg is passed to indicate whether or not a page must be taken
3102 * from the global free pool (global change). gbl_chg == 0 indicates
3103 * a reservation exists for the allocation.
3104 */
3105 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3106 if (!folio) {
3107 spin_unlock_irq(&hugetlb_lock);
3108 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3109 if (!folio)
3110 goto out_uncharge_cgroup;
3111 spin_lock_irq(&hugetlb_lock);
3112 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3113 folio_set_hugetlb_restore_reserve(folio);
3114 h->resv_huge_pages--;
3115 }
3116 list_add(&folio->lru, &h->hugepage_activelist);
3117 folio_ref_unfreeze(folio, 1);
3118 /* Fall through */
3119 }
3120
3121 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3122 /* If allocation is not consuming a reservation, also store the
3123 * hugetlb_cgroup pointer on the page.
3124 */
3125 if (deferred_reserve) {
3126 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3127 h_cg, folio);
3128 }
3129
3130 spin_unlock_irq(&hugetlb_lock);
3131
3132 hugetlb_set_folio_subpool(folio, spool);
3133
3134 map_commit = vma_commit_reservation(h, vma, addr);
3135 if (unlikely(map_chg > map_commit)) {
3136 /*
3137 * The page was added to the reservation map between
3138 * vma_needs_reservation and vma_commit_reservation.
3139 * This indicates a race with hugetlb_reserve_pages.
3140 * Adjust for the subpool count incremented above AND
3141 * in hugetlb_reserve_pages for the same page. Also,
3142 * the reservation count added in hugetlb_reserve_pages
3143 * no longer applies.
3144 */
3145 long rsv_adjust;
3146
3147 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3148 hugetlb_acct_memory(h, -rsv_adjust);
3149 if (deferred_reserve)
3150 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3151 pages_per_huge_page(h), folio);
3152 }
3153 return folio;
3154
3155 out_uncharge_cgroup:
3156 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3157 out_uncharge_cgroup_reservation:
3158 if (deferred_reserve)
3159 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3160 h_cg);
3161 out_subpool_put:
3162 if (map_chg || avoid_reserve)
3163 hugepage_subpool_put_pages(spool, 1);
3164 vma_end_reservation(h, vma, addr);
3165 return ERR_PTR(-ENOSPC);
3166 }
3167
3168 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3170 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3171 {
3172 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3173 int nr_nodes, node;
3174
3175 /* do node specific alloc */
3176 if (nid != NUMA_NO_NODE) {
3177 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3178 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3179 if (!m)
3180 return 0;
3181 goto found;
3182 }
3183 /* allocate from next node when distributing huge pages */
3184 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3185 m = memblock_alloc_try_nid_raw(
3186 huge_page_size(h), huge_page_size(h),
3187 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3188 /*
3189 * Use the beginning of the huge page to store the
3190 * huge_bootmem_page struct (until gather_bootmem
3191 * puts them into the mem_map).
3192 */
3193 if (!m)
3194 return 0;
3195 goto found;
3196 }
3197
3198 found:
3199 /* Put them into a private list first because mem_map is not up yet */
3200 INIT_LIST_HEAD(&m->list);
3201 list_add(&m->list, &huge_boot_pages);
3202 m->hstate = h;
3203 return 1;
3204 }
3205
3206 /*
3207 * Put bootmem huge pages into the standard lists after mem_map is up.
3208 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3209 */
gather_bootmem_prealloc(void)3210 static void __init gather_bootmem_prealloc(void)
3211 {
3212 struct huge_bootmem_page *m;
3213
3214 list_for_each_entry(m, &huge_boot_pages, list) {
3215 struct page *page = virt_to_page(m);
3216 struct folio *folio = page_folio(page);
3217 struct hstate *h = m->hstate;
3218
3219 VM_BUG_ON(!hstate_is_gigantic(h));
3220 WARN_ON(folio_ref_count(folio) != 1);
3221 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3222 WARN_ON(folio_test_reserved(folio));
3223 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3224 free_huge_folio(folio); /* add to the hugepage allocator */
3225 } else {
3226 /* VERY unlikely inflated ref count on a tail page */
3227 free_gigantic_folio(folio, huge_page_order(h));
3228 }
3229
3230 /*
3231 * We need to restore the 'stolen' pages to totalram_pages
3232 * in order to fix confusing memory reports from free(1) and
3233 * other side-effects, like CommitLimit going negative.
3234 */
3235 adjust_managed_page_count(page, pages_per_huge_page(h));
3236 cond_resched();
3237 }
3238 }
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3239 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3240 {
3241 unsigned long i;
3242 char buf[32];
3243
3244 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3245 if (hstate_is_gigantic(h)) {
3246 if (!alloc_bootmem_huge_page(h, nid))
3247 break;
3248 } else {
3249 struct folio *folio;
3250 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3251
3252 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3253 &node_states[N_MEMORY], NULL);
3254 if (!folio)
3255 break;
3256 free_huge_folio(folio); /* free it into the hugepage allocator */
3257 }
3258 cond_resched();
3259 }
3260 if (i == h->max_huge_pages_node[nid])
3261 return;
3262
3263 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3264 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3265 h->max_huge_pages_node[nid], buf, nid, i);
3266 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3267 h->max_huge_pages_node[nid] = i;
3268 }
3269
hugetlb_hstate_alloc_pages(struct hstate * h)3270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3271 {
3272 unsigned long i;
3273 nodemask_t *node_alloc_noretry;
3274 bool node_specific_alloc = false;
3275
3276 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3277 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3278 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3279 return;
3280 }
3281
3282 /* do node specific alloc */
3283 for_each_online_node(i) {
3284 if (h->max_huge_pages_node[i] > 0) {
3285 hugetlb_hstate_alloc_pages_onenode(h, i);
3286 node_specific_alloc = true;
3287 }
3288 }
3289
3290 if (node_specific_alloc)
3291 return;
3292
3293 /* below will do all node balanced alloc */
3294 if (!hstate_is_gigantic(h)) {
3295 /*
3296 * Bit mask controlling how hard we retry per-node allocations.
3297 * Ignore errors as lower level routines can deal with
3298 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3299 * time, we are likely in bigger trouble.
3300 */
3301 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3302 GFP_KERNEL);
3303 } else {
3304 /* allocations done at boot time */
3305 node_alloc_noretry = NULL;
3306 }
3307
3308 /* bit mask controlling how hard we retry per-node allocations */
3309 if (node_alloc_noretry)
3310 nodes_clear(*node_alloc_noretry);
3311
3312 for (i = 0; i < h->max_huge_pages; ++i) {
3313 if (hstate_is_gigantic(h)) {
3314 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3315 break;
3316 } else if (!alloc_pool_huge_page(h,
3317 &node_states[N_MEMORY],
3318 node_alloc_noretry))
3319 break;
3320 cond_resched();
3321 }
3322 if (i < h->max_huge_pages) {
3323 char buf[32];
3324
3325 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3326 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3327 h->max_huge_pages, buf, i);
3328 h->max_huge_pages = i;
3329 }
3330 kfree(node_alloc_noretry);
3331 }
3332
hugetlb_init_hstates(void)3333 static void __init hugetlb_init_hstates(void)
3334 {
3335 struct hstate *h, *h2;
3336
3337 for_each_hstate(h) {
3338 /* oversize hugepages were init'ed in early boot */
3339 if (!hstate_is_gigantic(h))
3340 hugetlb_hstate_alloc_pages(h);
3341
3342 /*
3343 * Set demote order for each hstate. Note that
3344 * h->demote_order is initially 0.
3345 * - We can not demote gigantic pages if runtime freeing
3346 * is not supported, so skip this.
3347 * - If CMA allocation is possible, we can not demote
3348 * HUGETLB_PAGE_ORDER or smaller size pages.
3349 */
3350 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3351 continue;
3352 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3353 continue;
3354 for_each_hstate(h2) {
3355 if (h2 == h)
3356 continue;
3357 if (h2->order < h->order &&
3358 h2->order > h->demote_order)
3359 h->demote_order = h2->order;
3360 }
3361 }
3362 }
3363
report_hugepages(void)3364 static void __init report_hugepages(void)
3365 {
3366 struct hstate *h;
3367
3368 for_each_hstate(h) {
3369 char buf[32];
3370
3371 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3372 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3373 buf, h->free_huge_pages);
3374 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3375 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3376 }
3377 }
3378
3379 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3380 static void try_to_free_low(struct hstate *h, unsigned long count,
3381 nodemask_t *nodes_allowed)
3382 {
3383 int i;
3384 LIST_HEAD(page_list);
3385
3386 lockdep_assert_held(&hugetlb_lock);
3387 if (hstate_is_gigantic(h))
3388 return;
3389
3390 /*
3391 * Collect pages to be freed on a list, and free after dropping lock
3392 */
3393 for_each_node_mask(i, *nodes_allowed) {
3394 struct page *page, *next;
3395 struct list_head *freel = &h->hugepage_freelists[i];
3396 list_for_each_entry_safe(page, next, freel, lru) {
3397 if (count >= h->nr_huge_pages)
3398 goto out;
3399 if (PageHighMem(page))
3400 continue;
3401 remove_hugetlb_folio(h, page_folio(page), false);
3402 list_add(&page->lru, &page_list);
3403 }
3404 }
3405
3406 out:
3407 spin_unlock_irq(&hugetlb_lock);
3408 update_and_free_pages_bulk(h, &page_list);
3409 spin_lock_irq(&hugetlb_lock);
3410 }
3411 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3412 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3413 nodemask_t *nodes_allowed)
3414 {
3415 }
3416 #endif
3417
3418 /*
3419 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3420 * balanced by operating on them in a round-robin fashion.
3421 * Returns 1 if an adjustment was made.
3422 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3424 int delta)
3425 {
3426 int nr_nodes, node;
3427
3428 lockdep_assert_held(&hugetlb_lock);
3429 VM_BUG_ON(delta != -1 && delta != 1);
3430
3431 if (delta < 0) {
3432 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3433 if (h->surplus_huge_pages_node[node])
3434 goto found;
3435 }
3436 } else {
3437 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3438 if (h->surplus_huge_pages_node[node] <
3439 h->nr_huge_pages_node[node])
3440 goto found;
3441 }
3442 }
3443 return 0;
3444
3445 found:
3446 h->surplus_huge_pages += delta;
3447 h->surplus_huge_pages_node[node] += delta;
3448 return 1;
3449 }
3450
3451 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3452 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3453 nodemask_t *nodes_allowed)
3454 {
3455 unsigned long min_count, ret;
3456 struct page *page;
3457 LIST_HEAD(page_list);
3458 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3459
3460 /*
3461 * Bit mask controlling how hard we retry per-node allocations.
3462 * If we can not allocate the bit mask, do not attempt to allocate
3463 * the requested huge pages.
3464 */
3465 if (node_alloc_noretry)
3466 nodes_clear(*node_alloc_noretry);
3467 else
3468 return -ENOMEM;
3469
3470 /*
3471 * resize_lock mutex prevents concurrent adjustments to number of
3472 * pages in hstate via the proc/sysfs interfaces.
3473 */
3474 mutex_lock(&h->resize_lock);
3475 flush_free_hpage_work(h);
3476 spin_lock_irq(&hugetlb_lock);
3477
3478 /*
3479 * Check for a node specific request.
3480 * Changing node specific huge page count may require a corresponding
3481 * change to the global count. In any case, the passed node mask
3482 * (nodes_allowed) will restrict alloc/free to the specified node.
3483 */
3484 if (nid != NUMA_NO_NODE) {
3485 unsigned long old_count = count;
3486
3487 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3488 /*
3489 * User may have specified a large count value which caused the
3490 * above calculation to overflow. In this case, they wanted
3491 * to allocate as many huge pages as possible. Set count to
3492 * largest possible value to align with their intention.
3493 */
3494 if (count < old_count)
3495 count = ULONG_MAX;
3496 }
3497
3498 /*
3499 * Gigantic pages runtime allocation depend on the capability for large
3500 * page range allocation.
3501 * If the system does not provide this feature, return an error when
3502 * the user tries to allocate gigantic pages but let the user free the
3503 * boottime allocated gigantic pages.
3504 */
3505 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3506 if (count > persistent_huge_pages(h)) {
3507 spin_unlock_irq(&hugetlb_lock);
3508 mutex_unlock(&h->resize_lock);
3509 NODEMASK_FREE(node_alloc_noretry);
3510 return -EINVAL;
3511 }
3512 /* Fall through to decrease pool */
3513 }
3514
3515 /*
3516 * Increase the pool size
3517 * First take pages out of surplus state. Then make up the
3518 * remaining difference by allocating fresh huge pages.
3519 *
3520 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3521 * to convert a surplus huge page to a normal huge page. That is
3522 * not critical, though, it just means the overall size of the
3523 * pool might be one hugepage larger than it needs to be, but
3524 * within all the constraints specified by the sysctls.
3525 */
3526 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3527 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3528 break;
3529 }
3530
3531 while (count > persistent_huge_pages(h)) {
3532 /*
3533 * If this allocation races such that we no longer need the
3534 * page, free_huge_folio will handle it by freeing the page
3535 * and reducing the surplus.
3536 */
3537 spin_unlock_irq(&hugetlb_lock);
3538
3539 /* yield cpu to avoid soft lockup */
3540 cond_resched();
3541
3542 ret = alloc_pool_huge_page(h, nodes_allowed,
3543 node_alloc_noretry);
3544 spin_lock_irq(&hugetlb_lock);
3545 if (!ret)
3546 goto out;
3547
3548 /* Bail for signals. Probably ctrl-c from user */
3549 if (signal_pending(current))
3550 goto out;
3551 }
3552
3553 /*
3554 * Decrease the pool size
3555 * First return free pages to the buddy allocator (being careful
3556 * to keep enough around to satisfy reservations). Then place
3557 * pages into surplus state as needed so the pool will shrink
3558 * to the desired size as pages become free.
3559 *
3560 * By placing pages into the surplus state independent of the
3561 * overcommit value, we are allowing the surplus pool size to
3562 * exceed overcommit. There are few sane options here. Since
3563 * alloc_surplus_hugetlb_folio() is checking the global counter,
3564 * though, we'll note that we're not allowed to exceed surplus
3565 * and won't grow the pool anywhere else. Not until one of the
3566 * sysctls are changed, or the surplus pages go out of use.
3567 */
3568 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3569 min_count = max(count, min_count);
3570 try_to_free_low(h, min_count, nodes_allowed);
3571
3572 /*
3573 * Collect pages to be removed on list without dropping lock
3574 */
3575 while (min_count < persistent_huge_pages(h)) {
3576 page = remove_pool_huge_page(h, nodes_allowed, 0);
3577 if (!page)
3578 break;
3579
3580 list_add(&page->lru, &page_list);
3581 }
3582 /* free the pages after dropping lock */
3583 spin_unlock_irq(&hugetlb_lock);
3584 update_and_free_pages_bulk(h, &page_list);
3585 flush_free_hpage_work(h);
3586 spin_lock_irq(&hugetlb_lock);
3587
3588 while (count < persistent_huge_pages(h)) {
3589 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3590 break;
3591 }
3592 out:
3593 h->max_huge_pages = persistent_huge_pages(h);
3594 spin_unlock_irq(&hugetlb_lock);
3595 mutex_unlock(&h->resize_lock);
3596
3597 NODEMASK_FREE(node_alloc_noretry);
3598
3599 return 0;
3600 }
3601
demote_free_hugetlb_folio(struct hstate * h,struct folio * folio)3602 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3603 {
3604 int i, nid = folio_nid(folio);
3605 struct hstate *target_hstate;
3606 struct page *subpage;
3607 struct folio *inner_folio;
3608 int rc = 0;
3609
3610 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3611
3612 remove_hugetlb_folio_for_demote(h, folio, false);
3613 spin_unlock_irq(&hugetlb_lock);
3614
3615 rc = hugetlb_vmemmap_restore(h, &folio->page);
3616 if (rc) {
3617 /* Allocation of vmemmmap failed, we can not demote folio */
3618 spin_lock_irq(&hugetlb_lock);
3619 folio_ref_unfreeze(folio, 1);
3620 add_hugetlb_folio(h, folio, false);
3621 return rc;
3622 }
3623
3624 /*
3625 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3626 * sizes as it will not ref count folios.
3627 */
3628 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3629
3630 /*
3631 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3632 * Without the mutex, pages added to target hstate could be marked
3633 * as surplus.
3634 *
3635 * Note that we already hold h->resize_lock. To prevent deadlock,
3636 * use the convention of always taking larger size hstate mutex first.
3637 */
3638 mutex_lock(&target_hstate->resize_lock);
3639 for (i = 0; i < pages_per_huge_page(h);
3640 i += pages_per_huge_page(target_hstate)) {
3641 subpage = folio_page(folio, i);
3642 inner_folio = page_folio(subpage);
3643 if (hstate_is_gigantic(target_hstate))
3644 prep_compound_gigantic_folio_for_demote(inner_folio,
3645 target_hstate->order);
3646 else
3647 prep_compound_page(subpage, target_hstate->order);
3648 folio_change_private(inner_folio, NULL);
3649 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3650 free_huge_folio(inner_folio);
3651 }
3652 mutex_unlock(&target_hstate->resize_lock);
3653
3654 spin_lock_irq(&hugetlb_lock);
3655
3656 /*
3657 * Not absolutely necessary, but for consistency update max_huge_pages
3658 * based on pool changes for the demoted page.
3659 */
3660 h->max_huge_pages--;
3661 target_hstate->max_huge_pages +=
3662 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3663
3664 return rc;
3665 }
3666
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)3667 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3668 __must_hold(&hugetlb_lock)
3669 {
3670 int nr_nodes, node;
3671 struct folio *folio;
3672
3673 lockdep_assert_held(&hugetlb_lock);
3674
3675 /* We should never get here if no demote order */
3676 if (!h->demote_order) {
3677 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3678 return -EINVAL; /* internal error */
3679 }
3680
3681 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3682 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3683 if (folio_test_hwpoison(folio))
3684 continue;
3685 return demote_free_hugetlb_folio(h, folio);
3686 }
3687 }
3688
3689 /*
3690 * Only way to get here is if all pages on free lists are poisoned.
3691 * Return -EBUSY so that caller will not retry.
3692 */
3693 return -EBUSY;
3694 }
3695
3696 #define HSTATE_ATTR_RO(_name) \
3697 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3698
3699 #define HSTATE_ATTR_WO(_name) \
3700 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3701
3702 #define HSTATE_ATTR(_name) \
3703 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3704
3705 static struct kobject *hugepages_kobj;
3706 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3707
3708 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3709
kobj_to_hstate(struct kobject * kobj,int * nidp)3710 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3711 {
3712 int i;
3713
3714 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3715 if (hstate_kobjs[i] == kobj) {
3716 if (nidp)
3717 *nidp = NUMA_NO_NODE;
3718 return &hstates[i];
3719 }
3720
3721 return kobj_to_node_hstate(kobj, nidp);
3722 }
3723
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3724 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3725 struct kobj_attribute *attr, char *buf)
3726 {
3727 struct hstate *h;
3728 unsigned long nr_huge_pages;
3729 int nid;
3730
3731 h = kobj_to_hstate(kobj, &nid);
3732 if (nid == NUMA_NO_NODE)
3733 nr_huge_pages = h->nr_huge_pages;
3734 else
3735 nr_huge_pages = h->nr_huge_pages_node[nid];
3736
3737 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3738 }
3739
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3740 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3741 struct hstate *h, int nid,
3742 unsigned long count, size_t len)
3743 {
3744 int err;
3745 nodemask_t nodes_allowed, *n_mask;
3746
3747 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3748 return -EINVAL;
3749
3750 if (nid == NUMA_NO_NODE) {
3751 /*
3752 * global hstate attribute
3753 */
3754 if (!(obey_mempolicy &&
3755 init_nodemask_of_mempolicy(&nodes_allowed)))
3756 n_mask = &node_states[N_MEMORY];
3757 else
3758 n_mask = &nodes_allowed;
3759 } else {
3760 /*
3761 * Node specific request. count adjustment happens in
3762 * set_max_huge_pages() after acquiring hugetlb_lock.
3763 */
3764 init_nodemask_of_node(&nodes_allowed, nid);
3765 n_mask = &nodes_allowed;
3766 }
3767
3768 err = set_max_huge_pages(h, count, nid, n_mask);
3769
3770 return err ? err : len;
3771 }
3772
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3773 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3774 struct kobject *kobj, const char *buf,
3775 size_t len)
3776 {
3777 struct hstate *h;
3778 unsigned long count;
3779 int nid;
3780 int err;
3781
3782 err = kstrtoul(buf, 10, &count);
3783 if (err)
3784 return err;
3785
3786 h = kobj_to_hstate(kobj, &nid);
3787 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3788 }
3789
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3790 static ssize_t nr_hugepages_show(struct kobject *kobj,
3791 struct kobj_attribute *attr, char *buf)
3792 {
3793 return nr_hugepages_show_common(kobj, attr, buf);
3794 }
3795
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3796 static ssize_t nr_hugepages_store(struct kobject *kobj,
3797 struct kobj_attribute *attr, const char *buf, size_t len)
3798 {
3799 return nr_hugepages_store_common(false, kobj, buf, len);
3800 }
3801 HSTATE_ATTR(nr_hugepages);
3802
3803 #ifdef CONFIG_NUMA
3804
3805 /*
3806 * hstate attribute for optionally mempolicy-based constraint on persistent
3807 * huge page alloc/free.
3808 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3809 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3810 struct kobj_attribute *attr,
3811 char *buf)
3812 {
3813 return nr_hugepages_show_common(kobj, attr, buf);
3814 }
3815
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3816 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3817 struct kobj_attribute *attr, const char *buf, size_t len)
3818 {
3819 return nr_hugepages_store_common(true, kobj, buf, len);
3820 }
3821 HSTATE_ATTR(nr_hugepages_mempolicy);
3822 #endif
3823
3824
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3825 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3826 struct kobj_attribute *attr, char *buf)
3827 {
3828 struct hstate *h = kobj_to_hstate(kobj, NULL);
3829 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3830 }
3831
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3832 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3833 struct kobj_attribute *attr, const char *buf, size_t count)
3834 {
3835 int err;
3836 unsigned long input;
3837 struct hstate *h = kobj_to_hstate(kobj, NULL);
3838
3839 if (hstate_is_gigantic(h))
3840 return -EINVAL;
3841
3842 err = kstrtoul(buf, 10, &input);
3843 if (err)
3844 return err;
3845
3846 spin_lock_irq(&hugetlb_lock);
3847 h->nr_overcommit_huge_pages = input;
3848 spin_unlock_irq(&hugetlb_lock);
3849
3850 return count;
3851 }
3852 HSTATE_ATTR(nr_overcommit_hugepages);
3853
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3854 static ssize_t free_hugepages_show(struct kobject *kobj,
3855 struct kobj_attribute *attr, char *buf)
3856 {
3857 struct hstate *h;
3858 unsigned long free_huge_pages;
3859 int nid;
3860
3861 h = kobj_to_hstate(kobj, &nid);
3862 if (nid == NUMA_NO_NODE)
3863 free_huge_pages = h->free_huge_pages;
3864 else
3865 free_huge_pages = h->free_huge_pages_node[nid];
3866
3867 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3868 }
3869 HSTATE_ATTR_RO(free_hugepages);
3870
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3871 static ssize_t resv_hugepages_show(struct kobject *kobj,
3872 struct kobj_attribute *attr, char *buf)
3873 {
3874 struct hstate *h = kobj_to_hstate(kobj, NULL);
3875 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3876 }
3877 HSTATE_ATTR_RO(resv_hugepages);
3878
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3879 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3880 struct kobj_attribute *attr, char *buf)
3881 {
3882 struct hstate *h;
3883 unsigned long surplus_huge_pages;
3884 int nid;
3885
3886 h = kobj_to_hstate(kobj, &nid);
3887 if (nid == NUMA_NO_NODE)
3888 surplus_huge_pages = h->surplus_huge_pages;
3889 else
3890 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3891
3892 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3893 }
3894 HSTATE_ATTR_RO(surplus_hugepages);
3895
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3896 static ssize_t demote_store(struct kobject *kobj,
3897 struct kobj_attribute *attr, const char *buf, size_t len)
3898 {
3899 unsigned long nr_demote;
3900 unsigned long nr_available;
3901 nodemask_t nodes_allowed, *n_mask;
3902 struct hstate *h;
3903 int err;
3904 int nid;
3905
3906 err = kstrtoul(buf, 10, &nr_demote);
3907 if (err)
3908 return err;
3909 h = kobj_to_hstate(kobj, &nid);
3910
3911 if (nid != NUMA_NO_NODE) {
3912 init_nodemask_of_node(&nodes_allowed, nid);
3913 n_mask = &nodes_allowed;
3914 } else {
3915 n_mask = &node_states[N_MEMORY];
3916 }
3917
3918 /* Synchronize with other sysfs operations modifying huge pages */
3919 mutex_lock(&h->resize_lock);
3920 spin_lock_irq(&hugetlb_lock);
3921
3922 while (nr_demote) {
3923 /*
3924 * Check for available pages to demote each time thorough the
3925 * loop as demote_pool_huge_page will drop hugetlb_lock.
3926 */
3927 if (nid != NUMA_NO_NODE)
3928 nr_available = h->free_huge_pages_node[nid];
3929 else
3930 nr_available = h->free_huge_pages;
3931 nr_available -= h->resv_huge_pages;
3932 if (!nr_available)
3933 break;
3934
3935 err = demote_pool_huge_page(h, n_mask);
3936 if (err)
3937 break;
3938
3939 nr_demote--;
3940 }
3941
3942 spin_unlock_irq(&hugetlb_lock);
3943 mutex_unlock(&h->resize_lock);
3944
3945 if (err)
3946 return err;
3947 return len;
3948 }
3949 HSTATE_ATTR_WO(demote);
3950
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3951 static ssize_t demote_size_show(struct kobject *kobj,
3952 struct kobj_attribute *attr, char *buf)
3953 {
3954 struct hstate *h = kobj_to_hstate(kobj, NULL);
3955 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3956
3957 return sysfs_emit(buf, "%lukB\n", demote_size);
3958 }
3959
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3960 static ssize_t demote_size_store(struct kobject *kobj,
3961 struct kobj_attribute *attr,
3962 const char *buf, size_t count)
3963 {
3964 struct hstate *h, *demote_hstate;
3965 unsigned long demote_size;
3966 unsigned int demote_order;
3967
3968 demote_size = (unsigned long)memparse(buf, NULL);
3969
3970 demote_hstate = size_to_hstate(demote_size);
3971 if (!demote_hstate)
3972 return -EINVAL;
3973 demote_order = demote_hstate->order;
3974 if (demote_order < HUGETLB_PAGE_ORDER)
3975 return -EINVAL;
3976
3977 /* demote order must be smaller than hstate order */
3978 h = kobj_to_hstate(kobj, NULL);
3979 if (demote_order >= h->order)
3980 return -EINVAL;
3981
3982 /* resize_lock synchronizes access to demote size and writes */
3983 mutex_lock(&h->resize_lock);
3984 h->demote_order = demote_order;
3985 mutex_unlock(&h->resize_lock);
3986
3987 return count;
3988 }
3989 HSTATE_ATTR(demote_size);
3990
3991 static struct attribute *hstate_attrs[] = {
3992 &nr_hugepages_attr.attr,
3993 &nr_overcommit_hugepages_attr.attr,
3994 &free_hugepages_attr.attr,
3995 &resv_hugepages_attr.attr,
3996 &surplus_hugepages_attr.attr,
3997 #ifdef CONFIG_NUMA
3998 &nr_hugepages_mempolicy_attr.attr,
3999 #endif
4000 NULL,
4001 };
4002
4003 static const struct attribute_group hstate_attr_group = {
4004 .attrs = hstate_attrs,
4005 };
4006
4007 static struct attribute *hstate_demote_attrs[] = {
4008 &demote_size_attr.attr,
4009 &demote_attr.attr,
4010 NULL,
4011 };
4012
4013 static const struct attribute_group hstate_demote_attr_group = {
4014 .attrs = hstate_demote_attrs,
4015 };
4016
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4017 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4018 struct kobject **hstate_kobjs,
4019 const struct attribute_group *hstate_attr_group)
4020 {
4021 int retval;
4022 int hi = hstate_index(h);
4023
4024 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4025 if (!hstate_kobjs[hi])
4026 return -ENOMEM;
4027
4028 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4029 if (retval) {
4030 kobject_put(hstate_kobjs[hi]);
4031 hstate_kobjs[hi] = NULL;
4032 return retval;
4033 }
4034
4035 if (h->demote_order) {
4036 retval = sysfs_create_group(hstate_kobjs[hi],
4037 &hstate_demote_attr_group);
4038 if (retval) {
4039 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4040 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4041 kobject_put(hstate_kobjs[hi]);
4042 hstate_kobjs[hi] = NULL;
4043 return retval;
4044 }
4045 }
4046
4047 return 0;
4048 }
4049
4050 #ifdef CONFIG_NUMA
4051 static bool hugetlb_sysfs_initialized __ro_after_init;
4052
4053 /*
4054 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4055 * with node devices in node_devices[] using a parallel array. The array
4056 * index of a node device or _hstate == node id.
4057 * This is here to avoid any static dependency of the node device driver, in
4058 * the base kernel, on the hugetlb module.
4059 */
4060 struct node_hstate {
4061 struct kobject *hugepages_kobj;
4062 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4063 };
4064 static struct node_hstate node_hstates[MAX_NUMNODES];
4065
4066 /*
4067 * A subset of global hstate attributes for node devices
4068 */
4069 static struct attribute *per_node_hstate_attrs[] = {
4070 &nr_hugepages_attr.attr,
4071 &free_hugepages_attr.attr,
4072 &surplus_hugepages_attr.attr,
4073 NULL,
4074 };
4075
4076 static const struct attribute_group per_node_hstate_attr_group = {
4077 .attrs = per_node_hstate_attrs,
4078 };
4079
4080 /*
4081 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4082 * Returns node id via non-NULL nidp.
4083 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4085 {
4086 int nid;
4087
4088 for (nid = 0; nid < nr_node_ids; nid++) {
4089 struct node_hstate *nhs = &node_hstates[nid];
4090 int i;
4091 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4092 if (nhs->hstate_kobjs[i] == kobj) {
4093 if (nidp)
4094 *nidp = nid;
4095 return &hstates[i];
4096 }
4097 }
4098
4099 BUG();
4100 return NULL;
4101 }
4102
4103 /*
4104 * Unregister hstate attributes from a single node device.
4105 * No-op if no hstate attributes attached.
4106 */
hugetlb_unregister_node(struct node * node)4107 void hugetlb_unregister_node(struct node *node)
4108 {
4109 struct hstate *h;
4110 struct node_hstate *nhs = &node_hstates[node->dev.id];
4111
4112 if (!nhs->hugepages_kobj)
4113 return; /* no hstate attributes */
4114
4115 for_each_hstate(h) {
4116 int idx = hstate_index(h);
4117 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4118
4119 if (!hstate_kobj)
4120 continue;
4121 if (h->demote_order)
4122 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4123 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4124 kobject_put(hstate_kobj);
4125 nhs->hstate_kobjs[idx] = NULL;
4126 }
4127
4128 kobject_put(nhs->hugepages_kobj);
4129 nhs->hugepages_kobj = NULL;
4130 }
4131
4132
4133 /*
4134 * Register hstate attributes for a single node device.
4135 * No-op if attributes already registered.
4136 */
hugetlb_register_node(struct node * node)4137 void hugetlb_register_node(struct node *node)
4138 {
4139 struct hstate *h;
4140 struct node_hstate *nhs = &node_hstates[node->dev.id];
4141 int err;
4142
4143 if (!hugetlb_sysfs_initialized)
4144 return;
4145
4146 if (nhs->hugepages_kobj)
4147 return; /* already allocated */
4148
4149 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4150 &node->dev.kobj);
4151 if (!nhs->hugepages_kobj)
4152 return;
4153
4154 for_each_hstate(h) {
4155 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4156 nhs->hstate_kobjs,
4157 &per_node_hstate_attr_group);
4158 if (err) {
4159 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4160 h->name, node->dev.id);
4161 hugetlb_unregister_node(node);
4162 break;
4163 }
4164 }
4165 }
4166
4167 /*
4168 * hugetlb init time: register hstate attributes for all registered node
4169 * devices of nodes that have memory. All on-line nodes should have
4170 * registered their associated device by this time.
4171 */
hugetlb_register_all_nodes(void)4172 static void __init hugetlb_register_all_nodes(void)
4173 {
4174 int nid;
4175
4176 for_each_online_node(nid)
4177 hugetlb_register_node(node_devices[nid]);
4178 }
4179 #else /* !CONFIG_NUMA */
4180
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4182 {
4183 BUG();
4184 if (nidp)
4185 *nidp = -1;
4186 return NULL;
4187 }
4188
hugetlb_register_all_nodes(void)4189 static void hugetlb_register_all_nodes(void) { }
4190
4191 #endif
4192
4193 #ifdef CONFIG_CMA
4194 static void __init hugetlb_cma_check(void);
4195 #else
hugetlb_cma_check(void)4196 static inline __init void hugetlb_cma_check(void)
4197 {
4198 }
4199 #endif
4200
hugetlb_sysfs_init(void)4201 static void __init hugetlb_sysfs_init(void)
4202 {
4203 struct hstate *h;
4204 int err;
4205
4206 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4207 if (!hugepages_kobj)
4208 return;
4209
4210 for_each_hstate(h) {
4211 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4212 hstate_kobjs, &hstate_attr_group);
4213 if (err)
4214 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4215 }
4216
4217 #ifdef CONFIG_NUMA
4218 hugetlb_sysfs_initialized = true;
4219 #endif
4220 hugetlb_register_all_nodes();
4221 }
4222
4223 #ifdef CONFIG_SYSCTL
4224 static void hugetlb_sysctl_init(void);
4225 #else
hugetlb_sysctl_init(void)4226 static inline void hugetlb_sysctl_init(void) { }
4227 #endif
4228
hugetlb_init(void)4229 static int __init hugetlb_init(void)
4230 {
4231 int i;
4232
4233 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4234 __NR_HPAGEFLAGS);
4235
4236 if (!hugepages_supported()) {
4237 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4238 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4239 return 0;
4240 }
4241
4242 /*
4243 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4244 * architectures depend on setup being done here.
4245 */
4246 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4247 if (!parsed_default_hugepagesz) {
4248 /*
4249 * If we did not parse a default huge page size, set
4250 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4251 * number of huge pages for this default size was implicitly
4252 * specified, set that here as well.
4253 * Note that the implicit setting will overwrite an explicit
4254 * setting. A warning will be printed in this case.
4255 */
4256 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4257 if (default_hstate_max_huge_pages) {
4258 if (default_hstate.max_huge_pages) {
4259 char buf[32];
4260
4261 string_get_size(huge_page_size(&default_hstate),
4262 1, STRING_UNITS_2, buf, 32);
4263 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4264 default_hstate.max_huge_pages, buf);
4265 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4266 default_hstate_max_huge_pages);
4267 }
4268 default_hstate.max_huge_pages =
4269 default_hstate_max_huge_pages;
4270
4271 for_each_online_node(i)
4272 default_hstate.max_huge_pages_node[i] =
4273 default_hugepages_in_node[i];
4274 }
4275 }
4276
4277 hugetlb_cma_check();
4278 hugetlb_init_hstates();
4279 gather_bootmem_prealloc();
4280 report_hugepages();
4281
4282 hugetlb_sysfs_init();
4283 hugetlb_cgroup_file_init();
4284 hugetlb_sysctl_init();
4285
4286 #ifdef CONFIG_SMP
4287 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4288 #else
4289 num_fault_mutexes = 1;
4290 #endif
4291 hugetlb_fault_mutex_table =
4292 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4293 GFP_KERNEL);
4294 BUG_ON(!hugetlb_fault_mutex_table);
4295
4296 for (i = 0; i < num_fault_mutexes; i++)
4297 mutex_init(&hugetlb_fault_mutex_table[i]);
4298 return 0;
4299 }
4300 subsys_initcall(hugetlb_init);
4301
4302 /* Overwritten by architectures with more huge page sizes */
__init(weak)4303 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4304 {
4305 return size == HPAGE_SIZE;
4306 }
4307
hugetlb_add_hstate(unsigned int order)4308 void __init hugetlb_add_hstate(unsigned int order)
4309 {
4310 struct hstate *h;
4311 unsigned long i;
4312
4313 if (size_to_hstate(PAGE_SIZE << order)) {
4314 return;
4315 }
4316 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4317 BUG_ON(order == 0);
4318 h = &hstates[hugetlb_max_hstate++];
4319 mutex_init(&h->resize_lock);
4320 h->order = order;
4321 h->mask = ~(huge_page_size(h) - 1);
4322 for (i = 0; i < MAX_NUMNODES; ++i)
4323 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4324 INIT_LIST_HEAD(&h->hugepage_activelist);
4325 h->next_nid_to_alloc = first_memory_node;
4326 h->next_nid_to_free = first_memory_node;
4327 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4328 huge_page_size(h)/SZ_1K);
4329
4330 parsed_hstate = h;
4331 }
4332
hugetlb_node_alloc_supported(void)4333 bool __init __weak hugetlb_node_alloc_supported(void)
4334 {
4335 return true;
4336 }
4337
hugepages_clear_pages_in_node(void)4338 static void __init hugepages_clear_pages_in_node(void)
4339 {
4340 if (!hugetlb_max_hstate) {
4341 default_hstate_max_huge_pages = 0;
4342 memset(default_hugepages_in_node, 0,
4343 sizeof(default_hugepages_in_node));
4344 } else {
4345 parsed_hstate->max_huge_pages = 0;
4346 memset(parsed_hstate->max_huge_pages_node, 0,
4347 sizeof(parsed_hstate->max_huge_pages_node));
4348 }
4349 }
4350
4351 /*
4352 * hugepages command line processing
4353 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4354 * specification. If not, ignore the hugepages value. hugepages can also
4355 * be the first huge page command line option in which case it implicitly
4356 * specifies the number of huge pages for the default size.
4357 */
hugepages_setup(char * s)4358 static int __init hugepages_setup(char *s)
4359 {
4360 unsigned long *mhp;
4361 static unsigned long *last_mhp;
4362 int node = NUMA_NO_NODE;
4363 int count;
4364 unsigned long tmp;
4365 char *p = s;
4366
4367 if (!parsed_valid_hugepagesz) {
4368 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4369 parsed_valid_hugepagesz = true;
4370 return 1;
4371 }
4372
4373 /*
4374 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4375 * yet, so this hugepages= parameter goes to the "default hstate".
4376 * Otherwise, it goes with the previously parsed hugepagesz or
4377 * default_hugepagesz.
4378 */
4379 else if (!hugetlb_max_hstate)
4380 mhp = &default_hstate_max_huge_pages;
4381 else
4382 mhp = &parsed_hstate->max_huge_pages;
4383
4384 if (mhp == last_mhp) {
4385 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4386 return 1;
4387 }
4388
4389 while (*p) {
4390 count = 0;
4391 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4392 goto invalid;
4393 /* Parameter is node format */
4394 if (p[count] == ':') {
4395 if (!hugetlb_node_alloc_supported()) {
4396 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4397 return 1;
4398 }
4399 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4400 goto invalid;
4401 node = array_index_nospec(tmp, MAX_NUMNODES);
4402 p += count + 1;
4403 /* Parse hugepages */
4404 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4405 goto invalid;
4406 if (!hugetlb_max_hstate)
4407 default_hugepages_in_node[node] = tmp;
4408 else
4409 parsed_hstate->max_huge_pages_node[node] = tmp;
4410 *mhp += tmp;
4411 /* Go to parse next node*/
4412 if (p[count] == ',')
4413 p += count + 1;
4414 else
4415 break;
4416 } else {
4417 if (p != s)
4418 goto invalid;
4419 *mhp = tmp;
4420 break;
4421 }
4422 }
4423
4424 /*
4425 * Global state is always initialized later in hugetlb_init.
4426 * But we need to allocate gigantic hstates here early to still
4427 * use the bootmem allocator.
4428 */
4429 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4430 hugetlb_hstate_alloc_pages(parsed_hstate);
4431
4432 last_mhp = mhp;
4433
4434 return 1;
4435
4436 invalid:
4437 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4438 hugepages_clear_pages_in_node();
4439 return 1;
4440 }
4441 __setup("hugepages=", hugepages_setup);
4442
4443 /*
4444 * hugepagesz command line processing
4445 * A specific huge page size can only be specified once with hugepagesz.
4446 * hugepagesz is followed by hugepages on the command line. The global
4447 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4448 * hugepagesz argument was valid.
4449 */
hugepagesz_setup(char * s)4450 static int __init hugepagesz_setup(char *s)
4451 {
4452 unsigned long size;
4453 struct hstate *h;
4454
4455 parsed_valid_hugepagesz = false;
4456 size = (unsigned long)memparse(s, NULL);
4457
4458 if (!arch_hugetlb_valid_size(size)) {
4459 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4460 return 1;
4461 }
4462
4463 h = size_to_hstate(size);
4464 if (h) {
4465 /*
4466 * hstate for this size already exists. This is normally
4467 * an error, but is allowed if the existing hstate is the
4468 * default hstate. More specifically, it is only allowed if
4469 * the number of huge pages for the default hstate was not
4470 * previously specified.
4471 */
4472 if (!parsed_default_hugepagesz || h != &default_hstate ||
4473 default_hstate.max_huge_pages) {
4474 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4475 return 1;
4476 }
4477
4478 /*
4479 * No need to call hugetlb_add_hstate() as hstate already
4480 * exists. But, do set parsed_hstate so that a following
4481 * hugepages= parameter will be applied to this hstate.
4482 */
4483 parsed_hstate = h;
4484 parsed_valid_hugepagesz = true;
4485 return 1;
4486 }
4487
4488 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4489 parsed_valid_hugepagesz = true;
4490 return 1;
4491 }
4492 __setup("hugepagesz=", hugepagesz_setup);
4493
4494 /*
4495 * default_hugepagesz command line input
4496 * Only one instance of default_hugepagesz allowed on command line.
4497 */
default_hugepagesz_setup(char * s)4498 static int __init default_hugepagesz_setup(char *s)
4499 {
4500 unsigned long size;
4501 int i;
4502
4503 parsed_valid_hugepagesz = false;
4504 if (parsed_default_hugepagesz) {
4505 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4506 return 1;
4507 }
4508
4509 size = (unsigned long)memparse(s, NULL);
4510
4511 if (!arch_hugetlb_valid_size(size)) {
4512 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4513 return 1;
4514 }
4515
4516 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4517 parsed_valid_hugepagesz = true;
4518 parsed_default_hugepagesz = true;
4519 default_hstate_idx = hstate_index(size_to_hstate(size));
4520
4521 /*
4522 * The number of default huge pages (for this size) could have been
4523 * specified as the first hugetlb parameter: hugepages=X. If so,
4524 * then default_hstate_max_huge_pages is set. If the default huge
4525 * page size is gigantic (> MAX_ORDER), then the pages must be
4526 * allocated here from bootmem allocator.
4527 */
4528 if (default_hstate_max_huge_pages) {
4529 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4530 for_each_online_node(i)
4531 default_hstate.max_huge_pages_node[i] =
4532 default_hugepages_in_node[i];
4533 if (hstate_is_gigantic(&default_hstate))
4534 hugetlb_hstate_alloc_pages(&default_hstate);
4535 default_hstate_max_huge_pages = 0;
4536 }
4537
4538 return 1;
4539 }
4540 __setup("default_hugepagesz=", default_hugepagesz_setup);
4541
policy_mbind_nodemask(gfp_t gfp)4542 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4543 {
4544 #ifdef CONFIG_NUMA
4545 struct mempolicy *mpol = get_task_policy(current);
4546
4547 /*
4548 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4549 * (from policy_nodemask) specifically for hugetlb case
4550 */
4551 if (mpol->mode == MPOL_BIND &&
4552 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4553 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4554 return &mpol->nodes;
4555 #endif
4556 return NULL;
4557 }
4558
allowed_mems_nr(struct hstate * h)4559 static unsigned int allowed_mems_nr(struct hstate *h)
4560 {
4561 int node;
4562 unsigned int nr = 0;
4563 nodemask_t *mbind_nodemask;
4564 unsigned int *array = h->free_huge_pages_node;
4565 gfp_t gfp_mask = htlb_alloc_mask(h);
4566
4567 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4568 for_each_node_mask(node, cpuset_current_mems_allowed) {
4569 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4570 nr += array[node];
4571 }
4572
4573 return nr;
4574 }
4575
4576 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4577 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4578 void *buffer, size_t *length,
4579 loff_t *ppos, unsigned long *out)
4580 {
4581 struct ctl_table dup_table;
4582
4583 /*
4584 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4585 * can duplicate the @table and alter the duplicate of it.
4586 */
4587 dup_table = *table;
4588 dup_table.data = out;
4589
4590 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4591 }
4592
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4593 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4594 struct ctl_table *table, int write,
4595 void *buffer, size_t *length, loff_t *ppos)
4596 {
4597 struct hstate *h = &default_hstate;
4598 unsigned long tmp = h->max_huge_pages;
4599 int ret;
4600
4601 if (!hugepages_supported())
4602 return -EOPNOTSUPP;
4603
4604 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4605 &tmp);
4606 if (ret)
4607 goto out;
4608
4609 if (write)
4610 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4611 NUMA_NO_NODE, tmp, *length);
4612 out:
4613 return ret;
4614 }
4615
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4616 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4617 void *buffer, size_t *length, loff_t *ppos)
4618 {
4619
4620 return hugetlb_sysctl_handler_common(false, table, write,
4621 buffer, length, ppos);
4622 }
4623
4624 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4625 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4626 void *buffer, size_t *length, loff_t *ppos)
4627 {
4628 return hugetlb_sysctl_handler_common(true, table, write,
4629 buffer, length, ppos);
4630 }
4631 #endif /* CONFIG_NUMA */
4632
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4633 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4634 void *buffer, size_t *length, loff_t *ppos)
4635 {
4636 struct hstate *h = &default_hstate;
4637 unsigned long tmp;
4638 int ret;
4639
4640 if (!hugepages_supported())
4641 return -EOPNOTSUPP;
4642
4643 tmp = h->nr_overcommit_huge_pages;
4644
4645 if (write && hstate_is_gigantic(h))
4646 return -EINVAL;
4647
4648 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4649 &tmp);
4650 if (ret)
4651 goto out;
4652
4653 if (write) {
4654 spin_lock_irq(&hugetlb_lock);
4655 h->nr_overcommit_huge_pages = tmp;
4656 spin_unlock_irq(&hugetlb_lock);
4657 }
4658 out:
4659 return ret;
4660 }
4661
4662 static struct ctl_table hugetlb_table[] = {
4663 {
4664 .procname = "nr_hugepages",
4665 .data = NULL,
4666 .maxlen = sizeof(unsigned long),
4667 .mode = 0644,
4668 .proc_handler = hugetlb_sysctl_handler,
4669 },
4670 #ifdef CONFIG_NUMA
4671 {
4672 .procname = "nr_hugepages_mempolicy",
4673 .data = NULL,
4674 .maxlen = sizeof(unsigned long),
4675 .mode = 0644,
4676 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4677 },
4678 #endif
4679 {
4680 .procname = "hugetlb_shm_group",
4681 .data = &sysctl_hugetlb_shm_group,
4682 .maxlen = sizeof(gid_t),
4683 .mode = 0644,
4684 .proc_handler = proc_dointvec,
4685 },
4686 {
4687 .procname = "nr_overcommit_hugepages",
4688 .data = NULL,
4689 .maxlen = sizeof(unsigned long),
4690 .mode = 0644,
4691 .proc_handler = hugetlb_overcommit_handler,
4692 },
4693 { }
4694 };
4695
hugetlb_sysctl_init(void)4696 static void hugetlb_sysctl_init(void)
4697 {
4698 register_sysctl_init("vm", hugetlb_table);
4699 }
4700 #endif /* CONFIG_SYSCTL */
4701
hugetlb_report_meminfo(struct seq_file * m)4702 void hugetlb_report_meminfo(struct seq_file *m)
4703 {
4704 struct hstate *h;
4705 unsigned long total = 0;
4706
4707 if (!hugepages_supported())
4708 return;
4709
4710 for_each_hstate(h) {
4711 unsigned long count = h->nr_huge_pages;
4712
4713 total += huge_page_size(h) * count;
4714
4715 if (h == &default_hstate)
4716 seq_printf(m,
4717 "HugePages_Total: %5lu\n"
4718 "HugePages_Free: %5lu\n"
4719 "HugePages_Rsvd: %5lu\n"
4720 "HugePages_Surp: %5lu\n"
4721 "Hugepagesize: %8lu kB\n",
4722 count,
4723 h->free_huge_pages,
4724 h->resv_huge_pages,
4725 h->surplus_huge_pages,
4726 huge_page_size(h) / SZ_1K);
4727 }
4728
4729 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4730 }
4731
hugetlb_report_node_meminfo(char * buf,int len,int nid)4732 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4733 {
4734 struct hstate *h = &default_hstate;
4735
4736 if (!hugepages_supported())
4737 return 0;
4738
4739 return sysfs_emit_at(buf, len,
4740 "Node %d HugePages_Total: %5u\n"
4741 "Node %d HugePages_Free: %5u\n"
4742 "Node %d HugePages_Surp: %5u\n",
4743 nid, h->nr_huge_pages_node[nid],
4744 nid, h->free_huge_pages_node[nid],
4745 nid, h->surplus_huge_pages_node[nid]);
4746 }
4747
hugetlb_show_meminfo_node(int nid)4748 void hugetlb_show_meminfo_node(int nid)
4749 {
4750 struct hstate *h;
4751
4752 if (!hugepages_supported())
4753 return;
4754
4755 for_each_hstate(h)
4756 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4757 nid,
4758 h->nr_huge_pages_node[nid],
4759 h->free_huge_pages_node[nid],
4760 h->surplus_huge_pages_node[nid],
4761 huge_page_size(h) / SZ_1K);
4762 }
4763
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4764 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4765 {
4766 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4767 K(atomic_long_read(&mm->hugetlb_usage)));
4768 }
4769
4770 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4771 unsigned long hugetlb_total_pages(void)
4772 {
4773 struct hstate *h;
4774 unsigned long nr_total_pages = 0;
4775
4776 for_each_hstate(h)
4777 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4778 return nr_total_pages;
4779 }
4780
hugetlb_acct_memory(struct hstate * h,long delta)4781 static int hugetlb_acct_memory(struct hstate *h, long delta)
4782 {
4783 int ret = -ENOMEM;
4784
4785 if (!delta)
4786 return 0;
4787
4788 spin_lock_irq(&hugetlb_lock);
4789 /*
4790 * When cpuset is configured, it breaks the strict hugetlb page
4791 * reservation as the accounting is done on a global variable. Such
4792 * reservation is completely rubbish in the presence of cpuset because
4793 * the reservation is not checked against page availability for the
4794 * current cpuset. Application can still potentially OOM'ed by kernel
4795 * with lack of free htlb page in cpuset that the task is in.
4796 * Attempt to enforce strict accounting with cpuset is almost
4797 * impossible (or too ugly) because cpuset is too fluid that
4798 * task or memory node can be dynamically moved between cpusets.
4799 *
4800 * The change of semantics for shared hugetlb mapping with cpuset is
4801 * undesirable. However, in order to preserve some of the semantics,
4802 * we fall back to check against current free page availability as
4803 * a best attempt and hopefully to minimize the impact of changing
4804 * semantics that cpuset has.
4805 *
4806 * Apart from cpuset, we also have memory policy mechanism that
4807 * also determines from which node the kernel will allocate memory
4808 * in a NUMA system. So similar to cpuset, we also should consider
4809 * the memory policy of the current task. Similar to the description
4810 * above.
4811 */
4812 if (delta > 0) {
4813 if (gather_surplus_pages(h, delta) < 0)
4814 goto out;
4815
4816 if (delta > allowed_mems_nr(h)) {
4817 return_unused_surplus_pages(h, delta);
4818 goto out;
4819 }
4820 }
4821
4822 ret = 0;
4823 if (delta < 0)
4824 return_unused_surplus_pages(h, (unsigned long) -delta);
4825
4826 out:
4827 spin_unlock_irq(&hugetlb_lock);
4828 return ret;
4829 }
4830
hugetlb_vm_op_open(struct vm_area_struct * vma)4831 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4832 {
4833 struct resv_map *resv = vma_resv_map(vma);
4834
4835 /*
4836 * HPAGE_RESV_OWNER indicates a private mapping.
4837 * This new VMA should share its siblings reservation map if present.
4838 * The VMA will only ever have a valid reservation map pointer where
4839 * it is being copied for another still existing VMA. As that VMA
4840 * has a reference to the reservation map it cannot disappear until
4841 * after this open call completes. It is therefore safe to take a
4842 * new reference here without additional locking.
4843 */
4844 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4845 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4846 kref_get(&resv->refs);
4847 }
4848
4849 /*
4850 * vma_lock structure for sharable mappings is vma specific.
4851 * Clear old pointer (if copied via vm_area_dup) and allocate
4852 * new structure. Before clearing, make sure vma_lock is not
4853 * for this vma.
4854 */
4855 if (vma->vm_flags & VM_MAYSHARE) {
4856 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4857
4858 if (vma_lock) {
4859 if (vma_lock->vma != vma) {
4860 vma->vm_private_data = NULL;
4861 hugetlb_vma_lock_alloc(vma);
4862 } else
4863 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4864 } else
4865 hugetlb_vma_lock_alloc(vma);
4866 }
4867 }
4868
hugetlb_vm_op_close(struct vm_area_struct * vma)4869 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4870 {
4871 struct hstate *h = hstate_vma(vma);
4872 struct resv_map *resv;
4873 struct hugepage_subpool *spool = subpool_vma(vma);
4874 unsigned long reserve, start, end;
4875 long gbl_reserve;
4876
4877 hugetlb_vma_lock_free(vma);
4878
4879 resv = vma_resv_map(vma);
4880 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4881 return;
4882
4883 start = vma_hugecache_offset(h, vma, vma->vm_start);
4884 end = vma_hugecache_offset(h, vma, vma->vm_end);
4885
4886 reserve = (end - start) - region_count(resv, start, end);
4887 hugetlb_cgroup_uncharge_counter(resv, start, end);
4888 if (reserve) {
4889 /*
4890 * Decrement reserve counts. The global reserve count may be
4891 * adjusted if the subpool has a minimum size.
4892 */
4893 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4894 hugetlb_acct_memory(h, -gbl_reserve);
4895 }
4896
4897 kref_put(&resv->refs, resv_map_release);
4898 }
4899
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4900 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4901 {
4902 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4903 return -EINVAL;
4904
4905 /*
4906 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4907 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4908 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4909 */
4910 if (addr & ~PUD_MASK) {
4911 /*
4912 * hugetlb_vm_op_split is called right before we attempt to
4913 * split the VMA. We will need to unshare PMDs in the old and
4914 * new VMAs, so let's unshare before we split.
4915 */
4916 unsigned long floor = addr & PUD_MASK;
4917 unsigned long ceil = floor + PUD_SIZE;
4918
4919 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4920 hugetlb_unshare_pmds(vma, floor, ceil);
4921 }
4922
4923 return 0;
4924 }
4925
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4926 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4927 {
4928 return huge_page_size(hstate_vma(vma));
4929 }
4930
4931 /*
4932 * We cannot handle pagefaults against hugetlb pages at all. They cause
4933 * handle_mm_fault() to try to instantiate regular-sized pages in the
4934 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4935 * this far.
4936 */
hugetlb_vm_op_fault(struct vm_fault * vmf)4937 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4938 {
4939 BUG();
4940 return 0;
4941 }
4942
4943 /*
4944 * When a new function is introduced to vm_operations_struct and added
4945 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4946 * This is because under System V memory model, mappings created via
4947 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4948 * their original vm_ops are overwritten with shm_vm_ops.
4949 */
4950 const struct vm_operations_struct hugetlb_vm_ops = {
4951 .fault = hugetlb_vm_op_fault,
4952 .open = hugetlb_vm_op_open,
4953 .close = hugetlb_vm_op_close,
4954 .may_split = hugetlb_vm_op_split,
4955 .pagesize = hugetlb_vm_op_pagesize,
4956 };
4957
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4958 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4959 int writable)
4960 {
4961 pte_t entry;
4962 unsigned int shift = huge_page_shift(hstate_vma(vma));
4963
4964 if (writable) {
4965 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4966 vma->vm_page_prot)));
4967 } else {
4968 entry = huge_pte_wrprotect(mk_huge_pte(page,
4969 vma->vm_page_prot));
4970 }
4971 entry = pte_mkyoung(entry);
4972 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4973
4974 return entry;
4975 }
4976
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4977 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4978 unsigned long address, pte_t *ptep)
4979 {
4980 pte_t entry;
4981
4982 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4983 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4984 update_mmu_cache(vma, address, ptep);
4985 }
4986
is_hugetlb_entry_migration(pte_t pte)4987 bool is_hugetlb_entry_migration(pte_t pte)
4988 {
4989 swp_entry_t swp;
4990
4991 if (huge_pte_none(pte) || pte_present(pte))
4992 return false;
4993 swp = pte_to_swp_entry(pte);
4994 if (is_migration_entry(swp))
4995 return true;
4996 else
4997 return false;
4998 }
4999
is_hugetlb_entry_hwpoisoned(pte_t pte)5000 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5001 {
5002 swp_entry_t swp;
5003
5004 if (huge_pte_none(pte) || pte_present(pte))
5005 return false;
5006 swp = pte_to_swp_entry(pte);
5007 if (is_hwpoison_entry(swp))
5008 return true;
5009 else
5010 return false;
5011 }
5012
5013 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5014 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5015 struct folio *new_folio, pte_t old, unsigned long sz)
5016 {
5017 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5018
5019 __folio_mark_uptodate(new_folio);
5020 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5021 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5022 newpte = huge_pte_mkuffd_wp(newpte);
5023 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5024 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5025 folio_set_hugetlb_migratable(new_folio);
5026 }
5027
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5028 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5029 struct vm_area_struct *dst_vma,
5030 struct vm_area_struct *src_vma)
5031 {
5032 pte_t *src_pte, *dst_pte, entry;
5033 struct folio *pte_folio;
5034 unsigned long addr;
5035 bool cow = is_cow_mapping(src_vma->vm_flags);
5036 struct hstate *h = hstate_vma(src_vma);
5037 unsigned long sz = huge_page_size(h);
5038 unsigned long npages = pages_per_huge_page(h);
5039 struct mmu_notifier_range range;
5040 unsigned long last_addr_mask;
5041 int ret = 0;
5042
5043 if (cow) {
5044 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5045 src_vma->vm_start,
5046 src_vma->vm_end);
5047 mmu_notifier_invalidate_range_start(&range);
5048 vma_assert_write_locked(src_vma);
5049 raw_write_seqcount_begin(&src->write_protect_seq);
5050 } else {
5051 /*
5052 * For shared mappings the vma lock must be held before
5053 * calling hugetlb_walk() in the src vma. Otherwise, the
5054 * returned ptep could go away if part of a shared pmd and
5055 * another thread calls huge_pmd_unshare.
5056 */
5057 hugetlb_vma_lock_read(src_vma);
5058 }
5059
5060 last_addr_mask = hugetlb_mask_last_page(h);
5061 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5062 spinlock_t *src_ptl, *dst_ptl;
5063 src_pte = hugetlb_walk(src_vma, addr, sz);
5064 if (!src_pte) {
5065 addr |= last_addr_mask;
5066 continue;
5067 }
5068 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5069 if (!dst_pte) {
5070 ret = -ENOMEM;
5071 break;
5072 }
5073
5074 /*
5075 * If the pagetables are shared don't copy or take references.
5076 *
5077 * dst_pte == src_pte is the common case of src/dest sharing.
5078 * However, src could have 'unshared' and dst shares with
5079 * another vma. So page_count of ptep page is checked instead
5080 * to reliably determine whether pte is shared.
5081 */
5082 if (page_count(virt_to_page(dst_pte)) > 1) {
5083 addr |= last_addr_mask;
5084 continue;
5085 }
5086
5087 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5088 src_ptl = huge_pte_lockptr(h, src, src_pte);
5089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5090 entry = huge_ptep_get(src_pte);
5091 again:
5092 if (huge_pte_none(entry)) {
5093 /*
5094 * Skip if src entry none.
5095 */
5096 ;
5097 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5098 if (!userfaultfd_wp(dst_vma))
5099 entry = huge_pte_clear_uffd_wp(entry);
5100 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5101 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5102 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5103 bool uffd_wp = pte_swp_uffd_wp(entry);
5104
5105 if (!is_readable_migration_entry(swp_entry) && cow) {
5106 /*
5107 * COW mappings require pages in both
5108 * parent and child to be set to read.
5109 */
5110 swp_entry = make_readable_migration_entry(
5111 swp_offset(swp_entry));
5112 entry = swp_entry_to_pte(swp_entry);
5113 if (userfaultfd_wp(src_vma) && uffd_wp)
5114 entry = pte_swp_mkuffd_wp(entry);
5115 set_huge_pte_at(src, addr, src_pte, entry, sz);
5116 }
5117 if (!userfaultfd_wp(dst_vma))
5118 entry = huge_pte_clear_uffd_wp(entry);
5119 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5120 } else if (unlikely(is_pte_marker(entry))) {
5121 pte_marker marker = copy_pte_marker(
5122 pte_to_swp_entry(entry), dst_vma);
5123
5124 if (marker)
5125 set_huge_pte_at(dst, addr, dst_pte,
5126 make_pte_marker(marker), sz);
5127 } else {
5128 entry = huge_ptep_get(src_pte);
5129 pte_folio = page_folio(pte_page(entry));
5130 folio_get(pte_folio);
5131
5132 /*
5133 * Failing to duplicate the anon rmap is a rare case
5134 * where we see pinned hugetlb pages while they're
5135 * prone to COW. We need to do the COW earlier during
5136 * fork.
5137 *
5138 * When pre-allocating the page or copying data, we
5139 * need to be without the pgtable locks since we could
5140 * sleep during the process.
5141 */
5142 if (!folio_test_anon(pte_folio)) {
5143 page_dup_file_rmap(&pte_folio->page, true);
5144 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5145 true, src_vma)) {
5146 pte_t src_pte_old = entry;
5147 struct folio *new_folio;
5148
5149 spin_unlock(src_ptl);
5150 spin_unlock(dst_ptl);
5151 /* Do not use reserve as it's private owned */
5152 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5153 if (IS_ERR(new_folio)) {
5154 folio_put(pte_folio);
5155 ret = PTR_ERR(new_folio);
5156 break;
5157 }
5158 ret = copy_user_large_folio(new_folio,
5159 pte_folio,
5160 addr, dst_vma);
5161 folio_put(pte_folio);
5162 if (ret) {
5163 folio_put(new_folio);
5164 break;
5165 }
5166
5167 /* Install the new hugetlb folio if src pte stable */
5168 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5169 src_ptl = huge_pte_lockptr(h, src, src_pte);
5170 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5171 entry = huge_ptep_get(src_pte);
5172 if (!pte_same(src_pte_old, entry)) {
5173 restore_reserve_on_error(h, dst_vma, addr,
5174 new_folio);
5175 folio_put(new_folio);
5176 /* huge_ptep of dst_pte won't change as in child */
5177 goto again;
5178 }
5179 hugetlb_install_folio(dst_vma, dst_pte, addr,
5180 new_folio, src_pte_old, sz);
5181 spin_unlock(src_ptl);
5182 spin_unlock(dst_ptl);
5183 continue;
5184 }
5185
5186 if (cow) {
5187 /*
5188 * No need to notify as we are downgrading page
5189 * table protection not changing it to point
5190 * to a new page.
5191 *
5192 * See Documentation/mm/mmu_notifier.rst
5193 */
5194 huge_ptep_set_wrprotect(src, addr, src_pte);
5195 entry = huge_pte_wrprotect(entry);
5196 }
5197
5198 if (!userfaultfd_wp(dst_vma))
5199 entry = huge_pte_clear_uffd_wp(entry);
5200
5201 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5202 hugetlb_count_add(npages, dst);
5203 }
5204 spin_unlock(src_ptl);
5205 spin_unlock(dst_ptl);
5206 }
5207
5208 if (cow) {
5209 raw_write_seqcount_end(&src->write_protect_seq);
5210 mmu_notifier_invalidate_range_end(&range);
5211 } else {
5212 hugetlb_vma_unlock_read(src_vma);
5213 }
5214
5215 return ret;
5216 }
5217
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5218 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5219 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5220 unsigned long sz)
5221 {
5222 struct hstate *h = hstate_vma(vma);
5223 struct mm_struct *mm = vma->vm_mm;
5224 spinlock_t *src_ptl, *dst_ptl;
5225 pte_t pte;
5226
5227 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5228 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5229
5230 /*
5231 * We don't have to worry about the ordering of src and dst ptlocks
5232 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5233 */
5234 if (src_ptl != dst_ptl)
5235 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5236
5237 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5238 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5239
5240 if (src_ptl != dst_ptl)
5241 spin_unlock(src_ptl);
5242 spin_unlock(dst_ptl);
5243 }
5244
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5245 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5246 struct vm_area_struct *new_vma,
5247 unsigned long old_addr, unsigned long new_addr,
5248 unsigned long len)
5249 {
5250 struct hstate *h = hstate_vma(vma);
5251 struct address_space *mapping = vma->vm_file->f_mapping;
5252 unsigned long sz = huge_page_size(h);
5253 struct mm_struct *mm = vma->vm_mm;
5254 unsigned long old_end = old_addr + len;
5255 unsigned long last_addr_mask;
5256 pte_t *src_pte, *dst_pte;
5257 struct mmu_notifier_range range;
5258 bool shared_pmd = false;
5259
5260 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5261 old_end);
5262 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5263 /*
5264 * In case of shared PMDs, we should cover the maximum possible
5265 * range.
5266 */
5267 flush_cache_range(vma, range.start, range.end);
5268
5269 mmu_notifier_invalidate_range_start(&range);
5270 last_addr_mask = hugetlb_mask_last_page(h);
5271 /* Prevent race with file truncation */
5272 hugetlb_vma_lock_write(vma);
5273 i_mmap_lock_write(mapping);
5274 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5275 src_pte = hugetlb_walk(vma, old_addr, sz);
5276 if (!src_pte) {
5277 old_addr |= last_addr_mask;
5278 new_addr |= last_addr_mask;
5279 continue;
5280 }
5281 if (huge_pte_none(huge_ptep_get(src_pte)))
5282 continue;
5283
5284 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5285 shared_pmd = true;
5286 old_addr |= last_addr_mask;
5287 new_addr |= last_addr_mask;
5288 continue;
5289 }
5290
5291 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5292 if (!dst_pte)
5293 break;
5294
5295 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5296 }
5297
5298 if (shared_pmd)
5299 flush_hugetlb_tlb_range(vma, range.start, range.end);
5300 else
5301 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5302 mmu_notifier_invalidate_range_end(&range);
5303 i_mmap_unlock_write(mapping);
5304 hugetlb_vma_unlock_write(vma);
5305
5306 return len + old_addr - old_end;
5307 }
5308
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5310 unsigned long start, unsigned long end,
5311 struct page *ref_page, zap_flags_t zap_flags)
5312 {
5313 struct mm_struct *mm = vma->vm_mm;
5314 unsigned long address;
5315 pte_t *ptep;
5316 pte_t pte;
5317 spinlock_t *ptl;
5318 struct page *page;
5319 struct hstate *h = hstate_vma(vma);
5320 unsigned long sz = huge_page_size(h);
5321 unsigned long last_addr_mask;
5322 bool force_flush = false;
5323
5324 WARN_ON(!is_vm_hugetlb_page(vma));
5325 BUG_ON(start & ~huge_page_mask(h));
5326 BUG_ON(end & ~huge_page_mask(h));
5327
5328 /*
5329 * This is a hugetlb vma, all the pte entries should point
5330 * to huge page.
5331 */
5332 tlb_change_page_size(tlb, sz);
5333 tlb_start_vma(tlb, vma);
5334
5335 last_addr_mask = hugetlb_mask_last_page(h);
5336 address = start;
5337 for (; address < end; address += sz) {
5338 ptep = hugetlb_walk(vma, address, sz);
5339 if (!ptep) {
5340 address |= last_addr_mask;
5341 continue;
5342 }
5343
5344 ptl = huge_pte_lock(h, mm, ptep);
5345 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5346 spin_unlock(ptl);
5347 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5348 force_flush = true;
5349 address |= last_addr_mask;
5350 continue;
5351 }
5352
5353 pte = huge_ptep_get(ptep);
5354 if (huge_pte_none(pte)) {
5355 spin_unlock(ptl);
5356 continue;
5357 }
5358
5359 /*
5360 * Migrating hugepage or HWPoisoned hugepage is already
5361 * unmapped and its refcount is dropped, so just clear pte here.
5362 */
5363 if (unlikely(!pte_present(pte))) {
5364 /*
5365 * If the pte was wr-protected by uffd-wp in any of the
5366 * swap forms, meanwhile the caller does not want to
5367 * drop the uffd-wp bit in this zap, then replace the
5368 * pte with a marker.
5369 */
5370 if (pte_swp_uffd_wp_any(pte) &&
5371 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5372 set_huge_pte_at(mm, address, ptep,
5373 make_pte_marker(PTE_MARKER_UFFD_WP),
5374 sz);
5375 else
5376 huge_pte_clear(mm, address, ptep, sz);
5377 spin_unlock(ptl);
5378 continue;
5379 }
5380
5381 page = pte_page(pte);
5382 /*
5383 * If a reference page is supplied, it is because a specific
5384 * page is being unmapped, not a range. Ensure the page we
5385 * are about to unmap is the actual page of interest.
5386 */
5387 if (ref_page) {
5388 if (page != ref_page) {
5389 spin_unlock(ptl);
5390 continue;
5391 }
5392 /*
5393 * Mark the VMA as having unmapped its page so that
5394 * future faults in this VMA will fail rather than
5395 * looking like data was lost
5396 */
5397 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5398 }
5399
5400 pte = huge_ptep_get_and_clear(mm, address, ptep);
5401 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5402 if (huge_pte_dirty(pte))
5403 set_page_dirty(page);
5404 /* Leave a uffd-wp pte marker if needed */
5405 if (huge_pte_uffd_wp(pte) &&
5406 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5407 set_huge_pte_at(mm, address, ptep,
5408 make_pte_marker(PTE_MARKER_UFFD_WP),
5409 sz);
5410 hugetlb_count_sub(pages_per_huge_page(h), mm);
5411 page_remove_rmap(page, vma, true);
5412
5413 spin_unlock(ptl);
5414 tlb_remove_page_size(tlb, page, huge_page_size(h));
5415 /*
5416 * Bail out after unmapping reference page if supplied
5417 */
5418 if (ref_page)
5419 break;
5420 }
5421 tlb_end_vma(tlb, vma);
5422
5423 /*
5424 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5425 * could defer the flush until now, since by holding i_mmap_rwsem we
5426 * guaranteed that the last refernece would not be dropped. But we must
5427 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5428 * dropped and the last reference to the shared PMDs page might be
5429 * dropped as well.
5430 *
5431 * In theory we could defer the freeing of the PMD pages as well, but
5432 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5433 * detect sharing, so we cannot defer the release of the page either.
5434 * Instead, do flush now.
5435 */
5436 if (force_flush)
5437 tlb_flush_mmu_tlbonly(tlb);
5438 }
5439
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5440 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5441 unsigned long *start, unsigned long *end)
5442 {
5443 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5444 return;
5445
5446 adjust_range_if_pmd_sharing_possible(vma, start, end);
5447 hugetlb_vma_lock_write(vma);
5448 if (vma->vm_file)
5449 i_mmap_lock_write(vma->vm_file->f_mapping);
5450 }
5451
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5452 void __hugetlb_zap_end(struct vm_area_struct *vma,
5453 struct zap_details *details)
5454 {
5455 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5456
5457 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5458 return;
5459
5460 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5461 /*
5462 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5463 * When the vma_lock is freed, this makes the vma ineligible
5464 * for pmd sharing. And, i_mmap_rwsem is required to set up
5465 * pmd sharing. This is important as page tables for this
5466 * unmapped range will be asynchrously deleted. If the page
5467 * tables are shared, there will be issues when accessed by
5468 * someone else.
5469 */
5470 __hugetlb_vma_unlock_write_free(vma);
5471 } else {
5472 hugetlb_vma_unlock_write(vma);
5473 }
5474
5475 if (vma->vm_file)
5476 i_mmap_unlock_write(vma->vm_file->f_mapping);
5477 }
5478
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480 unsigned long end, struct page *ref_page,
5481 zap_flags_t zap_flags)
5482 {
5483 struct mmu_notifier_range range;
5484 struct mmu_gather tlb;
5485
5486 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5487 start, end);
5488 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489 mmu_notifier_invalidate_range_start(&range);
5490 tlb_gather_mmu(&tlb, vma->vm_mm);
5491
5492 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5493
5494 mmu_notifier_invalidate_range_end(&range);
5495 tlb_finish_mmu(&tlb);
5496 }
5497
5498 /*
5499 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500 * mapping it owns the reserve page for. The intention is to unmap the page
5501 * from other VMAs and let the children be SIGKILLed if they are faulting the
5502 * same region.
5503 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505 struct page *page, unsigned long address)
5506 {
5507 struct hstate *h = hstate_vma(vma);
5508 struct vm_area_struct *iter_vma;
5509 struct address_space *mapping;
5510 pgoff_t pgoff;
5511
5512 /*
5513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514 * from page cache lookup which is in HPAGE_SIZE units.
5515 */
5516 address = address & huge_page_mask(h);
5517 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5518 vma->vm_pgoff;
5519 mapping = vma->vm_file->f_mapping;
5520
5521 /*
5522 * Take the mapping lock for the duration of the table walk. As
5523 * this mapping should be shared between all the VMAs,
5524 * __unmap_hugepage_range() is called as the lock is already held
5525 */
5526 i_mmap_lock_write(mapping);
5527 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528 /* Do not unmap the current VMA */
5529 if (iter_vma == vma)
5530 continue;
5531
5532 /*
5533 * Shared VMAs have their own reserves and do not affect
5534 * MAP_PRIVATE accounting but it is possible that a shared
5535 * VMA is using the same page so check and skip such VMAs.
5536 */
5537 if (iter_vma->vm_flags & VM_MAYSHARE)
5538 continue;
5539
5540 /*
5541 * Unmap the page from other VMAs without their own reserves.
5542 * They get marked to be SIGKILLed if they fault in these
5543 * areas. This is because a future no-page fault on this VMA
5544 * could insert a zeroed page instead of the data existing
5545 * from the time of fork. This would look like data corruption
5546 */
5547 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548 unmap_hugepage_range(iter_vma, address,
5549 address + huge_page_size(h), page, 0);
5550 }
5551 i_mmap_unlock_write(mapping);
5552 }
5553
5554 /*
5555 * hugetlb_wp() should be called with page lock of the original hugepage held.
5556 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557 * cannot race with other handlers or page migration.
5558 * Keep the pte_same checks anyway to make transition from the mutex easier.
5559 */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct folio * pagecache_folio,spinlock_t * ptl)5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561 unsigned long address, pte_t *ptep, unsigned int flags,
5562 struct folio *pagecache_folio, spinlock_t *ptl)
5563 {
5564 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565 pte_t pte = huge_ptep_get(ptep);
5566 struct hstate *h = hstate_vma(vma);
5567 struct folio *old_folio;
5568 struct folio *new_folio;
5569 int outside_reserve = 0;
5570 vm_fault_t ret = 0;
5571 unsigned long haddr = address & huge_page_mask(h);
5572 struct mmu_notifier_range range;
5573
5574 /*
5575 * Never handle CoW for uffd-wp protected pages. It should be only
5576 * handled when the uffd-wp protection is removed.
5577 *
5578 * Note that only the CoW optimization path (in hugetlb_no_page())
5579 * can trigger this, because hugetlb_fault() will always resolve
5580 * uffd-wp bit first.
5581 */
5582 if (!unshare && huge_pte_uffd_wp(pte))
5583 return 0;
5584
5585 /*
5586 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587 * PTE mapped R/O such as maybe_mkwrite() would do.
5588 */
5589 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590 return VM_FAULT_SIGSEGV;
5591
5592 /* Let's take out MAP_SHARED mappings first. */
5593 if (vma->vm_flags & VM_MAYSHARE) {
5594 set_huge_ptep_writable(vma, haddr, ptep);
5595 return 0;
5596 }
5597
5598 old_folio = page_folio(pte_page(pte));
5599
5600 delayacct_wpcopy_start();
5601
5602 retry_avoidcopy:
5603 /*
5604 * If no-one else is actually using this page, we're the exclusive
5605 * owner and can reuse this page.
5606 */
5607 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608 if (!PageAnonExclusive(&old_folio->page))
5609 page_move_anon_rmap(&old_folio->page, vma);
5610 if (likely(!unshare))
5611 set_huge_ptep_writable(vma, haddr, ptep);
5612
5613 delayacct_wpcopy_end();
5614 return 0;
5615 }
5616 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617 PageAnonExclusive(&old_folio->page), &old_folio->page);
5618
5619 /*
5620 * If the process that created a MAP_PRIVATE mapping is about to
5621 * perform a COW due to a shared page count, attempt to satisfy
5622 * the allocation without using the existing reserves. The pagecache
5623 * page is used to determine if the reserve at this address was
5624 * consumed or not. If reserves were used, a partial faulted mapping
5625 * at the time of fork() could consume its reserves on COW instead
5626 * of the full address range.
5627 */
5628 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629 old_folio != pagecache_folio)
5630 outside_reserve = 1;
5631
5632 folio_get(old_folio);
5633
5634 /*
5635 * Drop page table lock as buddy allocator may be called. It will
5636 * be acquired again before returning to the caller, as expected.
5637 */
5638 spin_unlock(ptl);
5639 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5640
5641 if (IS_ERR(new_folio)) {
5642 /*
5643 * If a process owning a MAP_PRIVATE mapping fails to COW,
5644 * it is due to references held by a child and an insufficient
5645 * huge page pool. To guarantee the original mappers
5646 * reliability, unmap the page from child processes. The child
5647 * may get SIGKILLed if it later faults.
5648 */
5649 if (outside_reserve) {
5650 struct address_space *mapping = vma->vm_file->f_mapping;
5651 pgoff_t idx;
5652 u32 hash;
5653
5654 folio_put(old_folio);
5655 /*
5656 * Drop hugetlb_fault_mutex and vma_lock before
5657 * unmapping. unmapping needs to hold vma_lock
5658 * in write mode. Dropping vma_lock in read mode
5659 * here is OK as COW mappings do not interact with
5660 * PMD sharing.
5661 *
5662 * Reacquire both after unmap operation.
5663 */
5664 idx = vma_hugecache_offset(h, vma, haddr);
5665 hash = hugetlb_fault_mutex_hash(mapping, idx);
5666 hugetlb_vma_unlock_read(vma);
5667 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5668
5669 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5670
5671 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672 hugetlb_vma_lock_read(vma);
5673 spin_lock(ptl);
5674 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5675 if (likely(ptep &&
5676 pte_same(huge_ptep_get(ptep), pte)))
5677 goto retry_avoidcopy;
5678 /*
5679 * race occurs while re-acquiring page table
5680 * lock, and our job is done.
5681 */
5682 delayacct_wpcopy_end();
5683 return 0;
5684 }
5685
5686 ret = vmf_error(PTR_ERR(new_folio));
5687 goto out_release_old;
5688 }
5689
5690 /*
5691 * When the original hugepage is shared one, it does not have
5692 * anon_vma prepared.
5693 */
5694 if (unlikely(anon_vma_prepare(vma))) {
5695 ret = VM_FAULT_OOM;
5696 goto out_release_all;
5697 }
5698
5699 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700 ret = VM_FAULT_HWPOISON_LARGE;
5701 goto out_release_all;
5702 }
5703 __folio_mark_uptodate(new_folio);
5704
5705 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706 haddr + huge_page_size(h));
5707 mmu_notifier_invalidate_range_start(&range);
5708
5709 /*
5710 * Retake the page table lock to check for racing updates
5711 * before the page tables are altered
5712 */
5713 spin_lock(ptl);
5714 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5717
5718 /* Break COW or unshare */
5719 huge_ptep_clear_flush(vma, haddr, ptep);
5720 page_remove_rmap(&old_folio->page, vma, true);
5721 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5722 if (huge_pte_uffd_wp(pte))
5723 newpte = huge_pte_mkuffd_wp(newpte);
5724 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5725 folio_set_hugetlb_migratable(new_folio);
5726 /* Make the old page be freed below */
5727 new_folio = old_folio;
5728 }
5729 spin_unlock(ptl);
5730 mmu_notifier_invalidate_range_end(&range);
5731 out_release_all:
5732 /*
5733 * No restore in case of successful pagetable update (Break COW or
5734 * unshare)
5735 */
5736 if (new_folio != old_folio)
5737 restore_reserve_on_error(h, vma, haddr, new_folio);
5738 folio_put(new_folio);
5739 out_release_old:
5740 folio_put(old_folio);
5741
5742 spin_lock(ptl); /* Caller expects lock to be held */
5743
5744 delayacct_wpcopy_end();
5745 return ret;
5746 }
5747
5748 /*
5749 * Return whether there is a pagecache page to back given address within VMA.
5750 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5751 static bool hugetlbfs_pagecache_present(struct hstate *h,
5752 struct vm_area_struct *vma, unsigned long address)
5753 {
5754 struct address_space *mapping = vma->vm_file->f_mapping;
5755 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5756 struct folio *folio;
5757
5758 folio = filemap_get_folio(mapping, idx);
5759 if (IS_ERR(folio))
5760 return false;
5761 folio_put(folio);
5762 return true;
5763 }
5764
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5765 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5766 pgoff_t idx)
5767 {
5768 struct inode *inode = mapping->host;
5769 struct hstate *h = hstate_inode(inode);
5770 int err;
5771
5772 __folio_set_locked(folio);
5773 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5774
5775 if (unlikely(err)) {
5776 __folio_clear_locked(folio);
5777 return err;
5778 }
5779 folio_clear_hugetlb_restore_reserve(folio);
5780
5781 /*
5782 * mark folio dirty so that it will not be removed from cache/file
5783 * by non-hugetlbfs specific code paths.
5784 */
5785 folio_mark_dirty(folio);
5786
5787 spin_lock(&inode->i_lock);
5788 inode->i_blocks += blocks_per_huge_page(h);
5789 spin_unlock(&inode->i_lock);
5790 return 0;
5791 }
5792
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long addr,unsigned long reason)5793 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5794 struct address_space *mapping,
5795 pgoff_t idx,
5796 unsigned int flags,
5797 unsigned long haddr,
5798 unsigned long addr,
5799 unsigned long reason)
5800 {
5801 u32 hash;
5802 struct vm_fault vmf = {
5803 .vma = vma,
5804 .address = haddr,
5805 .real_address = addr,
5806 .flags = flags,
5807
5808 /*
5809 * Hard to debug if it ends up being
5810 * used by a callee that assumes
5811 * something about the other
5812 * uninitialized fields... same as in
5813 * memory.c
5814 */
5815 };
5816
5817 /*
5818 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5819 * userfault. Also mmap_lock could be dropped due to handling
5820 * userfault, any vma operation should be careful from here.
5821 */
5822 hugetlb_vma_unlock_read(vma);
5823 hash = hugetlb_fault_mutex_hash(mapping, idx);
5824 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5825 return handle_userfault(&vmf, reason);
5826 }
5827
5828 /*
5829 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5830 * false if pte changed or is changing.
5831 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,pte_t * ptep,pte_t old_pte)5832 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5833 pte_t *ptep, pte_t old_pte)
5834 {
5835 spinlock_t *ptl;
5836 bool same;
5837
5838 ptl = huge_pte_lock(h, mm, ptep);
5839 same = pte_same(huge_ptep_get(ptep), old_pte);
5840 spin_unlock(ptl);
5841
5842 return same;
5843 }
5844
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags)5845 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5846 struct vm_area_struct *vma,
5847 struct address_space *mapping, pgoff_t idx,
5848 unsigned long address, pte_t *ptep,
5849 pte_t old_pte, unsigned int flags)
5850 {
5851 struct hstate *h = hstate_vma(vma);
5852 vm_fault_t ret = VM_FAULT_SIGBUS;
5853 int anon_rmap = 0;
5854 unsigned long size;
5855 struct folio *folio;
5856 pte_t new_pte;
5857 spinlock_t *ptl;
5858 unsigned long haddr = address & huge_page_mask(h);
5859 bool new_folio, new_pagecache_folio = false;
5860 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5861
5862 /*
5863 * Currently, we are forced to kill the process in the event the
5864 * original mapper has unmapped pages from the child due to a failed
5865 * COW/unsharing. Warn that such a situation has occurred as it may not
5866 * be obvious.
5867 */
5868 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5869 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5870 current->pid);
5871 goto out;
5872 }
5873
5874 /*
5875 * Use page lock to guard against racing truncation
5876 * before we get page_table_lock.
5877 */
5878 new_folio = false;
5879 folio = filemap_lock_folio(mapping, idx);
5880 if (IS_ERR(folio)) {
5881 size = i_size_read(mapping->host) >> huge_page_shift(h);
5882 if (idx >= size)
5883 goto out;
5884 /* Check for page in userfault range */
5885 if (userfaultfd_missing(vma)) {
5886 /*
5887 * Since hugetlb_no_page() was examining pte
5888 * without pgtable lock, we need to re-test under
5889 * lock because the pte may not be stable and could
5890 * have changed from under us. Try to detect
5891 * either changed or during-changing ptes and retry
5892 * properly when needed.
5893 *
5894 * Note that userfaultfd is actually fine with
5895 * false positives (e.g. caused by pte changed),
5896 * but not wrong logical events (e.g. caused by
5897 * reading a pte during changing). The latter can
5898 * confuse the userspace, so the strictness is very
5899 * much preferred. E.g., MISSING event should
5900 * never happen on the page after UFFDIO_COPY has
5901 * correctly installed the page and returned.
5902 */
5903 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5904 ret = 0;
5905 goto out;
5906 }
5907
5908 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5909 haddr, address,
5910 VM_UFFD_MISSING);
5911 }
5912
5913 folio = alloc_hugetlb_folio(vma, haddr, 0);
5914 if (IS_ERR(folio)) {
5915 /*
5916 * Returning error will result in faulting task being
5917 * sent SIGBUS. The hugetlb fault mutex prevents two
5918 * tasks from racing to fault in the same page which
5919 * could result in false unable to allocate errors.
5920 * Page migration does not take the fault mutex, but
5921 * does a clear then write of pte's under page table
5922 * lock. Page fault code could race with migration,
5923 * notice the clear pte and try to allocate a page
5924 * here. Before returning error, get ptl and make
5925 * sure there really is no pte entry.
5926 */
5927 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5928 ret = vmf_error(PTR_ERR(folio));
5929 else
5930 ret = 0;
5931 goto out;
5932 }
5933 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5934 __folio_mark_uptodate(folio);
5935 new_folio = true;
5936
5937 if (vma->vm_flags & VM_MAYSHARE) {
5938 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5939 if (err) {
5940 /*
5941 * err can't be -EEXIST which implies someone
5942 * else consumed the reservation since hugetlb
5943 * fault mutex is held when add a hugetlb page
5944 * to the page cache. So it's safe to call
5945 * restore_reserve_on_error() here.
5946 */
5947 restore_reserve_on_error(h, vma, haddr, folio);
5948 folio_put(folio);
5949 goto out;
5950 }
5951 new_pagecache_folio = true;
5952 } else {
5953 folio_lock(folio);
5954 if (unlikely(anon_vma_prepare(vma))) {
5955 ret = VM_FAULT_OOM;
5956 goto backout_unlocked;
5957 }
5958 anon_rmap = 1;
5959 }
5960 } else {
5961 /*
5962 * If memory error occurs between mmap() and fault, some process
5963 * don't have hwpoisoned swap entry for errored virtual address.
5964 * So we need to block hugepage fault by PG_hwpoison bit check.
5965 */
5966 if (unlikely(folio_test_hwpoison(folio))) {
5967 ret = VM_FAULT_HWPOISON_LARGE |
5968 VM_FAULT_SET_HINDEX(hstate_index(h));
5969 goto backout_unlocked;
5970 }
5971
5972 /* Check for page in userfault range. */
5973 if (userfaultfd_minor(vma)) {
5974 folio_unlock(folio);
5975 folio_put(folio);
5976 /* See comment in userfaultfd_missing() block above */
5977 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5978 ret = 0;
5979 goto out;
5980 }
5981 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5982 haddr, address,
5983 VM_UFFD_MINOR);
5984 }
5985 }
5986
5987 /*
5988 * If we are going to COW a private mapping later, we examine the
5989 * pending reservations for this page now. This will ensure that
5990 * any allocations necessary to record that reservation occur outside
5991 * the spinlock.
5992 */
5993 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5994 if (vma_needs_reservation(h, vma, haddr) < 0) {
5995 ret = VM_FAULT_OOM;
5996 goto backout_unlocked;
5997 }
5998 /* Just decrements count, does not deallocate */
5999 vma_end_reservation(h, vma, haddr);
6000 }
6001
6002 ptl = huge_pte_lock(h, mm, ptep);
6003 ret = 0;
6004 /* If pte changed from under us, retry */
6005 if (!pte_same(huge_ptep_get(ptep), old_pte))
6006 goto backout;
6007
6008 if (anon_rmap)
6009 hugepage_add_new_anon_rmap(folio, vma, haddr);
6010 else
6011 page_dup_file_rmap(&folio->page, true);
6012 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6013 && (vma->vm_flags & VM_SHARED)));
6014 /*
6015 * If this pte was previously wr-protected, keep it wr-protected even
6016 * if populated.
6017 */
6018 if (unlikely(pte_marker_uffd_wp(old_pte)))
6019 new_pte = huge_pte_mkuffd_wp(new_pte);
6020 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6021
6022 hugetlb_count_add(pages_per_huge_page(h), mm);
6023 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6024 /* Optimization, do the COW without a second fault */
6025 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6026 }
6027
6028 spin_unlock(ptl);
6029
6030 /*
6031 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6032 * found in the pagecache may not have hugetlb_migratable if they have
6033 * been isolated for migration.
6034 */
6035 if (new_folio)
6036 folio_set_hugetlb_migratable(folio);
6037
6038 folio_unlock(folio);
6039 out:
6040 hugetlb_vma_unlock_read(vma);
6041 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6042 return ret;
6043
6044 backout:
6045 spin_unlock(ptl);
6046 backout_unlocked:
6047 if (new_folio && !new_pagecache_folio)
6048 restore_reserve_on_error(h, vma, haddr, folio);
6049
6050 folio_unlock(folio);
6051 folio_put(folio);
6052 goto out;
6053 }
6054
6055 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6056 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6057 {
6058 unsigned long key[2];
6059 u32 hash;
6060
6061 key[0] = (unsigned long) mapping;
6062 key[1] = idx;
6063
6064 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6065
6066 return hash & (num_fault_mutexes - 1);
6067 }
6068 #else
6069 /*
6070 * For uniprocessor systems we always use a single mutex, so just
6071 * return 0 and avoid the hashing overhead.
6072 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6073 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6074 {
6075 return 0;
6076 }
6077 #endif
6078
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6079 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6080 unsigned long address, unsigned int flags)
6081 {
6082 pte_t *ptep, entry;
6083 spinlock_t *ptl;
6084 vm_fault_t ret;
6085 u32 hash;
6086 pgoff_t idx;
6087 struct folio *folio = NULL;
6088 struct folio *pagecache_folio = NULL;
6089 struct hstate *h = hstate_vma(vma);
6090 struct address_space *mapping;
6091 int need_wait_lock = 0;
6092 unsigned long haddr = address & huge_page_mask(h);
6093
6094 /* TODO: Handle faults under the VMA lock */
6095 if (flags & FAULT_FLAG_VMA_LOCK) {
6096 vma_end_read(vma);
6097 return VM_FAULT_RETRY;
6098 }
6099
6100 /*
6101 * Serialize hugepage allocation and instantiation, so that we don't
6102 * get spurious allocation failures if two CPUs race to instantiate
6103 * the same page in the page cache.
6104 */
6105 mapping = vma->vm_file->f_mapping;
6106 idx = vma_hugecache_offset(h, vma, haddr);
6107 hash = hugetlb_fault_mutex_hash(mapping, idx);
6108 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6109
6110 /*
6111 * Acquire vma lock before calling huge_pte_alloc and hold
6112 * until finished with ptep. This prevents huge_pmd_unshare from
6113 * being called elsewhere and making the ptep no longer valid.
6114 */
6115 hugetlb_vma_lock_read(vma);
6116 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6117 if (!ptep) {
6118 hugetlb_vma_unlock_read(vma);
6119 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6120 return VM_FAULT_OOM;
6121 }
6122
6123 entry = huge_ptep_get(ptep);
6124 if (huge_pte_none_mostly(entry)) {
6125 if (is_pte_marker(entry)) {
6126 pte_marker marker =
6127 pte_marker_get(pte_to_swp_entry(entry));
6128
6129 if (marker & PTE_MARKER_POISONED) {
6130 ret = VM_FAULT_HWPOISON_LARGE;
6131 goto out_mutex;
6132 }
6133 }
6134
6135 /*
6136 * Other PTE markers should be handled the same way as none PTE.
6137 *
6138 * hugetlb_no_page will drop vma lock and hugetlb fault
6139 * mutex internally, which make us return immediately.
6140 */
6141 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6142 entry, flags);
6143 }
6144
6145 ret = 0;
6146
6147 /*
6148 * entry could be a migration/hwpoison entry at this point, so this
6149 * check prevents the kernel from going below assuming that we have
6150 * an active hugepage in pagecache. This goto expects the 2nd page
6151 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6152 * properly handle it.
6153 */
6154 if (!pte_present(entry)) {
6155 if (unlikely(is_hugetlb_entry_migration(entry))) {
6156 /*
6157 * Release the hugetlb fault lock now, but retain
6158 * the vma lock, because it is needed to guard the
6159 * huge_pte_lockptr() later in
6160 * migration_entry_wait_huge(). The vma lock will
6161 * be released there.
6162 */
6163 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6164 migration_entry_wait_huge(vma, ptep);
6165 return 0;
6166 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6167 ret = VM_FAULT_HWPOISON_LARGE |
6168 VM_FAULT_SET_HINDEX(hstate_index(h));
6169 goto out_mutex;
6170 }
6171
6172 /*
6173 * If we are going to COW/unshare the mapping later, we examine the
6174 * pending reservations for this page now. This will ensure that any
6175 * allocations necessary to record that reservation occur outside the
6176 * spinlock. Also lookup the pagecache page now as it is used to
6177 * determine if a reservation has been consumed.
6178 */
6179 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6180 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6181 if (vma_needs_reservation(h, vma, haddr) < 0) {
6182 ret = VM_FAULT_OOM;
6183 goto out_mutex;
6184 }
6185 /* Just decrements count, does not deallocate */
6186 vma_end_reservation(h, vma, haddr);
6187
6188 pagecache_folio = filemap_lock_folio(mapping, idx);
6189 if (IS_ERR(pagecache_folio))
6190 pagecache_folio = NULL;
6191 }
6192
6193 ptl = huge_pte_lock(h, mm, ptep);
6194
6195 /* Check for a racing update before calling hugetlb_wp() */
6196 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6197 goto out_ptl;
6198
6199 /* Handle userfault-wp first, before trying to lock more pages */
6200 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6201 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6202 struct vm_fault vmf = {
6203 .vma = vma,
6204 .address = haddr,
6205 .real_address = address,
6206 .flags = flags,
6207 };
6208
6209 spin_unlock(ptl);
6210 if (pagecache_folio) {
6211 folio_unlock(pagecache_folio);
6212 folio_put(pagecache_folio);
6213 }
6214 hugetlb_vma_unlock_read(vma);
6215 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6216 return handle_userfault(&vmf, VM_UFFD_WP);
6217 }
6218
6219 /*
6220 * hugetlb_wp() requires page locks of pte_page(entry) and
6221 * pagecache_folio, so here we need take the former one
6222 * when folio != pagecache_folio or !pagecache_folio.
6223 */
6224 folio = page_folio(pte_page(entry));
6225 if (folio != pagecache_folio)
6226 if (!folio_trylock(folio)) {
6227 need_wait_lock = 1;
6228 goto out_ptl;
6229 }
6230
6231 folio_get(folio);
6232
6233 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6234 if (!huge_pte_write(entry)) {
6235 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6236 pagecache_folio, ptl);
6237 goto out_put_page;
6238 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6239 entry = huge_pte_mkdirty(entry);
6240 }
6241 }
6242 entry = pte_mkyoung(entry);
6243 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6244 flags & FAULT_FLAG_WRITE))
6245 update_mmu_cache(vma, haddr, ptep);
6246 out_put_page:
6247 if (folio != pagecache_folio)
6248 folio_unlock(folio);
6249 folio_put(folio);
6250 out_ptl:
6251 spin_unlock(ptl);
6252
6253 if (pagecache_folio) {
6254 folio_unlock(pagecache_folio);
6255 folio_put(pagecache_folio);
6256 }
6257 out_mutex:
6258 hugetlb_vma_unlock_read(vma);
6259 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6260 /*
6261 * Generally it's safe to hold refcount during waiting page lock. But
6262 * here we just wait to defer the next page fault to avoid busy loop and
6263 * the page is not used after unlocked before returning from the current
6264 * page fault. So we are safe from accessing freed page, even if we wait
6265 * here without taking refcount.
6266 */
6267 if (need_wait_lock)
6268 folio_wait_locked(folio);
6269 return ret;
6270 }
6271
6272 #ifdef CONFIG_USERFAULTFD
6273 /*
6274 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6275 * with modifications for hugetlb pages.
6276 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6277 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6278 struct vm_area_struct *dst_vma,
6279 unsigned long dst_addr,
6280 unsigned long src_addr,
6281 uffd_flags_t flags,
6282 struct folio **foliop)
6283 {
6284 struct mm_struct *dst_mm = dst_vma->vm_mm;
6285 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6286 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6287 struct hstate *h = hstate_vma(dst_vma);
6288 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6289 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6290 unsigned long size;
6291 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6292 pte_t _dst_pte;
6293 spinlock_t *ptl;
6294 int ret = -ENOMEM;
6295 struct folio *folio;
6296 int writable;
6297 bool folio_in_pagecache = false;
6298
6299 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6300 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6301
6302 /* Don't overwrite any existing PTEs (even markers) */
6303 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6304 spin_unlock(ptl);
6305 return -EEXIST;
6306 }
6307
6308 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6309 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6310 huge_page_size(h));
6311
6312 /* No need to invalidate - it was non-present before */
6313 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6314
6315 spin_unlock(ptl);
6316 return 0;
6317 }
6318
6319 if (is_continue) {
6320 ret = -EFAULT;
6321 folio = filemap_lock_folio(mapping, idx);
6322 if (IS_ERR(folio))
6323 goto out;
6324 folio_in_pagecache = true;
6325 } else if (!*foliop) {
6326 /* If a folio already exists, then it's UFFDIO_COPY for
6327 * a non-missing case. Return -EEXIST.
6328 */
6329 if (vm_shared &&
6330 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6331 ret = -EEXIST;
6332 goto out;
6333 }
6334
6335 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6336 if (IS_ERR(folio)) {
6337 ret = -ENOMEM;
6338 goto out;
6339 }
6340
6341 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6342 false);
6343
6344 /* fallback to copy_from_user outside mmap_lock */
6345 if (unlikely(ret)) {
6346 ret = -ENOENT;
6347 /* Free the allocated folio which may have
6348 * consumed a reservation.
6349 */
6350 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6351 folio_put(folio);
6352
6353 /* Allocate a temporary folio to hold the copied
6354 * contents.
6355 */
6356 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6357 if (!folio) {
6358 ret = -ENOMEM;
6359 goto out;
6360 }
6361 *foliop = folio;
6362 /* Set the outparam foliop and return to the caller to
6363 * copy the contents outside the lock. Don't free the
6364 * folio.
6365 */
6366 goto out;
6367 }
6368 } else {
6369 if (vm_shared &&
6370 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6371 folio_put(*foliop);
6372 ret = -EEXIST;
6373 *foliop = NULL;
6374 goto out;
6375 }
6376
6377 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6378 if (IS_ERR(folio)) {
6379 folio_put(*foliop);
6380 ret = -ENOMEM;
6381 *foliop = NULL;
6382 goto out;
6383 }
6384 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6385 folio_put(*foliop);
6386 *foliop = NULL;
6387 if (ret) {
6388 folio_put(folio);
6389 goto out;
6390 }
6391 }
6392
6393 /*
6394 * The memory barrier inside __folio_mark_uptodate makes sure that
6395 * preceding stores to the page contents become visible before
6396 * the set_pte_at() write.
6397 */
6398 __folio_mark_uptodate(folio);
6399
6400 /* Add shared, newly allocated pages to the page cache. */
6401 if (vm_shared && !is_continue) {
6402 size = i_size_read(mapping->host) >> huge_page_shift(h);
6403 ret = -EFAULT;
6404 if (idx >= size)
6405 goto out_release_nounlock;
6406
6407 /*
6408 * Serialization between remove_inode_hugepages() and
6409 * hugetlb_add_to_page_cache() below happens through the
6410 * hugetlb_fault_mutex_table that here must be hold by
6411 * the caller.
6412 */
6413 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6414 if (ret)
6415 goto out_release_nounlock;
6416 folio_in_pagecache = true;
6417 }
6418
6419 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6420
6421 ret = -EIO;
6422 if (folio_test_hwpoison(folio))
6423 goto out_release_unlock;
6424
6425 /*
6426 * We allow to overwrite a pte marker: consider when both MISSING|WP
6427 * registered, we firstly wr-protect a none pte which has no page cache
6428 * page backing it, then access the page.
6429 */
6430 ret = -EEXIST;
6431 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6432 goto out_release_unlock;
6433
6434 if (folio_in_pagecache)
6435 page_dup_file_rmap(&folio->page, true);
6436 else
6437 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6438
6439 /*
6440 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6441 * with wp flag set, don't set pte write bit.
6442 */
6443 if (wp_enabled || (is_continue && !vm_shared))
6444 writable = 0;
6445 else
6446 writable = dst_vma->vm_flags & VM_WRITE;
6447
6448 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6449 /*
6450 * Always mark UFFDIO_COPY page dirty; note that this may not be
6451 * extremely important for hugetlbfs for now since swapping is not
6452 * supported, but we should still be clear in that this page cannot be
6453 * thrown away at will, even if write bit not set.
6454 */
6455 _dst_pte = huge_pte_mkdirty(_dst_pte);
6456 _dst_pte = pte_mkyoung(_dst_pte);
6457
6458 if (wp_enabled)
6459 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6460
6461 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6462
6463 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6464
6465 /* No need to invalidate - it was non-present before */
6466 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6467
6468 spin_unlock(ptl);
6469 if (!is_continue)
6470 folio_set_hugetlb_migratable(folio);
6471 if (vm_shared || is_continue)
6472 folio_unlock(folio);
6473 ret = 0;
6474 out:
6475 return ret;
6476 out_release_unlock:
6477 spin_unlock(ptl);
6478 if (vm_shared || is_continue)
6479 folio_unlock(folio);
6480 out_release_nounlock:
6481 if (!folio_in_pagecache)
6482 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6483 folio_put(folio);
6484 goto out;
6485 }
6486 #endif /* CONFIG_USERFAULTFD */
6487
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)6488 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6489 unsigned long address, unsigned int flags,
6490 unsigned int *page_mask)
6491 {
6492 struct hstate *h = hstate_vma(vma);
6493 struct mm_struct *mm = vma->vm_mm;
6494 unsigned long haddr = address & huge_page_mask(h);
6495 struct page *page = NULL;
6496 spinlock_t *ptl;
6497 pte_t *pte, entry;
6498 int ret;
6499
6500 hugetlb_vma_lock_read(vma);
6501 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6502 if (!pte)
6503 goto out_unlock;
6504
6505 ptl = huge_pte_lock(h, mm, pte);
6506 entry = huge_ptep_get(pte);
6507 if (pte_present(entry)) {
6508 page = pte_page(entry);
6509
6510 if (!huge_pte_write(entry)) {
6511 if (flags & FOLL_WRITE) {
6512 page = NULL;
6513 goto out;
6514 }
6515
6516 if (gup_must_unshare(vma, flags, page)) {
6517 /* Tell the caller to do unsharing */
6518 page = ERR_PTR(-EMLINK);
6519 goto out;
6520 }
6521 }
6522
6523 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6524
6525 /*
6526 * Note that page may be a sub-page, and with vmemmap
6527 * optimizations the page struct may be read only.
6528 * try_grab_page() will increase the ref count on the
6529 * head page, so this will be OK.
6530 *
6531 * try_grab_page() should always be able to get the page here,
6532 * because we hold the ptl lock and have verified pte_present().
6533 */
6534 ret = try_grab_page(page, flags);
6535
6536 if (WARN_ON_ONCE(ret)) {
6537 page = ERR_PTR(ret);
6538 goto out;
6539 }
6540
6541 *page_mask = (1U << huge_page_order(h)) - 1;
6542 }
6543 out:
6544 spin_unlock(ptl);
6545 out_unlock:
6546 hugetlb_vma_unlock_read(vma);
6547
6548 /*
6549 * Fixup retval for dump requests: if pagecache doesn't exist,
6550 * don't try to allocate a new page but just skip it.
6551 */
6552 if (!page && (flags & FOLL_DUMP) &&
6553 !hugetlbfs_pagecache_present(h, vma, address))
6554 page = ERR_PTR(-EFAULT);
6555
6556 return page;
6557 }
6558
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6559 long hugetlb_change_protection(struct vm_area_struct *vma,
6560 unsigned long address, unsigned long end,
6561 pgprot_t newprot, unsigned long cp_flags)
6562 {
6563 struct mm_struct *mm = vma->vm_mm;
6564 unsigned long start = address;
6565 pte_t *ptep;
6566 pte_t pte;
6567 struct hstate *h = hstate_vma(vma);
6568 long pages = 0, psize = huge_page_size(h);
6569 bool shared_pmd = false;
6570 struct mmu_notifier_range range;
6571 unsigned long last_addr_mask;
6572 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6573 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6574
6575 /*
6576 * In the case of shared PMDs, the area to flush could be beyond
6577 * start/end. Set range.start/range.end to cover the maximum possible
6578 * range if PMD sharing is possible.
6579 */
6580 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6581 0, mm, start, end);
6582 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6583
6584 BUG_ON(address >= end);
6585 flush_cache_range(vma, range.start, range.end);
6586
6587 mmu_notifier_invalidate_range_start(&range);
6588 hugetlb_vma_lock_write(vma);
6589 i_mmap_lock_write(vma->vm_file->f_mapping);
6590 last_addr_mask = hugetlb_mask_last_page(h);
6591 for (; address < end; address += psize) {
6592 spinlock_t *ptl;
6593 ptep = hugetlb_walk(vma, address, psize);
6594 if (!ptep) {
6595 if (!uffd_wp) {
6596 address |= last_addr_mask;
6597 continue;
6598 }
6599 /*
6600 * Userfaultfd wr-protect requires pgtable
6601 * pre-allocations to install pte markers.
6602 */
6603 ptep = huge_pte_alloc(mm, vma, address, psize);
6604 if (!ptep) {
6605 pages = -ENOMEM;
6606 break;
6607 }
6608 }
6609 ptl = huge_pte_lock(h, mm, ptep);
6610 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6611 /*
6612 * When uffd-wp is enabled on the vma, unshare
6613 * shouldn't happen at all. Warn about it if it
6614 * happened due to some reason.
6615 */
6616 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6617 pages++;
6618 spin_unlock(ptl);
6619 shared_pmd = true;
6620 address |= last_addr_mask;
6621 continue;
6622 }
6623 pte = huge_ptep_get(ptep);
6624 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6625 /* Nothing to do. */
6626 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6627 swp_entry_t entry = pte_to_swp_entry(pte);
6628 struct page *page = pfn_swap_entry_to_page(entry);
6629 pte_t newpte = pte;
6630
6631 if (is_writable_migration_entry(entry)) {
6632 if (PageAnon(page))
6633 entry = make_readable_exclusive_migration_entry(
6634 swp_offset(entry));
6635 else
6636 entry = make_readable_migration_entry(
6637 swp_offset(entry));
6638 newpte = swp_entry_to_pte(entry);
6639 pages++;
6640 }
6641
6642 if (uffd_wp)
6643 newpte = pte_swp_mkuffd_wp(newpte);
6644 else if (uffd_wp_resolve)
6645 newpte = pte_swp_clear_uffd_wp(newpte);
6646 if (!pte_same(pte, newpte))
6647 set_huge_pte_at(mm, address, ptep, newpte, psize);
6648 } else if (unlikely(is_pte_marker(pte))) {
6649 /* No other markers apply for now. */
6650 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6651 if (uffd_wp_resolve)
6652 /* Safe to modify directly (non-present->none). */
6653 huge_pte_clear(mm, address, ptep, psize);
6654 } else if (!huge_pte_none(pte)) {
6655 pte_t old_pte;
6656 unsigned int shift = huge_page_shift(hstate_vma(vma));
6657
6658 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6659 pte = huge_pte_modify(old_pte, newprot);
6660 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6661 if (uffd_wp)
6662 pte = huge_pte_mkuffd_wp(pte);
6663 else if (uffd_wp_resolve)
6664 pte = huge_pte_clear_uffd_wp(pte);
6665 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6666 pages++;
6667 } else {
6668 /* None pte */
6669 if (unlikely(uffd_wp))
6670 /* Safe to modify directly (none->non-present). */
6671 set_huge_pte_at(mm, address, ptep,
6672 make_pte_marker(PTE_MARKER_UFFD_WP),
6673 psize);
6674 }
6675 spin_unlock(ptl);
6676 }
6677 /*
6678 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6679 * may have cleared our pud entry and done put_page on the page table:
6680 * once we release i_mmap_rwsem, another task can do the final put_page
6681 * and that page table be reused and filled with junk. If we actually
6682 * did unshare a page of pmds, flush the range corresponding to the pud.
6683 */
6684 if (shared_pmd)
6685 flush_hugetlb_tlb_range(vma, range.start, range.end);
6686 else
6687 flush_hugetlb_tlb_range(vma, start, end);
6688 /*
6689 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6690 * downgrading page table protection not changing it to point to a new
6691 * page.
6692 *
6693 * See Documentation/mm/mmu_notifier.rst
6694 */
6695 i_mmap_unlock_write(vma->vm_file->f_mapping);
6696 hugetlb_vma_unlock_write(vma);
6697 mmu_notifier_invalidate_range_end(&range);
6698
6699 return pages > 0 ? (pages << h->order) : pages;
6700 }
6701
6702 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6703 bool hugetlb_reserve_pages(struct inode *inode,
6704 long from, long to,
6705 struct vm_area_struct *vma,
6706 vm_flags_t vm_flags)
6707 {
6708 long chg = -1, add = -1;
6709 struct hstate *h = hstate_inode(inode);
6710 struct hugepage_subpool *spool = subpool_inode(inode);
6711 struct resv_map *resv_map;
6712 struct hugetlb_cgroup *h_cg = NULL;
6713 long gbl_reserve, regions_needed = 0;
6714
6715 /* This should never happen */
6716 if (from > to) {
6717 VM_WARN(1, "%s called with a negative range\n", __func__);
6718 return false;
6719 }
6720
6721 /*
6722 * vma specific semaphore used for pmd sharing and fault/truncation
6723 * synchronization
6724 */
6725 hugetlb_vma_lock_alloc(vma);
6726
6727 /*
6728 * Only apply hugepage reservation if asked. At fault time, an
6729 * attempt will be made for VM_NORESERVE to allocate a page
6730 * without using reserves
6731 */
6732 if (vm_flags & VM_NORESERVE)
6733 return true;
6734
6735 /*
6736 * Shared mappings base their reservation on the number of pages that
6737 * are already allocated on behalf of the file. Private mappings need
6738 * to reserve the full area even if read-only as mprotect() may be
6739 * called to make the mapping read-write. Assume !vma is a shm mapping
6740 */
6741 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6742 /*
6743 * resv_map can not be NULL as hugetlb_reserve_pages is only
6744 * called for inodes for which resv_maps were created (see
6745 * hugetlbfs_get_inode).
6746 */
6747 resv_map = inode_resv_map(inode);
6748
6749 chg = region_chg(resv_map, from, to, ®ions_needed);
6750 } else {
6751 /* Private mapping. */
6752 resv_map = resv_map_alloc();
6753 if (!resv_map)
6754 goto out_err;
6755
6756 chg = to - from;
6757
6758 set_vma_resv_map(vma, resv_map);
6759 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6760 }
6761
6762 if (chg < 0)
6763 goto out_err;
6764
6765 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6766 chg * pages_per_huge_page(h), &h_cg) < 0)
6767 goto out_err;
6768
6769 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6770 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6771 * of the resv_map.
6772 */
6773 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6774 }
6775
6776 /*
6777 * There must be enough pages in the subpool for the mapping. If
6778 * the subpool has a minimum size, there may be some global
6779 * reservations already in place (gbl_reserve).
6780 */
6781 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6782 if (gbl_reserve < 0)
6783 goto out_uncharge_cgroup;
6784
6785 /*
6786 * Check enough hugepages are available for the reservation.
6787 * Hand the pages back to the subpool if there are not
6788 */
6789 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6790 goto out_put_pages;
6791
6792 /*
6793 * Account for the reservations made. Shared mappings record regions
6794 * that have reservations as they are shared by multiple VMAs.
6795 * When the last VMA disappears, the region map says how much
6796 * the reservation was and the page cache tells how much of
6797 * the reservation was consumed. Private mappings are per-VMA and
6798 * only the consumed reservations are tracked. When the VMA
6799 * disappears, the original reservation is the VMA size and the
6800 * consumed reservations are stored in the map. Hence, nothing
6801 * else has to be done for private mappings here
6802 */
6803 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6804 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6805
6806 if (unlikely(add < 0)) {
6807 hugetlb_acct_memory(h, -gbl_reserve);
6808 goto out_put_pages;
6809 } else if (unlikely(chg > add)) {
6810 /*
6811 * pages in this range were added to the reserve
6812 * map between region_chg and region_add. This
6813 * indicates a race with alloc_hugetlb_folio. Adjust
6814 * the subpool and reserve counts modified above
6815 * based on the difference.
6816 */
6817 long rsv_adjust;
6818
6819 /*
6820 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6821 * reference to h_cg->css. See comment below for detail.
6822 */
6823 hugetlb_cgroup_uncharge_cgroup_rsvd(
6824 hstate_index(h),
6825 (chg - add) * pages_per_huge_page(h), h_cg);
6826
6827 rsv_adjust = hugepage_subpool_put_pages(spool,
6828 chg - add);
6829 hugetlb_acct_memory(h, -rsv_adjust);
6830 } else if (h_cg) {
6831 /*
6832 * The file_regions will hold their own reference to
6833 * h_cg->css. So we should release the reference held
6834 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6835 * done.
6836 */
6837 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6838 }
6839 }
6840 return true;
6841
6842 out_put_pages:
6843 /* put back original number of pages, chg */
6844 (void)hugepage_subpool_put_pages(spool, chg);
6845 out_uncharge_cgroup:
6846 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6847 chg * pages_per_huge_page(h), h_cg);
6848 out_err:
6849 hugetlb_vma_lock_free(vma);
6850 if (!vma || vma->vm_flags & VM_MAYSHARE)
6851 /* Only call region_abort if the region_chg succeeded but the
6852 * region_add failed or didn't run.
6853 */
6854 if (chg >= 0 && add < 0)
6855 region_abort(resv_map, from, to, regions_needed);
6856 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6857 kref_put(&resv_map->refs, resv_map_release);
6858 set_vma_resv_map(vma, NULL);
6859 }
6860 return false;
6861 }
6862
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6863 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6864 long freed)
6865 {
6866 struct hstate *h = hstate_inode(inode);
6867 struct resv_map *resv_map = inode_resv_map(inode);
6868 long chg = 0;
6869 struct hugepage_subpool *spool = subpool_inode(inode);
6870 long gbl_reserve;
6871
6872 /*
6873 * Since this routine can be called in the evict inode path for all
6874 * hugetlbfs inodes, resv_map could be NULL.
6875 */
6876 if (resv_map) {
6877 chg = region_del(resv_map, start, end);
6878 /*
6879 * region_del() can fail in the rare case where a region
6880 * must be split and another region descriptor can not be
6881 * allocated. If end == LONG_MAX, it will not fail.
6882 */
6883 if (chg < 0)
6884 return chg;
6885 }
6886
6887 spin_lock(&inode->i_lock);
6888 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6889 spin_unlock(&inode->i_lock);
6890
6891 /*
6892 * If the subpool has a minimum size, the number of global
6893 * reservations to be released may be adjusted.
6894 *
6895 * Note that !resv_map implies freed == 0. So (chg - freed)
6896 * won't go negative.
6897 */
6898 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6899 hugetlb_acct_memory(h, -gbl_reserve);
6900
6901 return 0;
6902 }
6903
6904 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6905 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6906 struct vm_area_struct *vma,
6907 unsigned long addr, pgoff_t idx)
6908 {
6909 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6910 svma->vm_start;
6911 unsigned long sbase = saddr & PUD_MASK;
6912 unsigned long s_end = sbase + PUD_SIZE;
6913
6914 /* Allow segments to share if only one is marked locked */
6915 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6916 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6917
6918 /*
6919 * match the virtual addresses, permission and the alignment of the
6920 * page table page.
6921 *
6922 * Also, vma_lock (vm_private_data) is required for sharing.
6923 */
6924 if (pmd_index(addr) != pmd_index(saddr) ||
6925 vm_flags != svm_flags ||
6926 !range_in_vma(svma, sbase, s_end) ||
6927 !svma->vm_private_data)
6928 return 0;
6929
6930 return saddr;
6931 }
6932
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6933 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6934 {
6935 unsigned long start = addr & PUD_MASK;
6936 unsigned long end = start + PUD_SIZE;
6937
6938 #ifdef CONFIG_USERFAULTFD
6939 if (uffd_disable_huge_pmd_share(vma))
6940 return false;
6941 #endif
6942 /*
6943 * check on proper vm_flags and page table alignment
6944 */
6945 if (!(vma->vm_flags & VM_MAYSHARE))
6946 return false;
6947 if (!vma->vm_private_data) /* vma lock required for sharing */
6948 return false;
6949 if (!range_in_vma(vma, start, end))
6950 return false;
6951 return true;
6952 }
6953
6954 /*
6955 * Determine if start,end range within vma could be mapped by shared pmd.
6956 * If yes, adjust start and end to cover range associated with possible
6957 * shared pmd mappings.
6958 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6959 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6960 unsigned long *start, unsigned long *end)
6961 {
6962 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6963 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6964
6965 /*
6966 * vma needs to span at least one aligned PUD size, and the range
6967 * must be at least partially within in.
6968 */
6969 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6970 (*end <= v_start) || (*start >= v_end))
6971 return;
6972
6973 /* Extend the range to be PUD aligned for a worst case scenario */
6974 if (*start > v_start)
6975 *start = ALIGN_DOWN(*start, PUD_SIZE);
6976
6977 if (*end < v_end)
6978 *end = ALIGN(*end, PUD_SIZE);
6979 }
6980
6981 /*
6982 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6983 * and returns the corresponding pte. While this is not necessary for the
6984 * !shared pmd case because we can allocate the pmd later as well, it makes the
6985 * code much cleaner. pmd allocation is essential for the shared case because
6986 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6987 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6988 * bad pmd for sharing.
6989 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6990 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6991 unsigned long addr, pud_t *pud)
6992 {
6993 struct address_space *mapping = vma->vm_file->f_mapping;
6994 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6995 vma->vm_pgoff;
6996 struct vm_area_struct *svma;
6997 unsigned long saddr;
6998 pte_t *spte = NULL;
6999 pte_t *pte;
7000
7001 i_mmap_lock_read(mapping);
7002 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7003 if (svma == vma)
7004 continue;
7005
7006 saddr = page_table_shareable(svma, vma, addr, idx);
7007 if (saddr) {
7008 spte = hugetlb_walk(svma, saddr,
7009 vma_mmu_pagesize(svma));
7010 if (spte) {
7011 get_page(virt_to_page(spte));
7012 break;
7013 }
7014 }
7015 }
7016
7017 if (!spte)
7018 goto out;
7019
7020 spin_lock(&mm->page_table_lock);
7021 if (pud_none(*pud)) {
7022 pud_populate(mm, pud,
7023 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7024 mm_inc_nr_pmds(mm);
7025 } else {
7026 put_page(virt_to_page(spte));
7027 }
7028 spin_unlock(&mm->page_table_lock);
7029 out:
7030 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7031 i_mmap_unlock_read(mapping);
7032 return pte;
7033 }
7034
7035 /*
7036 * unmap huge page backed by shared pte.
7037 *
7038 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7039 * indicated by page_count > 1, unmap is achieved by clearing pud and
7040 * decrementing the ref count. If count == 1, the pte page is not shared.
7041 *
7042 * Called with page table lock held.
7043 *
7044 * returns: 1 successfully unmapped a shared pte page
7045 * 0 the underlying pte page is not shared, or it is the last user
7046 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7047 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7048 unsigned long addr, pte_t *ptep)
7049 {
7050 pgd_t *pgd = pgd_offset(mm, addr);
7051 p4d_t *p4d = p4d_offset(pgd, addr);
7052 pud_t *pud = pud_offset(p4d, addr);
7053
7054 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7055 hugetlb_vma_assert_locked(vma);
7056 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7057 if (page_count(virt_to_page(ptep)) == 1)
7058 return 0;
7059
7060 pud_clear(pud);
7061 put_page(virt_to_page(ptep));
7062 mm_dec_nr_pmds(mm);
7063 return 1;
7064 }
7065
7066 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7067
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7069 unsigned long addr, pud_t *pud)
7070 {
7071 return NULL;
7072 }
7073
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7075 unsigned long addr, pte_t *ptep)
7076 {
7077 return 0;
7078 }
7079
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7081 unsigned long *start, unsigned long *end)
7082 {
7083 }
7084
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7086 {
7087 return false;
7088 }
7089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7090
7091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7093 unsigned long addr, unsigned long sz)
7094 {
7095 pgd_t *pgd;
7096 p4d_t *p4d;
7097 pud_t *pud;
7098 pte_t *pte = NULL;
7099
7100 pgd = pgd_offset(mm, addr);
7101 p4d = p4d_alloc(mm, pgd, addr);
7102 if (!p4d)
7103 return NULL;
7104 pud = pud_alloc(mm, p4d, addr);
7105 if (pud) {
7106 if (sz == PUD_SIZE) {
7107 pte = (pte_t *)pud;
7108 } else {
7109 BUG_ON(sz != PMD_SIZE);
7110 if (want_pmd_share(vma, addr) && pud_none(*pud))
7111 pte = huge_pmd_share(mm, vma, addr, pud);
7112 else
7113 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7114 }
7115 }
7116
7117 if (pte) {
7118 pte_t pteval = ptep_get_lockless(pte);
7119
7120 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7121 }
7122
7123 return pte;
7124 }
7125
7126 /*
7127 * huge_pte_offset() - Walk the page table to resolve the hugepage
7128 * entry at address @addr
7129 *
7130 * Return: Pointer to page table entry (PUD or PMD) for
7131 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7132 * size @sz doesn't match the hugepage size at this level of the page
7133 * table.
7134 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7135 pte_t *huge_pte_offset(struct mm_struct *mm,
7136 unsigned long addr, unsigned long sz)
7137 {
7138 pgd_t *pgd;
7139 p4d_t *p4d;
7140 pud_t *pud;
7141 pmd_t *pmd;
7142
7143 pgd = pgd_offset(mm, addr);
7144 if (!pgd_present(*pgd))
7145 return NULL;
7146 p4d = p4d_offset(pgd, addr);
7147 if (!p4d_present(*p4d))
7148 return NULL;
7149
7150 pud = pud_offset(p4d, addr);
7151 if (sz == PUD_SIZE)
7152 /* must be pud huge, non-present or none */
7153 return (pte_t *)pud;
7154 if (!pud_present(*pud))
7155 return NULL;
7156 /* must have a valid entry and size to go further */
7157
7158 pmd = pmd_offset(pud, addr);
7159 /* must be pmd huge, non-present or none */
7160 return (pte_t *)pmd;
7161 }
7162
7163 /*
7164 * Return a mask that can be used to update an address to the last huge
7165 * page in a page table page mapping size. Used to skip non-present
7166 * page table entries when linearly scanning address ranges. Architectures
7167 * with unique huge page to page table relationships can define their own
7168 * version of this routine.
7169 */
hugetlb_mask_last_page(struct hstate * h)7170 unsigned long hugetlb_mask_last_page(struct hstate *h)
7171 {
7172 unsigned long hp_size = huge_page_size(h);
7173
7174 if (hp_size == PUD_SIZE)
7175 return P4D_SIZE - PUD_SIZE;
7176 else if (hp_size == PMD_SIZE)
7177 return PUD_SIZE - PMD_SIZE;
7178 else
7179 return 0UL;
7180 }
7181
7182 #else
7183
7184 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7185 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7186 {
7187 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7188 if (huge_page_size(h) == PMD_SIZE)
7189 return PUD_SIZE - PMD_SIZE;
7190 #endif
7191 return 0UL;
7192 }
7193
7194 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7195
7196 /*
7197 * These functions are overwritable if your architecture needs its own
7198 * behavior.
7199 */
isolate_hugetlb(struct folio * folio,struct list_head * list)7200 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7201 {
7202 bool ret = true;
7203
7204 spin_lock_irq(&hugetlb_lock);
7205 if (!folio_test_hugetlb(folio) ||
7206 !folio_test_hugetlb_migratable(folio) ||
7207 !folio_try_get(folio)) {
7208 ret = false;
7209 goto unlock;
7210 }
7211 folio_clear_hugetlb_migratable(folio);
7212 list_move_tail(&folio->lru, list);
7213 unlock:
7214 spin_unlock_irq(&hugetlb_lock);
7215 return ret;
7216 }
7217
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7218 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7219 {
7220 int ret = 0;
7221
7222 *hugetlb = false;
7223 spin_lock_irq(&hugetlb_lock);
7224 if (folio_test_hugetlb(folio)) {
7225 *hugetlb = true;
7226 if (folio_test_hugetlb_freed(folio))
7227 ret = 0;
7228 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7229 ret = folio_try_get(folio);
7230 else
7231 ret = -EBUSY;
7232 }
7233 spin_unlock_irq(&hugetlb_lock);
7234 return ret;
7235 }
7236
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7237 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7238 bool *migratable_cleared)
7239 {
7240 int ret;
7241
7242 spin_lock_irq(&hugetlb_lock);
7243 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7244 spin_unlock_irq(&hugetlb_lock);
7245 return ret;
7246 }
7247
folio_putback_active_hugetlb(struct folio * folio)7248 void folio_putback_active_hugetlb(struct folio *folio)
7249 {
7250 spin_lock_irq(&hugetlb_lock);
7251 folio_set_hugetlb_migratable(folio);
7252 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7253 spin_unlock_irq(&hugetlb_lock);
7254 folio_put(folio);
7255 }
7256
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7257 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7258 {
7259 struct hstate *h = folio_hstate(old_folio);
7260
7261 hugetlb_cgroup_migrate(old_folio, new_folio);
7262 set_page_owner_migrate_reason(&new_folio->page, reason);
7263
7264 /*
7265 * transfer temporary state of the new hugetlb folio. This is
7266 * reverse to other transitions because the newpage is going to
7267 * be final while the old one will be freed so it takes over
7268 * the temporary status.
7269 *
7270 * Also note that we have to transfer the per-node surplus state
7271 * here as well otherwise the global surplus count will not match
7272 * the per-node's.
7273 */
7274 if (folio_test_hugetlb_temporary(new_folio)) {
7275 int old_nid = folio_nid(old_folio);
7276 int new_nid = folio_nid(new_folio);
7277
7278 folio_set_hugetlb_temporary(old_folio);
7279 folio_clear_hugetlb_temporary(new_folio);
7280
7281
7282 /*
7283 * There is no need to transfer the per-node surplus state
7284 * when we do not cross the node.
7285 */
7286 if (new_nid == old_nid)
7287 return;
7288 spin_lock_irq(&hugetlb_lock);
7289 if (h->surplus_huge_pages_node[old_nid]) {
7290 h->surplus_huge_pages_node[old_nid]--;
7291 h->surplus_huge_pages_node[new_nid]++;
7292 }
7293 spin_unlock_irq(&hugetlb_lock);
7294 }
7295 }
7296
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7297 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7298 unsigned long start,
7299 unsigned long end)
7300 {
7301 struct hstate *h = hstate_vma(vma);
7302 unsigned long sz = huge_page_size(h);
7303 struct mm_struct *mm = vma->vm_mm;
7304 struct mmu_notifier_range range;
7305 unsigned long address;
7306 spinlock_t *ptl;
7307 pte_t *ptep;
7308
7309 if (!(vma->vm_flags & VM_MAYSHARE))
7310 return;
7311
7312 if (start >= end)
7313 return;
7314
7315 flush_cache_range(vma, start, end);
7316 /*
7317 * No need to call adjust_range_if_pmd_sharing_possible(), because
7318 * we have already done the PUD_SIZE alignment.
7319 */
7320 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7321 start, end);
7322 mmu_notifier_invalidate_range_start(&range);
7323 hugetlb_vma_lock_write(vma);
7324 i_mmap_lock_write(vma->vm_file->f_mapping);
7325 for (address = start; address < end; address += PUD_SIZE) {
7326 ptep = hugetlb_walk(vma, address, sz);
7327 if (!ptep)
7328 continue;
7329 ptl = huge_pte_lock(h, mm, ptep);
7330 huge_pmd_unshare(mm, vma, address, ptep);
7331 spin_unlock(ptl);
7332 }
7333 flush_hugetlb_tlb_range(vma, start, end);
7334 i_mmap_unlock_write(vma->vm_file->f_mapping);
7335 hugetlb_vma_unlock_write(vma);
7336 /*
7337 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7338 * Documentation/mm/mmu_notifier.rst.
7339 */
7340 mmu_notifier_invalidate_range_end(&range);
7341 }
7342
7343 /*
7344 * This function will unconditionally remove all the shared pmd pgtable entries
7345 * within the specific vma for a hugetlbfs memory range.
7346 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7347 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7348 {
7349 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7350 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7351 }
7352
7353 #ifdef CONFIG_CMA
7354 static bool cma_reserve_called __initdata;
7355
cmdline_parse_hugetlb_cma(char * p)7356 static int __init cmdline_parse_hugetlb_cma(char *p)
7357 {
7358 int nid, count = 0;
7359 unsigned long tmp;
7360 char *s = p;
7361
7362 while (*s) {
7363 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7364 break;
7365
7366 if (s[count] == ':') {
7367 if (tmp >= MAX_NUMNODES)
7368 break;
7369 nid = array_index_nospec(tmp, MAX_NUMNODES);
7370
7371 s += count + 1;
7372 tmp = memparse(s, &s);
7373 hugetlb_cma_size_in_node[nid] = tmp;
7374 hugetlb_cma_size += tmp;
7375
7376 /*
7377 * Skip the separator if have one, otherwise
7378 * break the parsing.
7379 */
7380 if (*s == ',')
7381 s++;
7382 else
7383 break;
7384 } else {
7385 hugetlb_cma_size = memparse(p, &p);
7386 break;
7387 }
7388 }
7389
7390 return 0;
7391 }
7392
7393 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7394
hugetlb_cma_reserve(int order)7395 void __init hugetlb_cma_reserve(int order)
7396 {
7397 unsigned long size, reserved, per_node;
7398 bool node_specific_cma_alloc = false;
7399 int nid;
7400
7401 cma_reserve_called = true;
7402
7403 if (!hugetlb_cma_size)
7404 return;
7405
7406 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7407 if (hugetlb_cma_size_in_node[nid] == 0)
7408 continue;
7409
7410 if (!node_online(nid)) {
7411 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7412 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7413 hugetlb_cma_size_in_node[nid] = 0;
7414 continue;
7415 }
7416
7417 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7418 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7419 nid, (PAGE_SIZE << order) / SZ_1M);
7420 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7421 hugetlb_cma_size_in_node[nid] = 0;
7422 } else {
7423 node_specific_cma_alloc = true;
7424 }
7425 }
7426
7427 /* Validate the CMA size again in case some invalid nodes specified. */
7428 if (!hugetlb_cma_size)
7429 return;
7430
7431 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7432 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7433 (PAGE_SIZE << order) / SZ_1M);
7434 hugetlb_cma_size = 0;
7435 return;
7436 }
7437
7438 if (!node_specific_cma_alloc) {
7439 /*
7440 * If 3 GB area is requested on a machine with 4 numa nodes,
7441 * let's allocate 1 GB on first three nodes and ignore the last one.
7442 */
7443 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7444 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7445 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7446 }
7447
7448 reserved = 0;
7449 for_each_online_node(nid) {
7450 int res;
7451 char name[CMA_MAX_NAME];
7452
7453 if (node_specific_cma_alloc) {
7454 if (hugetlb_cma_size_in_node[nid] == 0)
7455 continue;
7456
7457 size = hugetlb_cma_size_in_node[nid];
7458 } else {
7459 size = min(per_node, hugetlb_cma_size - reserved);
7460 }
7461
7462 size = round_up(size, PAGE_SIZE << order);
7463
7464 snprintf(name, sizeof(name), "hugetlb%d", nid);
7465 /*
7466 * Note that 'order per bit' is based on smallest size that
7467 * may be returned to CMA allocator in the case of
7468 * huge page demotion.
7469 */
7470 res = cma_declare_contiguous_nid(0, size, 0,
7471 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7472 0, false, name,
7473 &hugetlb_cma[nid], nid);
7474 if (res) {
7475 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7476 res, nid);
7477 continue;
7478 }
7479
7480 reserved += size;
7481 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7482 size / SZ_1M, nid);
7483
7484 if (reserved >= hugetlb_cma_size)
7485 break;
7486 }
7487
7488 if (!reserved)
7489 /*
7490 * hugetlb_cma_size is used to determine if allocations from
7491 * cma are possible. Set to zero if no cma regions are set up.
7492 */
7493 hugetlb_cma_size = 0;
7494 }
7495
hugetlb_cma_check(void)7496 static void __init hugetlb_cma_check(void)
7497 {
7498 if (!hugetlb_cma_size || cma_reserve_called)
7499 return;
7500
7501 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7502 }
7503
7504 #endif /* CONFIG_CMA */
7505